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Abstract Stochastic hydrology produces ensembles of time series that represent plausible future
streamflow to simulate and test the operation of water resource systems. A premise of stochastic hydrology is
that ensembles should be statistically representative of what may occur in the future. In the past, the application
of this premise has involved producing ensembles that are statistically equivalent to the observed or historical
streamflow sequence. This requires a number of metrics or statistics that can be used to test statistical similarity.
However, with climate change, the past may no longer be representative of the future. Ensembles to test future
systems operations should recognize non‐stationarity and include time series representing expected changes.
This poses challenges for their testing and validation. In this paper, we suggest an evidence‐based analysis in
which streamflow ensembles, whether statistically similar to and representative of the past or a changing future,
should be characterized and assessed using an extensive set of statistical metrics. We have assembled a broad set
of metrics and applied them to annual streamflow in the Colorado River at Lees Ferry to illustrate the approach.
We have also developed a tree‐based classification approach to categorize both ensembles and metrics. This
approach provides a way to visualize and interpret differences between streamflow ensembles. The metrics
presented, along with the classification, provide an analytical framework for characterizing and assessing the
suitability of future streamflow ensembles, recognizing the presence of non‐stationarity. This contributes to
better planning in large river basins, such as the Colorado, facing water supply shortages.

Plain Language Summary Long‐range water supply planning in many river basins requires an
assessment of ensembles of plausible future streamflow time series used to simulate and test the operation of
water resource systems. With climate change, and growing recognition that hydrologic processes are changing
over time, the past may no longer be representative of the future. This poses challenges when using statistical
metrics to test future streamflow ensembles. In this paper, we suggest an evidence‐based approach in which
streamflow ensembles, whether statistically similar to and representative of the past or a changing future, should
be characterized using an extensive set of statistical metrics. We have assembled a broad set of metrics and
applied them to annual streamflow in the Colorado River at Lees Ferry to illustrate the approach. We have also
developed an approach to categorize both ensembles and metrics. The metrics presented and the classification
provide an analytical framework for characterizing and assessing the suitability of future streamflow ensembles
for water resources system planning. The metrics and classification developed advance and contribute to better
planning in large river basins facing water supply shortages.

1. Introduction
In water resources planning in large river basins, such as the Colorado River in the southwestern U.S., ensembles
of streamflow time series are commonly used to assess the performance of alternative policies and management
strategies (Bonham et al., 2024; Wheeler et al., 2022). It is important that these ensembles have statistical
properties representative of a wide range of plausible future streamflow conditions. Relying solely on historical
flow records to generate data for water resource analyses limits the ability to test strategies and policies against the
diverse range of sequences possible in the future. Paleo‐reconstructed flows extend the historical data and provide
robust information about past hydrology, offering a more complete picture of the range of variability experienced
beyond what is recorded in the historical gaged records. While the historical and paleo records hold valuable
information for the future, given climate change (IPCC, 2021; Milly et al., 2008) we can reasonably assume that
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future flow sequences will not precisely mirror historical patterns. There is thus a need to have statistical metrics
that characterize the properties of potential future streamflow ensembles and to use these metrics to assess the
suitability of ensembles for use in future planning. This paper provides a broad set of metrics that can be used to
characterize and classify streamflow ensembles, to address this need.

Stochastic streamflow models can generate a broad range of potential flow sequences for river basin planning and
analyses. These models can use observed flow records, proxy data like tree‐ring‐reconstructed flows, and/or
General Circulation Model (GCM) projections to generate ensembles of plausible future streamflow sequences.
These ensembles serve as inputs to systems planning and operations models, allowing testing of their resilience
against potential future scenarios. Most commonly, stochastic streamflowmodels generate ensembles of synthetic
streamflow sequences primarily based on historical data, often assuming stationarity (Fiering, 1967; Matalas
et al., 1982; Valencia & Schaake, 1973; Vogel, 2017; Yevjevich, 1963), although efforts have been made to adapt
them for nonstationary hydrologic processes to capture changes due to climate and anthropogenic impacts
(Borgomeo et al., 2014; Salas et al., 2018).

A suitable streamflow model should capture the fundamental characteristics expected during the planning period.
For a particular river basin study, identifying which characteristics are essential is important, yet challenging. A
premise of much prior stochastic hydrology is that the future will be different from, but statistically similar to, the
past (Loucks et al., 2017). Statistical similarity is quantified using a number of statistics, or metrics, which
ensemble sequences are expected to reproduce. The assumption of stationarity is not always plausible, especially
in river basins where significant alterations in runoff characteristics have occurred due to changes in land cover,
land use, climate, or groundwater utilization during the recorded flow period (Loucks et al., 2017). As a result,
exact replication of past statistics is no longer directly applicable in such basins, especially in an era of climate
change (Milly et al., 2008). Nevertheless, there remains a critical need to employ and further develop metrics that
quantify attributes of stochastic ensembles as valuable evidence‐based tools for interpreting streamflow model
results. Furthermore, metrics provide objective and quantitative evidence to interpret and analyze representations
of non‐stationarity such as differences between past streamflow and ensembles that incorporate projected climate
changes. Evidence‐based analysis supports robust decision‐making by offering clear, documented, and
communicable information (Pezij et al., 2019). It helps prevent the adoption of ensembles without full infor-
mation on their characteristics and solely because they have been used previously. Using a broad range of metrics
to describe hydrologic characteristics associated with streamflow ensembles used in water resources planning
provides evidence of how sufficient the ensembles are for their intended purposes.

Statistical attributes of the historical data provide quantitative context that plays a crucial role in analyzing
streamflow ensembles and assessing their ability to replicate historical patterns or desired characteristics. Various
common statistics, such as mean, standard deviation, skewness, minimum, maximum, probability distribution,
and correlation are widely used in studies to either evaluate the model's goodness‐of‐fit or compare different
models (e.g., Koutsoyiannis et al., 2008; Lee & Ouarda, 2012, 2023; Lee et al., 2010, 2020; Prairie et al., 2006,
2007, 2008; Salas et al., 2005; Sharma et al., 1997; Srinivas & Srinivasan, 2000, 2005, 2006; Tarboton, 1994). In
addition to these common statistics, a range of other metrics are available to capture various aspects of streamflow
ensembles. The Hurst coefficient is used to quantify long‐term memory or persistence beyond what is captured by
correlation (Chaves & Lorena, 2019; Hurst, 1951; Klemeš, 1974; Lee & Ouarda, 2023; Lee et al., 2020).
Detecting trends is another useful approach for quantifying non‐stationarity in time series (Helsel et al., 2020;
Kendall, 1955; Lee & Ouarda, 2023; Mann, 1945). Mutual information is a measure of dependence that, unlike
correlation, accounts for both linear and nonlinear dependence present in the time series, offering a more
comprehensive understanding of the relationships within the data (Gong et al., 2014; Harrold et al., 2001; Loritz
et al., 2018; Pechlivanidis et al., 2016, 2018).

Hydrological droughts and surpluses are additional metrics that frequently draw significant interest and attention
in hydrological studies. These metrics provide crucial insights for water resource management, especially in
regions prone to water scarcity or excess. Understanding the occurrence, duration, and severity of hydrological
droughts, as well as the frequency and magnitude of surpluses, is essential for making informed decisions
regarding water allocation, reservoir management, and drought preparedness. Previous studies have commonly
explored these statistics using the run‐sum approach (Lee & Ouarda, 2023; Lee et al., 2020; Prairie et al., 2006;
Salas et al., 2005; Srinivas & Srinivasan, 2006). However, a limitation of this method is that it defines a drought or
surplus event as events when all consecutive years are below or above a threshold, without any breaking year
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during that period. Our earlier work offered duration‐severity analysis as a more general approach to quantifying
drought or surplus without this limitation (Salehabadi et al., 2022).

In addition to the above metrics, storage‐related metrics quantify characteristics associated with the practical
evaluation of the storage capacity needed in reservoirs to meet specific yields or to manage reservoirs to sustain
desired demands (see for example Lee & Ouarda, 2023; Srinivas & Srinivasan, 2006). Storage metrics are thus
directly meaningful to water resource management. For a given streamflow sequence, the storage required to
support a specified yield can be estimated using sequent peak analyses (Loucks et al., 2017).

Overall, based on the literature, a diverse range of metrics are available to quantify and assess the characteristics
of a streamflow ensemble. When there are multiple sources of streamflow ensembles, these metrics assist in
informed decision‐making regarding ensemble selection for various planning needs.

