17 research outputs found

    Multiplicity dependence of charged-particle jet production in pp collisions at root s=13 TeV

    No full text

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η|<0.8 and 0.15 GeV/c<pT<10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from sNN=2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators

    Enhanced Deuteron Coalescence Probability in Jets

    No full text
    International audienceThe transverse-momentum (pT) spectra and coalescence parameters B2 of (anti)deuterons are measured in p-p collisions at s=13  TeV for the first time in and out of jets. In this measurement, the direction of the leading particle with the highest pT in the event (pTlead&gt;5  GeV/c) is used as an approximation for the jet axis. The event is consequently divided into three azimuthal regions, and the jet signal is obtained as the difference between the toward region, that contains jet fragmentation products in addition to the underlying event (UE), and the transverse region, which is dominated by the UE. The coalescence parameter in the jet is found to be approximately a factor of 10 larger than that in the underlying event. This experimental observation is consistent with the coalescence picture and can be attributed to the smaller average phase-space distance between nucleons in the jet cone as compared with the underlying event. The results presented in this Letter are compared to predictions from a simple nucleon coalescence model, where the phase-space distributions of nucleons are generated using pythia8 with the Monash 2013 tuning, and to predictions from a deuteron production model based on ordinary nuclear reactions with parametrized energy-dependent cross sections tuned on data. The latter model is implemented in pythia8.3. Both models reproduce the observed large difference between in-jet and out-of-jet coalescence parameters, although the almost flat trend of the B2Jet is not reproduced by the models, which instead give a decreasing trend

    Charm production and fragmentation fractions at midrapidity in pp collisions at √s=13 TeV

    No full text

    Measurement of the Lifetime and <math display="inline"><mi mathvariant="normal">Λ</mi></math> Separation Energy of <math display="inline"><mmultiscripts><mrow><mi mathvariant="normal">H</mi></mrow><mprescripts/><mrow><mi mathvariant="normal">Λ</mi></mrow><mn>3</mn></mmultiscripts></math>

    No full text
    International audienceThe most precise measurements to date of the HΛ3 lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at sNN=5.02  TeV collected by ALICE at the LHC. The HΛ3 is reconstructed via its charged two-body mesonic decay channel (HΛ3→He3+π- and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and BΛ=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the HΛ3 structure is consistent with a weakly bound system

    Constraining hadronization mechanisms with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="normal">D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:math> production ratios in Pb–Pb collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">NN</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mn>5.02</mml:mn></mml:math> TeV

    Get PDF
    The production of prompt Λc+ baryons at midrapidity (|y|<0.5) was measured in central (0–10%) and mid-central (30–50%) Pb–Pb collisions at the center-of-mass energy per nucleon–nucleon pair sNN=5.02 TeV with the ALICE detector. The results are more precise, more differential in centrality, and reach much lower transverse momentum (pT=1 GeV/c) with respect to previous measurements performed by the ALICE, STAR, and CMS Collaborations in nucleus–nucleus collisions, allowing for an extrapolation down to pT=0. The pT-differential Λc+/D0 ratio is enhanced with respect to the pp measurement for 4<pT<8 GeV/c by 3.7 standard deviations (σ), while the pT-integrated ratios are compatible within 1σ. The observed trend is similar to that observed in the strange sector for the Λ/KS0 ratio. Model calculations including coalescence or statistical hadronization for charm-hadron formation are compared with the data

    Measurement of the <math display="inline"><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow></math> Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHC

    Get PDF
    International audienceWe study the polarization of inclusive J/ψ produced in Pb-Pb collisions at sNN=5.02  TeV at the LHC in the dimuon channel, via the measurement of the angular distribution of its decay products. We perform the study in the rapidity region 2.5&lt;y&lt;4, for three transverse momentum intervals (2&lt;pT&lt;4, 4&lt;pT&lt;6, 6&lt;pT&lt;10  GeV/c) and as a function of the centrality of the collision for 2&lt;pT&lt;6  GeV/c. For the first time, the polarization is measured with respect to the event plane of the collision, by considering the angle between the positive-charge decay muon in the J/ψ rest frame and the axis perpendicular to the event-plane vector in the laboratory system. A small transverse polarization is measured, with a significance reaching 3.9σ at low pT and for intermediate centrality values. The polarization could be connected with the behavior of the quark-gluon plasma, formed in Pb-Pb collisions, as a rotating fluid with large vorticity, as well as with the existence of a strong magnetic field in the early stage of its formation

    Study of charged particle production at high pT using event topology in pp, p–Pb and Pb–Pb collisions at √(sNN)=5.02 TeV

    No full text
    This letter reports measurements which characterize the underlying event associated with hard scatterings at mid-pseudorapidity (|η|<0.8) in pp, p–Pb and Pb–Pb collisions at centre-of-mass energy per nucleon pair, sNN=5.02 TeV. The measurements are performed with ALICE at the LHC. Different multiplicity classes are defined based on the event activity measured at forward rapidities. The hard scatterings are identified by the leading particle defined as the charged particle with the largest transverse momentum (pT) in the collision and having 8 <pT<15 GeV/c. The pT spectra of associated particles (0.5 ≤pT<6 GeV/c) are measured in different azimuthal regions defined with respect to the leading particle direction: toward, transverse, and away. The associated charged particle yields in the transverse region are subtracted from those of the away and toward regions. The remaining jet-like yields are reported as a function of the multiplicity measured in the transverse region. The measurements show a suppression of the jet-like yield in the away region and an enhancement of high-pT associated particles in the toward region in central Pb–Pb collisions, as compared to minimum-bias pp collisions. These observations are consistent with previous measurements that used two-particle correlations, and with an interpretation in terms of parton energy loss in a high-density quark gluon plasma. These yield modifications vanish in peripheral Pb–Pb collisions and are not observed in either high-multiplicity pp or p–Pb collisions

    First measurement of the Lambda-Csi interaction in proton-proton collisions at the LHC

    No full text
    The first experimental information on the strong interaction between Lambda and Csi-strange baryons is presented in this Letter. The correlation function of A-E-and A-E+ pairs produced in high-multiplicity proton-proton (pp) collisions at ,/s = 13 TeV at the LHC is measured as a function of the relative momentum of the pair. The femtoscopy method is used to calculate the correlation function, which is then compared with theoretical expectations obtained using a meson exchange model, chiral effective field theory, and Lattice QCD calculations close to the physical point. Data support predictions of small scattering parameters while discarding versions with large ones, thus suggesting a weak A-E- interaction. The limited statistical significance of the data does not yet allow one to constrain the effects of coupled channels like E-E and N-S2

    Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy

    Get PDF
    AbstractIn our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ momentum from 25% to 90% for cosmic-ray sources. The results indicate that 3He{}^{3}\overline{{{{\rm{He}}}}} 3 He ¯ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.</jats:p
    corecore