To facilitate the comparison of multiple ensembles, simplify the extraction of information from an extensive set of
metrics, and classify the ensembles based on their characteristics, agglomerative hierarchical clustering analysis
can be used (Hastie et al., 2009; Murtagh & Contreras, 2012). Clustering techniques employ a similarity or
distance criterion to determine how and to what extent the objects (streamflow models in our case) are close/
similar or far/dissimilar. Once a similarity criterion is selected, the algorithm begins by assigning each object to its
own cluster. Then, it iteratively merges the two most similar clusters until all objects belong to a single cluster.
Previous studies such as Papacharalampous et al. (2019) have suggested a comprehensive set of forecast quality
metrics and used a clustering approach to compare the performance of various methods for forecasting hydro-
logical processes. Some aspects of their approach are similar to ours, but our focus here is on the annual scale and
longer‐term storage and drought/surplus quantities important for watersheds such as the Colorado River Basin
where there is reservoir capacity to support significant interannual storage. In another study, Ahmadalipour
et al. (2015) employed a number of statistical metrics and a clustering approach to analyze, compare, and rank the
performance of various global climate models from Climate Model Intercomparison Project 5 (CMIP5) data set
over the Columbia River Basin. Razavi et al. (2015) used a clustering analysis to cluster and assess the similarities
or dissimilarities among various tree‐ring chronology sites in the Saskatchewan River Basin. This literature
suggests that such clustering techniques can be used to classify multiple streamflow ensembles based on their
characteristics.

In this study, we employ an evidence‐based approach to objectively analyze Colorado River Basin streamflow
ensembles and quantify the differences between them. To do this, we identify and develop a comprehensive suite
of metrics to quantitatively evaluate and describe streamflow ensembles, compare them with historical data, and
explore their uncertainties. We use these metrics as evidence‐based tools to assess whether an ensemble is suf-
ficient for its intended purpose. The contribution is the comprehensive suite of metrics covering a broad class of
statistical characteristics, with documented uncertainty and guidance on application and interpretation for the
evaluation of a streamflow ensemble. Our metrics address limitations of drought statistics and also quantify the
occurrence of high flows, which are important for filling reservoirs in some systems. We also developed a
classification approach that groups similar ensembles based on the metrics and provides a classification of the
metrics themselves. This classification offers opportunities for efficiency, since ensembles with like attributes
may not need to be evaluated in full.

The paper is structured as follows: First, we describe the study area and the data used, encompassing 21 ensembles
of streamflow sequences within the Colorado River Basin. Next, we provide an overview of the metrics employed
for quantifying the streamflow ensembles. The results section provides ensemble‐specific metrics utilized for
individual ensemble interpretation, followed by comparative results and ensemble classification based on their
attributes. Finally, we draw conclusions on the utilization of a diverse range of metrics to identify ensembles that
closely align with the desired attributes essential for various planning purposes.

2. Study Area and Data Used
The Colorado River (Schmidt et al., 2022), often referred to as “America's Nile (LaRue, 1916),” is a vital water
resource for the southwestern United States and northwestern Mexico (Figure 1). Originating in the Rocky
Mountains, this river flows through arid landscapes, like the Colorado Plateau, before reaching northwestern
Mexico. The river is managed by a set of agreements known as the Law of the River (MacDonnell, 2021) and
provides water for millions of people, irrigated agriculture, and hydropower generation. It also holds cultural and
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Figure 1. Study area, Colorado River Basin and Lees Ferry gage location.
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ecological significance, with indigenous tribes relying on its waters and a set of protected areas, including Na-
tional Wildlife Refuges, Recreation Areas, and National Parks, benefiting from its flow.

However, the basin faces significant challenges due to increasing water demand and climate change, which is
expected to reduce water runoff and exacerbate droughts (Milly & Dunne, 2020; Schmidt et al., 2023; Udall &
Overpeck, 2017; Williams et al., 2020; Xiao et al., 2018). These changes threaten the sustainability of water
resources and call for innovative strategies to manage and adapt to evolving conditions in the basin (Fleck &
Castle, 2022; Rosenberg, 2022; Wheeler et al., 2021, 2022). One of the primary inputs needed for addressing
Colorado River management is projections of future streamflow, even though the precise characteristics of this
future remain uncertain.

The Colorado River Basin splits into the Upper Basin and Lower Basin near the Lees Ferry gage, through which
85%–90% of the river's flow passes (Figure 1). This makes the natural flow at Lees Ferry the main metric for
quantifying runoff within the basin. Natural flow represents an estimate of what the flow would have been in the
absence of human withdrawals and consumptive uses, reservoir evaporation, and dam operations. The U.S.
Bureau of Reclamation (hereafter Reclamation) maintains a historical natural flow data set derived from mea-
surements and estimates of consumptive use and diversions (Prairie & Callejo, 2005). Reclamation updates this
monthly data set regularly. The most recent update, as of November 2023, includes historical data from 1906
through 2020, with provisional estimates for 2021 and 2022 (USBR, 2022). Additionally, tree‐ring‐reconstructed
(or paleo‐reconstructed) natural flow extends the data beyond the 1906–2022 observed record. There are multiple
tree‐ring reconstructions available that estimate the Colorado River natural flow at Lees Ferry (Meko et al., 2007,
2017; Woodhouse et al., 2006). Readers are referred to Salehabadi et al. (2020) for a comparison of these tree‐ring
reconstructions. In this study, we used the tree‐ring reconstruction labeled as most skillful in Meko et al. (2017),
which spans from 1416 to 2015 at an annual water year timescale. These historical and paleo‐reconstructed data
sets were employed to compare their statistical attributes with future streamflow ensembles.

In the Colorado River Basin, there are multiple long‐term streamflow ensembles developed by previous studies
using different approaches (Prairie et al., 2006, 2007, 2008; Salehabadi et al., 2020, 2022; Tarboton, 1994;
Udall, 2020; USBR, 2011, 2012, 2014; Vano et al., 2020; Woodhouse et al., 2021). Streamflow ensembles are
generally based on either (a) historical gage record, providing insights into past observed conditions, (b) paleo‐
reconstructed data, offering long‐term perspectives, or (c) climate change‐informed data, projecting potential
future conditions. Some ensembles are also a combination of these sources. Each ensemble has particular sta-
tistical attributes and represents a set of assumptions about uncertain future hydrology. Many of these streamflow
ensembles have been developed to provide streamflow sequences as inputs to the Colorado River Simulation
System (CRSS). CRSS, implemented in RiverWare (Zagona et al., 2001), is the major long‐term water resources
planning tool in the Colorado River Basin used by Reclamation to project future conditions in the basin for years
and decades (Payton et al., 2020). The planning results are highly sensitive to the future streamflow used, and
there is a need to characterize the ensembles to support scenario planning and robust decision‐making under deep
uncertainty (Smith et al., 2022). Additionally, there is a planning effort ongoing in the basin called “Colorado
River Post‐2026 Operations” that will identify a range of water management alternatives for potentially decades
into the future (USBR, 2023). The Post‐2026 process will use specific streamflow ensembles and the findings of
our study could help inform choices on adequate ensembles for various planning purposes.

From the many streamflow ensembles developed by previous studies, we assessed a total of 21 ensembles of
interest to Reclamation for the Post‐2026 process. The Colorado River streamflow ensembles we assessed in this
study are listed in Table 1. In this table, ensembles 1–4 were generated using the Index Sequential Method (ISM)
applied to the entire observed natural flow (1906–2020), subsets of the observed natural flow (1931–2020 and
1988–2020), and the full paleo‐reconstructed natural flow (1416–2015). Ensemble 5 was created using an Auto‐
Regressive order 1 (AR1) model with mean and variance of the full observed natural flow record. Ensembles 6–8
were generated using the Nonparametric Paleo‐Conditioning (NPC) method, combining observed and paleo‐
reconstructed data (Prairie et al., 2008). Ensemble 9 was generated by a 5‐year block resampling from the mil-
lennium drought period from 2000 to 2018 (Salehabadi et al., 2022). Ensemble 10–12 used drought year
resampling from specific past droughts of millennium drought (2000–2020), mid‐twentieth century drought
(1953–1977), and paleo drought (1576–1600). Ensembles 13–15 are climate change‐informed flow projections
based on Climate Model Intercomparison Project 3 or 5 (CMIP3 or CMIP5) data sets and two downscaling
methods of Bias‐Corrected Spatial Disaggregation (BCSD) and Localized Constructed Analog (LOCA).
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Ensembles 16–21 were generated by uniformly and proportionally adjusting the observed natural flow according
to the projected future temperatures of Representative Concentration Pathway 4.5 and 8.5 (RCP 4.5 and RCP 8.5)
and streamflow sensitivity to temperature of 3%, 6.5%, and 10% per 1°C (Udall, 2020).

3. Methodology
An extensive set of metrics was identified or developed to effectively describe hydrologic characteristics asso-
ciated with streamflow ensembles. The metrics provide a framework to objectively test an ensemble's ability to
reproduce desired or historical attributes deemed important for the decision‐making scenario being considered.
Complete reproduction of all historical characteristics may not always be desired. For example, where the
question involves managing for streamflow declining due to climate change, the historical mean is not expected to
be reproduced. In this section, we provide an overview of the metrics we have identified and developed. Pre-
liminary evaluation and interpretation of these metrics can provide an initial assessment of the strengths and
weaknesses of any specific ensemble and may serve as a starting point for further consideration. Following the
overview of the metrics, we describe Ward's Agglomerative Hierarchical Clustering method, which we employed
for ensemble classification based on the calculated metrics.

3.1. Common Metrics

There are well‐known metrics such as mean, median, minimum, maximum, standard deviation, skewness, Auto
Correlation Function (ACF), and trend that are commonly used in studies to evaluate the goodness‐of‐fit of a
model or compare different models (e.g., Koutsoyiannis et al., 2008; Lee & Ouarda, 2012, 2023; Lee et al., 2010,
2020; Prairie et al., 2006, 2007, 2008; Salas et al., 2005; Sharma et al., 1997; Srinivas & Srinivasan, 2000, 2005,
2006; Tarboton, 1994). In this study, these metrics were calculated from their readily available formulas using
standard functions or libraries available in R (R Core Team, 2023). The Mann‐Kendall test (Kendall, 1955;
Mann, 1945) was applied to detect the occurrence of significant trends in streamflow ensembles. These common
metrics and trend statistics provide a basic statistical characterization of each ensemble. The full set of R scripts
used in this paper have been published in HydroShare (Salehabadi & Tarboton, 2024).

3.2. Partial Autocorrelation Function (PACF)

The Partial Autocorrelation Function (PACF), like the Autocorrelation Function (ACF), provides information on
the dependence structure of a time series (Bras & Rodriguez‐Iturbe, 1985; Hipel & McLeod, 1994). This
dependence structure indicates how each observation in the series is correlated with its lagged values, revealing
how past observations influence present or future values. It is based on considerations of stationarity so is most
meaningful for stationary processes but may also be helpful as a comparative statistic for non‐stationary pro-
cesses. While the ACF quantifies correlation across time lags, PACF is essentially the ACF adjusted for the
intervening correlation and quantifies direct additional correlation at higher lags beyond those due to intervening
correlation already represented by lower lag correlations. PACF is used to guide the selection of the order of an
autoregressive (AR) model used in autoregressive moving average (ARMA)model development and is calculated
using the Yule‐Walker equations and implemented in R (Venables & Ripley, 2010). For an AR model, the PACF
is zero beyond the order of AR model. In other words, the number of non‐zero PACF values gives the number of
lags that should be used in an AR model to capture historical dependence.

As a metric for quantifying and classifying streamflow ensembles, PACF provides information about dependence
and has application in the evaluation of the order of AR models, where they are being used to produce an
ensemble. Ensembles that intend to be representative of historical flows should have a similar dependence
structure, and deviation from the historical dependence structure should be noted.

3.3. Drought Event Statistics: Length, Cumulative Deficit, Intensity, and Interarrival Time

Hydrologic drought is described as a deficiency in the water supply, which may include streamflow and reservoir
storage (Wilhite & Buchanan‐Smith, 2005). One way to quantify a hydrologic drought event is as a sequence of
consecutive years during which the annual streamflow remains below a specified threshold level, which is
typically taken to be the long‐term average streamflow (Salas et al., 2005; Tarboton, 1994; Yevjevich, 1967).
Alternatively, another definition of a hydrologic drought is consecutive years with streamflow below the long‐
term mean exceeded by no more than one above‐average flow year (Woodhouse et al., 2021). In this
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framework, droughts may be quantified using metrics such as: (a) the duration
of flow below a threshold, (b) magnitude, defined as the cumulative differ-
ence between actual flows and a defined threshold, (c) intensity, defined as
the average of the below threshold deficit, and (d) the interarrival time. It
should be noted that these drought characteristics depend on a specified
threshold value and so it is important to consider an appropriate value as the
threshold. Additionally, the number of acceptable above‐threshold years
within the drought duration should be specified.

For an annual streamflow time series denoted by xt, t = 1, 2, …, n and a
constant threshold of x0, these drought metrics are specified below (Salas
et al., 2005) and illustrated in Figure 2.

• Drought duration or length (L). The period between the beginning and end
of any drought event, that is, the number of consecutive time intervals
(e.g., years) in which xt < x0.

• Cumulative deficit (D, drought magnitude). The deficit that accumulates
below the threshold during the drought duration (Equation 1).

D = ∑
t+L− 1

j=t
(x0 − xj) = ∑

t+L− 1

j=t
dj (1)

• Drought intensity (I). The average deficit over the drought duration, namely the ratio of the magnitude to
duration of a drought, I = D/L.

• Interarrival time (T). The time between the start of two successive droughts.

As metrics for quantifying streamflow ensembles and evaluating the sufficiency of them, averages, standard
deviations, and distributions of these drought statistics provide information about the simulated droughts in a
streamflow ensemble. For example, if an ensemble does not reproduce the drought metrics similar to the historical
record, it is not representative of what has occurred in the past and this could be used to invalidate an ensemble
intended to reproduce past statistics. These metrics also provide information about the characteristics of future
droughts in an ensemble and have applicability where persistence and magnitude of the deficit of flows below a
threshold are important. A shortcoming of event statistics is that they break a sustained dry period into separate
events when 1 year, or a selected number of years exceed the threshold. The duration‐severity analysis described
next is an effort to avoid this shortcoming.

3.4. Duration‐Severity Analysis

The duration‐severity approach, as introduced by Salehabadi et al. (2022), provides a framework for analyzing
streamflow data based on severity and duration in order to evaluate drought periods (and more generally wet
extremes as well). In this approach, severity, which is different from the event definitions of magnitude and
intensity discussed in the previous section, is quantified in terms of the mean flow over a specific duration. It
considers all periods with that duration in the data set, including both wet and dry years without separating
specific drought events. The duration‐severity analysis helps place droughts within the streamflow ensembles in a
historical context by comparing these ensembles with either observed or paleo‐reconstructed flows. In the context
of extreme drought analysis, this approach sheds light on how the lowest mean flows within the ensemble may
vary for different durations. It also reveals where the range of extreme droughts falls in relation to the historical
flows.

As metrics for quantifying and evaluating streamflow ensembles, examining the position and spread of duration‐
severity within these ensembles in comparison to historical flows provides insights into the simulated events, such
as droughts, present in the ensemble. If an ensemble is intended to be representative of past statistics, the extreme
events need to be aligned with what has occurred in the past. This analysis also provides information about
changes in the severity of extreme events, and whether an ensemble has more severe and sustained droughts than
the historical or paleo‐reconstructed record. Streamflow ensembles developed to consider a warmer future may

Figure 2. Schematic definition of drought characteristics. The black dashed
line represents the threshold level. L1 and L2: lengths of the first and second
drought, respectively. I1: intensity of the first drought. T1: interarrival time
of the first drought. D2: cumulative deficit of the second drought.
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exhibit droughts of greater severity (lower duration‐severity values) compared to past data, and the duration‐
severity analysis provides a quantitative measure of this. Additionally, this analysis reveals the degree of vari-
ability within the simulated extreme events. Ensembles with lower variability in hydrologic events have a nar-
rower spread of duration‐severity values, while ensembles with higher variability display a broader spread. This
variability information is valuable in understanding the range of simulated extreme events. Duration‐severity
analysis has applicability in characterizing low mean flow periods with occasional high flows. While the
drought event statistics described earlier might regard high flows as ending a drought, it is important to note that
these occasional high flows may not be sufficient to fill reservoirs and allow for recovery, especially where
reservoirs have multi‐year storage capacity.

3.5. Cumulative Deviation

A recasting of the duration‐severity analysis is the concept of cumulative deviation, which focuses on measuring
the cumulative departure from a particular reference point, such as average conditions, over various durations
(Salehabadi et al., 2020, 2022). The cumulative deviation for each n‐year duration represents the total deficit or
surplus accumulated relative to the reference over those n years. This metric differs from the cumulative deficit in
drought event statistics discussed above as it is more general, not accumulating only values below the threshold
during a drought duration. Like the duration‐severity analysis and unlike the cumulative deficit in drought event
statistics, the cumulative deviation includes all years within each duration, whether they are wet or dry years. In
the context of drought analysis, this method provides insights into how cumulative deficits within an ensemble
vary for various durations. Conversely, in the context of flood analysis, this approach illustrates the variations in
cumulative surplus within an ensemble across various durations. Depending on the purpose of an analysis, the
duration‐severity or cumulative deviation approach may be employed. It is important to note that the cumulative
deviation calculation depends on a chosen reference mean, while duration‐severity analysis does not. Cumulative
deviation has applicability in the characterization of the total deficit over an extended period for systems that are
close to fully developed, where essentially all water available is used.

3.6. Count Below Threshold (CBT)

The count of periods (e.g., years) with flow below a threshold serves as a drought measure, similar to drought
event statistics and duration‐severity metrics. The “count below threshold (CBT)” for a specific duration rep-
resents the average number of years with flow below the threshold within that duration. CBT can be expressed as
either a moving count or an overall average. The moving CBT metric is also a useful tool for visualizing changes
(increase or decrease) in the occurrence of flows below the threshold. The difference between this metric and
drought length in drought event statistics is that CBT counts the number of below‐threshold years without
requiring them to be consecutive under a specific drought definition. CBT has applicability in assessing the
frequency of dry years implied by flow below a threshold.

3.7. Count Above Threshold (CAT)

The “count above threshold (CAT)” is a metric similar to CBT, but it quantifies the number of years with flow
exceeding a specified threshold. It serves as a measure of high‐flow occurrence. This metric has applicability for
assessing the occurrence of high flows, the occurrence of which is important for filling reservoirs in some
systems.

3.8. Hurst Coefficient

The Hurst coefficient (Hurst, 1951) quantifies persistence or long memory in a time series beyond that quantified
by correlation or a model that captures correlation. It can be used to explore the long‐term persistence of
streamflow, climate, and other geophysical records (Hurst, 1951; Montanari et al., 1997; Vogel et al., 1998). The
range (R) is defined as the maximumminus minimum cumulative departure from the mean in a sequence of flows
n years long. The rescaled range (R/S) is R divided by the standard deviation (S). The Hurst coefficient is defined
as the scaling exponent associated with the increase in rescaled range with sample size n. Given a streamflow time
series {x1, x2, …, xn} with sample mean x and sample standard deviation Sx, the adjusted partial sums are
(Equations 2–4):
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Yk =∑
k

t=1
(xt − kx) k = 1,…,n (2)

and the range is

Rn = [max(Y1,Y2,…,Yn) − min(Y1,Y2,…,Yn)] (3)

Hurst (1951) found that

E[
Rn

Sx
] ∝ nH (4)

where the exponent H is the Hurst coefficient, which varies between 0 and 1. Tarboton (1995) noted that this
statistic is uncertain and depends on the length of record over which it is computed. Here, to have a consistent
metric for comparison of ensembles, we standardized on evaluating average R/S for durations of 8, 16, 32, and the
full ensemble number of years and evaluated H from a regression of log(R/S) versus log(n).

A value of H less than or equal to 0.5 means absence of long memory. The occurrence of H > 0.5 is indicative of
long‐term structure in time series dependence and is referred to as the Hurst phenomenon. This may manifest as
persistent droughts and wet periods. The Hurst phenomenon may also be caused by non‐stationarity, where the
mean of the time series changes with time. It is important to note that when working with short records, the data
may be insufficient for a robust interpretation of the Hurst coefficient. The Hurst coefficient has applicability in
assessing the similarity of the long‐term dependence structure of ensembles.

3.9. Mutual Information

Mutual Information (MI) is based on the concept of Shannon entropy (Shannon, 2001), first introduced in 1948,
which is a measure of the uncertainty (or lack of information) of a random variable and provides a measure of the
amount of information that one random variable contains about another (Cover & Thomas, 2006). In the context
of time series, it quantifies the dependence between past and future values. It is similar to correlation in this
respect, but while correlation quantifies linear dependence between two variables, mutual information quantifies
dependence that may not necessarily be linear. Mathematically, for two continuous random variables X and Y, the
mutual information MI(X,Y) is defined as in Equation 5 (Cover & Thomas, 2006).

MI(X,Y) = ∬ p(x,y) log
p(x,y)

p(x) p( y)
dx dy (5)

where p(x, y) is the joint probability density function, and p(x) and p(y) are marginal probability density functions.
In the time series context x and y may be the same variable at different lags. MI can be unbounded (infinite) and
numerical estimation of mutual information from a sample involves discretization and binning, to approximate
the probabilities and evaluate the integral above based on bin frequencies. Results depend on the chosen bin
boundaries and thus comparison of numeric MI differences between ensembles should use consistent binning.
Here, we used the optimal bin width suggested by Scott (2015), which depends on the standard deviation and the
number of data values (see for example Gong et al., 2014). We then used the R entropy package (Hausser &
Strimmer, 2021) to evaluate normalized MI, which is the MI standardized by the entropy of each variable. This
metric helps quantify the nonlinear lagged dependence within streamflow ensembles.

Figure 3 illustrates how mutual information and correlation metrics quantify linear and nonlinear dependence
between some hypothetical variables. In Figure 3a, there is a visible linear relationship between x and z so both MI
and Cor quantify this relationship with high values. Variables x and t in Figure 3b, on the other hand, are two
independent variables without any specific relationship between them so that MI and Cor are close to zero. In
Figure 3c, there is an obvious relationship between x and y, however, this relationship is not linear and so the Cor
is zero. In this case, the mutual information captures the nonlinear relationship between x and y. This example
illustrates the value of including the mutual information metric where there may be nonlinear dependence.
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With MI, there is no a‐priori expectation that dependence should be linear, but with small sample sizes, as is
typical for streamflow, the data may be insufficient to discern small nonlinear dependence robustly with statistical
significance. MI has applicability in quantifying the nonlinear dependence structure of ensembles.

3.10. Reservoir Storage‐Yield and Reliability

Reservoir storage‐yield and reliability analysis show how streamflow ensembles respond to a set of desired yields
and reliabilities. This metric captures the storage attributes of the ensemble at an abstract level distinct from
particular reservoir sizing or operation policies. Reservoir storage‐yield analysis has traditionally been used to
determine the minimum active storage capacity required to deliver a constant yield rate with a given reliability or,
alternatively, the yield that can be supplied from a reservoir with a known storage capacity (Loucks et al., 2017).
Here, reliability refers to the probability of meeting reservoir yields. Given the natural variability of streamflow,
which may increase due to climate change, it is unclear how well reservoirs can ensure the delivery of specified
yields with the desired reliabilities (Kuria & Vogel, 2014). These metrics help quantify the variability of yields
and reliabilities due to streamflow variability.

Given a time series of reservoir inflows, a computation based on mass balance may be used to determine the
reservoir storage required to meet a specific yield or release. Let Rt denote the release volume at each time step t,
Qt denote the inflow volume at t, and Kt denote the storage needed at the end of t, with K0 = 0. Then, Kt is
calculated using Equation 6.

{
Kt = Kt− 1 + Rt − Qt if positive,

Kt = 0 otherwise
(6)

If Kt from this equation is negative, it indicates that inflow was higher than release plus available unfilled storage
capacity. This means that release can be met with available inflow during that time step and there is no need for
additional storage, and so Kt reset to 0. For a given series of inflows, the maximum of all Kt is the active storage
capacity, S, required to sustain the specified releases or yield. A storage‐yield curve is constructed by calculating S
for a set of yields. After the storage‐yield analysis, reservoir reliability can be evaluated. A reservoir reliability
plot shows the probability that the storage required to meet a specified yield is less than a given value S. Storage‐
yield, and reliability metrics have applicability in assessing the storage required to support specific demands at a
chosen level of reliability, in a general sense without the challenge associated with detailed operational system
simulation.

3.11. Ward's Agglomerative Hierarchical Clustering Method

Ward's Agglomerative Hierarchical Clustering method (hereafter Ward's method) was used to categorize the
ensembles based on the calculated metrics (Hastie et al., 2009; Murtagh & Contreras, 2012). Ward's method is a
bottom‐up clustering (or classification) method in which each object (streamflow ensemble or metric in our case)

Figure 3. Mutual information (MI) and correlation (Cor) of some hypothetical variables of x, y, t, and z. (a) Two variables with a visible linear relationship. (b) Two
independent variables. (c) Two variables with a visible but not linear relationship.
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is treated as a single cluster at the beginning of the algorithm. Then, pairs of clusters are merged (or agglomerated)
until all clusters are merged into a single cluster containing all the objects. Ward's method selects pairs of clusters
to merge at each step based on the minimum sum‐of‐squares as a distance (similarity) criterion, which determines
how close (similar) or far (dissimilar) the clusters are. A tree (or dendrogram) can be used to visualize the hi-
erarchy of clusters. In dendrograms, the X‐axis represents the objects and the Y‐axis represents the distance at
which clusters merge. Objects with similar characteristics, having a minimum distance, are grouped in the same
cluster, while dissimilar objects are placed farther in the hierarchy. We used the R package pheatmap to perform
Ward's method (Kolde, 2019).

4. Results
We calculated all the metrics outlined in the preceding section for 21 streamflow ensembles available for the
Colorado River Basin (Table 1). We employed these metrics for three primary purposes: (a) to provide a
quantitative description of each individual ensemble, (b) to conduct comparisons among ensembles, and (c) to
classify ensembles based on their characteristics. This is intended to inform the Post‐2026 process by indicating
similarities and differences between ensembles and identifying ensembles that have metric attributes aligned with
a planning scenario being considered. Considering the decision‐making under deep uncertainty paradigm, it is
anticipated that ensembles representing multiple future planning scenarios will be used and each will have at-
tributes associated with the rationale for that planning scenario. The metrics evaluated for each ensemble will
facilitate assessing its suitability for use in a planning scenario.

In this section, we present and explain the metrics for one individual ensemble in detail, namely
NPC_2000_2020. The results for the remaining ensembles are available in Supporting Information S1, and the
codes for generating these metrics can be found in HydroShare (Salehabadi & Tarboton, 2024). Then, we provide
ensemble comparison results, where we have calculated a specific metric for all ensembles and presented them in
a single plot. The metrics presented quantify the statistical characteristics of streamflow ensembles, providing a
quantitative foundation for interpreting and analyzing their similarities and differences. As each ensemble
comprises multiple time series, the metric ranges calculated for each ensemble are depicted using box plots.
These ranges quantify the uncertainty in each metric, useful when comparing ensembles. Note that in this paper
the box plots use R defaults (R Core Team, 2023), where boxes represent the central half of the data, with
whiskers extending to 1.5 times the interquartile range, and outliers beyond the whiskers are displayed as in-
dividual dots.

4.1. Ensemble‐Specific Metrics

Figures 4–8 present the metrics calculated for the Millennium Drought Paleo‐Conditioned ensemble labeled as
“NPC_2000_2020.” This ensemble comprises 100 time series, each 50 years long, generated using the
Nonparametric Paleo‐Conditioning method (NPC) as described by Prairie et al. (2008). To generate this
ensemble, we applied the NPC method to a subset of the observed natural flow record from 2000 to 2020 (known
as the millennium drought period) and the full tree‐ring‐reconstructed natural flows from 1416 to 2015.

The results for this ensemble show that simulated annual natural flows range from 6 to 20 maf/year and theMann‐
Kendall trend test indicates no significant trend during the planning period (Figure 4). The ensemble has a mean of
12.42 maf/year (Figure 5a) with a standard deviation of about one‐fourth of the mean (Figure 5d). Minimum
annual flows are bounded by the historical minimum annual flow of 5.5 maf/year, indicating that the ensemble
does not include any years with flows lower than previously observed (Figure 5b). Maximum annual flows are
around 20 maf/year, which is 4 maf/year less than the historical maximum annual flow (Figure 5c).

The ensemble has a positive skewness of 0.2, equal to that of the historical record (Figure 5e). For a 50‐year
record, skewness needs to exceed a value of 0.66 to be statistically different from zero with a 95% confidence
level. Thus, for this ensemble, the skewness is considered not significantly different from zero. Positive skewness
means that, on average, there will be more flows below the mean than flows above the mean. This characteristic is
also quantified using the CBT metric.

The ACF results show that the ensemble has a lag‐1 correlation centered on zero and does not reproduce the
statistically significant historical correlation (Figure 5f). For the 115‐year historical record, the threshold for
statistical significance with 95% confidence is 1.96/

̅̅̅
n

√
= 0.18, indicating that the historical lag‐1 correlation of
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0.22 is statistically different from zero. While the NPC method is designed to preserve correlation, the results
show that when a short record of data is used as the basis for resampling, there are no meaningful differences
between NPC and random resampling in simulating the historical lag‐1 correlation.

Drought event statistics (drought length, cumulative deficit, intensity, and interarrival time) quantify character-
istics of droughts, defined by consecutive years during which the annual flow remains below the historical long‐
term average (i.e., 14.74 maf/year as the specified threshold). The results in Figures 5g–5j indicate that drought
length and cumulative deficit in this ensemble are higher than those in the historical record. However, drought
intensity is similar to the historical record, indicating a comparable average deficit in dry years. Note that these
statistics break a sustained dry period into separate events when 1 year exceeds the threshold.

Average count below/above threshold (Figures 5k and 5l) quantifies the average number of years in a decade with
flows below/above a threshold. Below threshold years were counted using a threshold of 14.74 maf/year, which is
the long‐term mean. Above threshold years were counted using a threshold of 20 maf/year. This value is close to
the highest flow observed during the twenty‐first‐century millennium drought period, the worst 21‐year drought
occurred based on the observed record (Salehabadi et al., 2022). Using this threshold, the CAT metric helps
evaluate whether an ensemble has occasional high flows at a higher or lower frequency than during the mil-
lennium drought period. Counts are reported as an average over 10‐year durations. In the NPC_2000_2020
ensemble, on average, 8 years in each decade of the planning period are low‐flow years (<14.74 maf/year), and
the frequency of high‐flow years (>20 maf/year) is about 3%, which is less than the frequency of high flows in the
full historical record (13%) and more similar to the twenty‐first century. The flat moving count below/above
threshold (Figures S1 and S2 in Supporting Information S1) indicates no changes in the number of low/high flow
years during the planning period.

Duration‐severity analysis (Figure 6) was used as a more general approach to quantify droughts, regardless of the
occurrence of wet years during the dry periods. Duration‐severity analysis shows how the lowest mean flows may
vary for different durations (from 1 to 25 years) and where the range of extreme droughts in the ensemble sits with
respect to the observed and paleo‐reconstructed flows. The results indicate that the range of extreme droughts in
this ensemble includes those similar to the observed and paleo‐reconstructed droughts, along with droughts more
severe than those seen in the past 600 years.

Reservoir storage‐yield and reliability results (Figure 7) indicate that under this streamflow ensemble, an active
storage capacity of 170 maf (about three times the combined storage capacity of all major reservoirs in the basin)
is required to provide a yield of 15 maf/year with 90% reliability over 50‐year planning period. The yield of
15 maf/year is equal to the total water allocated by the Law of the River to the Upper and Lower Basins (7.5 maf to

Figure 4. Time series of the simulated annual natural flow at Lees Ferry for the NPC_2000_2020 ensemble. This figure
shows 10th to 90th percentiles (light blue area), and 25th to 75th percentiles (dark blue area), maximum and minimum
(whiskers), median (navy line), and a sample sequence from the ensemble (red line).
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Figure 5. Summary metrics of simulated annual natural flow at Lees Ferry for the NPC_2000_2020 ensemble.
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Figure 6. Duration‐severity analysis; Overlaying the range of extreme droughts (quantified as the minimum duration‐
severity) of the NPC_2000_2020 ensemble (orange area) on the duration‐severity of the observed (light blue dots) and tree‐
ring‐reconstructed (dark blue dots) natural flows at Lees Ferry. Darker dots from the tree‐ring record were placed to the left
of the observed record dots to keep them apart. The spread of the orange area illustrates how the ensemble's extreme droughts
may vary across various durations, comparing them with the historical and tree‐ring‐reconstructed records. Each dot
represents mean annual flow averaged over the duration on the x‐axis. There is a dot for each duration (including overlaps)
within the record.

Figure 7. Reservoir storage‐yield and reliability analysis for the NPC_2000_2020 ensemble. The plot on the left shows the
minimum active storage required to release the specified constant yields shown on the y‐axis. The plot on the right shows the
storage needed for a specific yield and desired reliability. Reservoir reliability is the cumulative distribution function of the
yield being met across all the streamflow time series of the ensemble. These plots indicate how the streamflow ensemble
responds to a set of desired yields and reliabilities. The metric represents the storage characteristics of the streamflow
ensemble at an abstract level distinct from particular reservoir sizing or operation policies.
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each basin, not including 1.5 maf to Mexico). This indicates that the Law of the River cannot be met if the
millennium drought continues. To release a yield of 13.5 maf/year with 90% reliability, an active storage capacity
of 100 maf is needed. The yield of 13.5 maf/year is equal to the sum of Upper Basin's average consumptive uses
and losses of 4.4 maf/year, plus a 9 maf/year allocation to the Lower Basin and Mexico under normal conditions
when sufficient mainstream water is available and there are no shortages.

The Hurst coefficient for this ensemble is centered around 0.76, denoting a long‐term structure in its dependence
(Figure 8). However, due to the short evaluation period (50 years), the uncertainty in this coefficient limits its
interpretation. Nevertheless, when compared to the historical record, this ensemble shows similarity in long‐term
persistence quantified with the Hurst coefficient.

Overall, the metrics indicate that the NPC_2000_2020 ensemble tests the system for a planning period mean
similar to the millennium drought mean. It has flows similar to those observed in the twenty‐first century and
includes extreme droughts more severe than those occurred in the past 600 years. The need to plan for potential
recurrence of droughts as severe as those in the observed and paleo‐reconstructed records, and potentially even
more severe droughts associated with warming, suggests that the NPC_2000_2020 ensemble is aligned with these
planning purposes. While the ensemble does not reproduce the historical lag‐1 correlation, which may be a
concern, retaining the historical persistence as quantified by the Hurst coefficient is an advantage that may
compensate for not preserving the correlation.

4.2. Comparison Results

Figure 9 shows the decadal mean (yellow to green boxes) and full 50‐year planning period mean (pink boxes) of
the 21 ensembles. The mean ranges indicate how dry or wet the ensembles are, compared to each other and the
historical long‐term mean of 14.74 maf/year (solid red line). To show how mean changes over shorter time spans
during the planning period and to address the management interest in understanding the characteristics of the
ensembles over decades, we have included the decadal means alongside the mean for the entire 50‐year planning
period.

In the ISM_1906_2020, AR1, NPC_1906_2020, and CMIP5_BCSD ensembles, the medians of simulated means
closely match the historical long‐term mean (Figure 9). These ensembles are thus consistent with an assumption
of stationarity of the mean, as the historical mean is preserved in the simulations. Note though that CMIP5_BCSD
10‐year means have greater spread than the other ensembles, indicating that this ensemble has increased vari-
ability. The other ensembles, however, deviate from stationarity of the mean with means less than the historical
mean, indicating drier conditions. Among these, TempAdj_RCP4.5_10% and TempAdj_RCP8.5_10% are the
driest ensembles, with mean flows lower than even the millennium drought mean (shown by the dashed red line in
Figure 9).

In the ISM‐based ensembles, the stationarity of the simulated decadal mean values is clearly evident. These
ensembles consistently provide similar mean flow ranges across various decades. On the other hand, decadal
mean values uniformly decrease in the temperature‐adjusted flow ensembles (i.e., TempAdj_RCP), indicating a
projected decrease.

Figure 8. Hurst coefficient for the NPC_2000_2020 ensemble.

Water Resources Research 10.1029/2024WR037225

SALEHABADI ET AL. 17 of 30



The CMIP‐based ensembles, including CMIP3_BCSD, CMIP5_BCSD, and CMIP5_LOCA, exhibit the widest
mean ranges and uncertainties among all ensembles (Figure 9). One significant source of uncertainty in CMIP‐
based flow projections is the downscaling process, which involves adapting coarse‐resolution GCM outputs for
high‐resolution hydrology models (Lukas et al., 2020). This downscaling‐related uncertainty is evident when
comparing the simulated mean values of the CMIP5_BCSD and CMIP5_LOCA ensembles. Interestingly, despite
their common CMIP5 source, the choice of downscaling method (BCSD or LOCA) results in variations in the
mean values: CMIP5_BCSD shows a higher mean (closer to the full observed record mean) than CMIP5_LOCA
(closer to the millennium drought mean). This is consistent with findings from other studies, such as Vano
et al. (2020), which thoroughly compared downscaled LOCA and BCSD projections.

Similar to the mean, minimum and maximum 1‐year flows for each decade and the full planning period can be
plotted analogously to Figure 9 as metrics that quantify low and high annual flow attributes of the ensembles.
These metrics are included in Supporting Information S1 (Figures S4 and S5 in Supporting Information S1).

The standard deviation of the ensembles shows that the historical standard deviation of 4.25 maf/year is preserved
in ensembles that use the full historical flow record to generate the flow sequences, except for the TempAdj
ensembles (Figure 10). In the TempAdj ensembles, the proportional reduction of historical natural flow in
response to future temperature projections leads to a notable decline in standard deviations. This decreasing trend
in variability over time may make these ensembles less suitable for planning purposes that require a broader range
of variability when considering a changing future. In contrast, the CMIP5_BCSD ensemble has the highest
standard deviation, higher than the variability provided by CMIP5_LOCA.

Figure 11 shows lags 1–3 correlation ranges of the ensembles, alongside the historical correlation. The results
indicate that historical lag‐1 correlation is not preserved in the following ensembles: ISM_1988_2020,
ISM_1416_2015, NPC_1988_2020, NPC_2000_2020, 5YrBlockRes_2000_2018, three DroughtYrRes ensem-
bles, and TempAdj_RCP8.5_10%. While not reproducing lag‐1 correlation may not disqualify the use of these
ensembles, it does differentiate them. It should also be noted that, for a series length of 50 years, the significance
level is 0.28, encompassing a wide‐range of correlations to be considered significant. The PACF measures
correlations at higher lags that are not directly influenced by lower lag correlations (Figure S7 in Supporting
Information S1). Since lag‐2 and higher correlations are generally low and rarely statistically significantly

Figure 9. Mean of streamflow ensembles along with the long‐term mean of the historical full record (1906–2020, solid red
line) and the millennium drought mean (2000–2020, dashed red line). The yellow to green boxes show decadal means, and
the pink boxes indicate the mean values over the full planning period.
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different from 0, the PACF higher lag values also tend to be low and lack significant deviations from 0, offering
limited additional information beyond what is observed in the ACF.

Figure 12 shows the Hurst coefficients for the ensembles we evaluated. All ensembles have a length of 50 years,
except ISM_1988_2020 and 5YrBlockRes_2000_2018, which span shorter periods of 33 and 42 years, respec-
tively. Ideally, for accurate Hurst coefficient comparisons, the period should be consistent, as the computed value

Figure 11. Autocorrelation function (ACF) at lags one to three for the streamflow ensembles.

Figure 10. Standard deviation of streamflow ensembles along with the historical standard deviation (dashed red line). The
yellow to green boxes represent decadal periods and the pink boxes are for the full planning period.
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is dependent on the period length. The results show that the Hurst coefficient for ISM_1906_2020 effectively
mirrors the Hurst coefficient for historical data assessed over 50‐year periods, with the box range indicating
uncertainty. Many of the evaluated ensembles exhibit box ranges lower than the historical Hurst coefficient,
indicating that they are not preserving persistence. Ensembles that do maintain persistence include
ISM_1906_2020, ISM_1416_2015, AR1, three NPC‐based ensembles, CMIP5_LOCA, and six temperature‐
adjusted ensembles (identified by TempAdj_RCP at the beginning of their names on the plot). It is interesting
to note that among the millennium‐drought‐based ensembles (i.e., NPC_2000_2020, 5YrBlockRes_2000_2018,
and DroughtYrRes_2000_2020), only the NPC‐based one maintains historical persistence. These ensembles were
all resampled from the same drought period and could not preserve historical correlation, as shown in Figure 11.
However, the NPC‐based ensemble is preferred due to retaining historical persistence.

Reservoir storage‐yield and reliability analysis was used to compare the streamflow variability in the ensembles.
Table 2 summarizes the reservoir storage required to release a specific yield of 13.5 maf with 50%, 75%, 90%, and
100% reliability (plots for all ensembles are available in Supporting Information S1). When comparing ensembles
representative of the full historical record (i.e., ISM_1906_2020, AR1, NPC_1906_2020), it becomes evident that
the NPC_1906_2020 ensemble requires more storage to achieve a specific yield, suggesting that the
NPC_1906_2020 ensemble is characterized by higher persistence.

The count below threshold metric, CBT, was calculated as the average number of years within 10‐year durations
with annual flows falling below a threshold of 12.56 maf/year, representing the twenty‐first‐century average flow
(Figure 13). In general, ensembles with lower mean flow tend to have a higher CBT. However, there are ex-
ceptions to this pattern. Comparison of the millennium‐drought‐based ensembles (i.e., NPC_2000_2020,
5YrBlockRes_2000_2018, and DroughtYrRes_2000_2020) shows that, despite having similar mean values and
other previously assessed metrics, the 5YrBlockRes_2000_2018 ensemble has fewer years below the threshold
compared to the other two ensembles.

Similarly, the count above threshold metric, CAT, was calculated as the average number of years within 10‐year
durations with annual flows exceeding a threshold of 20 maf/year, representing the twenty‐first‐century
maximum annual flow (Figure 14). The CAT results indicate that most ensembles have a lower frequency of
high flows compared to the full observed record. A comparison between ISM_1906_2020 and ISM_1931_2020
shows that excluding the first 24 years of the observed record (i.e., 1906–1931, known as the unusual pluvial

Figure 12. Hurst coefficient of the streamflow ensembles (box plots) along with the historical Hurst coefficient (red line).
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period) in the ISM flow generation results in a 50% decrease in the number of
high flows. The ISM_1931_2020 high‐flow frequency is more similar to
ISM_1416_2015, an ensemble based on paleo‐reconstructed flows extending
the historical data up to 1416. The results also highlight the limitation of some
ensembles in simulating high flows. Ensembles like Drought-
YrRes_1576_1600, TempAdj_RCP4.5_10%, and TempAdj_RCP8.5_10%
fail to produce high flows at least as high as the maximum annual flow
observed in the twenty‐first century. Consequently, these ensembles may not
be suitable for planning scenarios that need to account for occasional high
flows.

Hydrologic drought event statistics were determined using a threshold of
14.74 maf/year, which represents the historical long‐term mean flow. This
threshold was employed to identify consecutive years (with a length of 2 years
or more) with flows below this value. Subsequently, we calculated the average
drought length (Figure 15), cumulative deficit (Figure 16), intensity
(Figure 17), and interarrival time (Figure 18), for each ensemble. As detailed
in the methodology section, one limitation of drought event statistics is that
they divide a sustained drought period into distinct events if there is a year that
exceeds the threshold. To address this limitation and avoid dependency on a
specific threshold, we conducted a duration‐severity approach to quantify
extreme droughts within the ensembles, regardless of the occasional occur-
rence of wet years during dry periods. Figure 6 presented earlier, for example,
shows duration‐severity results for the NPC_2000_2020 ensemble, and the
results for the other ensembles are available in Supporting Information S1.

Among the ensembles that closely resemble the observed record based on the
previously accessed metrics, the ISM_1906_2020 ensemble stands out as the
only one that replicates all the available drought event statistics from the
observed record (Figures 15–18). The duration‐severity results indicate that
extreme droughts in this ensemble closely align with those in the observed
record, and the ensemble does not exhibit droughts of greater severity than
those observed in the last century (Figure S12 in Supporting Information S1).
This characteristic makes the ensemble unsuitable for planning in a warmer
future with declining flow.

Drought event statistics for the AR1 ensemble indicate that, overall, drought characteristics in this ensemble are
very similar to the ISM_1906_2020 ensemble (Figures 15–18). However, the duration‐severity results indicate
that extreme droughts more severe than the ISM_1906_2020 are present in the AR1 ensemble (Figure S40 in
Supporting Information S1). The extreme droughts in the AR1 ensemble are mostly consistent with what has
previously occurred in the observed and paleo‐reconstructed records. In some short durations (1‐ and 2‐year)
however, the unrealistically low mean flows are also available in the AR1 ensemble (Figure S40 in Supporting
Information S1).

The Paleo ISM ensemble (ISM_1416_2015) has drought length and magnitude higher than the ISM_1906_2020
ensemble (Figures 15 and 16), but drought intensity is similar, indicating a similar average deficit in dry years
(Figure 17). The duration‐severity results for the Paleo ISM ensemble show a wide range of variability for
extreme droughts (Figure S33 in Supporting Information S1). Along with having extreme droughts similar to
those in the observed record, the ensemble also includes more severe droughts similar to the extreme droughts in
the paleo estimations. Therefore, this ensemble does provide extreme droughts that are more severe and sustained
than what has been observed in the last century. However, there are no droughts more severe or sustained than
those in the paleo estimates. A warming future may increase the severity of the extreme paleo droughts and such
droughts are needed to be considered in future drought planning.

The TempAdj_RCP8.5_10% exhibits the most severe and sustained droughts with the highest length and
magnitude (Figures 15 and 16). Under this ensemble, there would be, on average, a 5 maf/year deficit compared to
the long‐term mean during drought events (Figure 17). Looking at the duration‐severity results (Figure S152 in

Table 2
A Summary of Reservoir Storage‐Yield and Reliability Analysis Results

Ensemble

Reservoir storages (maf) required to release
a constant yield of 13.5 maf with

reliability of

50% 75% 90% 100%

ISM_1906_2020 16.45 20.34 20.34 20.34

ISM_1931_2020 19.84 29.46 29.46 29.46

ISM_1988_2020 24.24 31.16 33.56 33.56

ISM_1416_2015 24.73 34.67 49.13 49.96

AR1 20.06 26.86 37.54 58.48

NPC_1906_2020 23.58 34.40 43.92 103.93

NPC_1988_2020 44.63 57.67 78.72 111.01

NPC_2000_2020 59.22 78.73 99.76 138.68

5YrBlockRes_2000_2018 38.54 53.08 70.21 90.31

DroughtYrRes_2000_2020 55.39 74.93 83.74 128.51

DroughtYrRes_1953_1977 45.31 56.29 72.99 99.98

DroughtYrRes_1576_1600 91.86 113.30 124.55 158.49

CMIP3_BCSD 36.50 78.29 123.43 204.23

CMIP5_BCSD 19.76 42.89 66.48 117.23

CMIP5_LOCA 53.12 99.70 142.44 181.91

TempAdj_RCP4.5_3% 36.30 44.51 48.52 57.97

TempAdj_RCP4.5_6.5% 80.22 97.94 107.99 123.16

TempAdj_RCP4.5_10% 134.78 159.35 168.19 187.08

TempAdj_RCP8.5_3% 45.45 52.42 62.05 71.80

TempAdj_RCP8.5_6.5% 107.95 125.96 135.79 150.89

TempAdj_RCP8.5_10% 177.95 202.43 209.95 226.60
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Supporting Information S1) also indicate that extreme droughts in this ensemble are significantly more severe
than what has previously occurred in the observed and paleo‐reconstructed records. Overall, this ensemble stands
out as the most extreme one in terms of providing drought conditions.

Most metrics calculated for the NPC_1906_2020 ensemble are similar to those of the ISM_1906_2020 ensemble,
albeit with more variability. The differences between these two ensembles become evident in the extreme
droughts, as quantified by the duration‐severity analysis (Figures S12 and S47 in Supporting Information S1) and

Figure 14. Average count above a threshold of 20 maf/year over 10‐year durations.

Figure 13. Average count below a threshold of 12.56 maf/year (twenty‐first‐century mean flow at Lees Ferry) over 10‐year
durations.
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the reservoir storage‐yield and reliability analysis (Figures S13 and S48 in Supporting Information S1). The
duration‐severity results for NPC_1906_2020 reveal a wide range of variability in extreme droughts. While some
droughts are similar to those that occurred in observed and paleo records, others are more severe and sustained.
This suggests that the NPC method can generate extreme droughts as severe and sustained as those in the paleo

Figure 15. Drought event length. Drought events were defined using long‐term average of the historical natural flow at Lees
Ferry (14.7 maf/year) as a threshold. All drought events with a length greater than 1 year (LMin= 2 and LMax= 9,999) have
been considered, without specific thresholds for drought magnitude and intensity (D0 = 0 and I0 = 0).

Figure 16. Drought event magnitude (or cumulative deficit). Drought events were defined as for Figure 15.
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record. In contrast, ISM_1906_2020, which is based on the full observed record, fails to produce such extreme
droughts, making ISM an unreasonable method to use. The extreme droughts available in NPC_1906_2020
necessitate higher storage than those in ISM_1906_2020 to provide yields with greater reliability.

Looking at the millennium‐drought‐based ensembles generated using NPC and drought resampling (i.e.,
NPC_2000_2020 and DroughtYrRes_2000_2020) indicates that these two ensembles are very similar in drought

Figure 17. Drought event intensity. Drought events were defined as for Figure 15.

Figure 18. Drought event interarrival time. Drought events were defined as for Figure 15.
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event statistics (Figures 15–18), but duration‐severity analysis reveals the difference (Figure 6 and Figure S75 in
Supporting Information S1). The DroughtYrRes_2000_2020 ensemble does provide some extreme droughts (less
than 10% of the extreme droughts in the ensemble) that are more severe and sustained than those in the past, but
they are not as severe as the extreme droughts in the NPC_2000_2020 ensemble. This is despite both ensembles
being resampled from the same subset of the observed natural flow.

Lag‐1 normalized Mutual Information (MI) was calculated for the ensembles and is shown in Figure 19. These
results are highly sensitive to the chosen bin boundaries. Therefore, a consistent binning method was applied to
ensure the comparability of MI values across ensembles. The findings show variations in the degree of nonlinear
dependence among ensembles. Notably, NPC_2000_2020 exhibits a higher MI compared to Drought-
YrRes_2000_2020, despite their lack of correlation in Figure 11. This suggests that although both the NPC and
random resampling methods are unable to reproduce correlation when the sampling period is short (21 years from
2000 to 2020), the NPC method can generate more nonlinear dependence than a random resampling method.

4.3. Classifying Ensembles

After quantifying the characteristics of the ensembles, we applied Ward's method to classify ensembles based on
the metric medians (Figure 20). To do this, we initially examined how sensitive the classification of streamflow
ensembles was to metrics. Results indicated that when mutual information was in the set of metrics used for
classification, ensembles tended to switch between groups for no apparent reason. Excluding mutual information
from the set used for classification maintained the robustness of major ensemble classifications. Therefore, we
excluded mutual information from our metric list used for classification.

The heatmap in Figure 20 summarizes the metric results for the ensembles and the historical values highlighted in
red. In this figure, each row corresponds to a streamflow ensemble, and each column represents a metric, with
each cell indicating a specific metric median for a given ensemble. The color scheme of the heatmap was
standardized using subtraction of the metric mean divided by the metric standard deviation across all the en-
sembles. The dendrograms on the left represent ensembles, with the X‐axis as the ensembles and the Y‐axis
indicating the distance (as a similarity criterion) at which ensembles merge into the same category. Similar en-
sembles with minimum distance fall into the same category, while dissimilar ensembles are placed farther in the
hierarchy.

Figure 19. Lag‐1 normalized Mutual Information (MI) of the streamflow ensembles (box plots) along with the historical
normalized MI (red line).
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The results indicate that some temperature‐adjusted ensembles, characterized by a steep decline in flow, were
grouped together with the paleo drought resampled ensemble, DroughYrRes_1576_1600 (group 1). This cluster
of ensembles has the worst values for drought metrics, the lowest flow magnitudes, and no high flows. The
dendrograms on the left show that the TempAdj_RCP8.5_10% ensemble in this group is the most distinct one,
while the paleo‐resampled ensemble (DroughYrRes_1576_1600) is positioned in the middle of the group.

The ensembles based on resampling from specific drought periods are clustered together in group 2. In this group,
it is interesting to note that the two millennium‐drought‐based ensembles (NPC_2000_2020 and Drought-
YrRes_2000_2020) are not the most similar despite being resampled from the same drought period. A comparison
of the two rows corresponding to these ensembles (Figure 20) shows that this dissimilarity is primarily due to the
difference in the Hurst coefficient, which is higher in the NPC‐based ensemble and is more similar to the historical
Hurst coefficient. Therefore, when choosing between these two ensembles, the NPC‐based one is preferred due to
its preservation of historical persistence or long memory, as quantified by the historical Hurst coefficient.

Group 3 comprises ensembles that exhibit the highest similarity to the historical record. Among these ensembles,
ISM_1906_2020 and NPC‐1906_2020 are most similar to the historical record. The paleo‐based ensemble
(ISM_1416_2015) within this group has the highest correlation (0.37) among all ensembles. ISM_1931_2020 and
two TempAdj ensembles stand out as the most distinct in this group, with worse drought statistics and lower
flows.

Figure 20. Classification of streamflow ensembles and metrics using Ward's method and based on metric medians. The heatmap summarizes the metric results for all
ensembles. Each row corresponds to a streamflow ensemble, and each column represents a metric, with each cell indicating a specific metric median for a given
ensemble. The color scheme is standardized using subtraction of the metric mean divided by the metric standard deviation across all the ensembles. The dendrograms on
the left represent ensembles, with the X‐axis as the ensembles and the Y‐axis indicating the distance (as a similarity criterion) at which ensembles merge into the same
category. Similar ensembles with minimum distance fall into the same category, while dissimilar ensembles are placed farther in the hierarchy. Dendrograms on the top
represent metrics and show how similar the metrics are.
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The CMIP‐based ensembles also are clustered together (group 4). Based on the dendrograms on the left, the
CMIP5‐LOCA and CMIP3‐BCSD are the most similar ensembles in this group. Interestingly, despite both
CMIP5‐LOCA and CMIP5‐BCSD originating from the common CMIP5 source, the choice of downscaling
method (BCSD or LOCA) introduces metric differences between these two ensembles. Nevertheless, they remain
within the same group, representing a climate change‐informed future.

This ensemble grouping provides an analytical framework for characterizing and assessing the ensembles suit-
ability for planning under different future scenarios. Ensembles within the same category help evaluate the
system's response to the future scenario represented by that category. Planning based on ensembles within a single
category results in similarities, but significant differences in the system's responses are expected across different
ensemble groups. We believe that there is value to decision makers in knowing how similar or how different the
ensembles are so that these similarities or differences can be used in justifying their choices of ensemble to use.
Robust planning or completeness may motivate consideration of ensembles from each group to have higher
confidence that the sample space of ensembles represented by these groups has been covered. There may also be a
rationale for excluding ensembles in a group that may not align with the decision‐making paradigm being used.

Note that, in addition to classifying ensembles, Ward's method also grouped metrics based on their median within
each ensemble. This classification is indicated by the dendrograms at the top of Figure 20. Two major groupings
emerge, Group A on the left and B on the right. Group A contains metrics largely related to flow magnitude,
notably mean, minimum, median, maximum, and CAT. Here count above the threshold of 20 maf/year serves as a
proxy for flow magnitude so it is logical that it falls in this group. Standard deviation and skewness are not
magnitude quantities, but evidently are more closely aligned with the magnitude metrics than those metrics in
group B. Similarly, the minimum 5‐ and 20‐year duration‐severity metrics relate to both magnitude and
persistence, but evidently, more so to magnitude, by falling in group A. Group B metrics appear to be largely
related to drought persistence (ACF, Hurst coefficient, reservoir storage‐yield‐reliability, drought event statistics,
and CBT). The CBT metric here, with the threshold being the long‐term mean, does relate to persistence of flows
below this threshold and so appears to be logically placed in this group.

5. Conclusions
In this study, we suggested an evidence‐based and structured framework for quantifying and comprehensively
describing various streamflow ensembles, to assess their suitability for different planning purposes. Our approach
offers objective and quantitative evidence to interpret and analyze differences among these ensembles based on
their distinctive characteristics. We employed a broad range of statistical metrics to quantitatively assess a wide
range of streamflow ensembles available in the Colorado River Basin and provided guidance on their application
and uncertainty. Our metrics address limitations of previous drought statistics and also quantify high flows, the
occurrence of which are important for filling reservoirs in some systems. We also developed a classification
approach that grouped similar ensembles based on the metrics. The ensemble classification facilitated the
comparison of multiple ensembles and provided an analytical framework for characterizing and assessing their
suitability for planning under different future scenarios. It also offers opportunities for efficiency, since not all
ensembles with similar attributes based on this classification need to be evaluated in a planning scenario. For
robust planning, we suggest considering ensembles from all the major identified groups to have higher confidence
that the sample space of ensembles represented by these groups has been covered.

This study's framework serves as a tool for evaluating the key attributes that define each streamflow ensemble,
enabling a deeper understanding of ensembles' similarities and differences, which are critical for informed
decision‐making. Our evidence‐based approach serves as a guiding tool for robust decision‐making in operational
water management, aiding in the selection of the ensembles to use for specific planning purposes such as Rec-
lamation's ongoing Colorado River Post‐2026 operations effort. By providing clear, documented, communicable,
and evidence‐based information, our findings help prevent the adoption of streamflow ensembles without full
information on their characteristics.

In our upcoming studies, we plan to evaluate the characteristics of the streamflow ensembles from this study to
associate each of them with a storyline that justifies their plausibility for future decision making in the face of
uncertainty and non‐stationarity. We also plan to investigate any gaps in the sample space represented by existing
ensembles and to develop a new ensemble or ensembles as necessary to fill such gaps.

Water Resources Research 10.1029/2024WR037225

SALEHABADI ET AL. 27 of 30



Data Availability Statement
The data and R Code used in this research are publicly available in HydroShare (Salehabadi & Tarboton, 2024).
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