581 research outputs found

    Rapid Formation of Ice Giant Planets

    Get PDF
    The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.Comment: TeX file, 20 pages, no figures, 1 table, accepted by Icarus, Preprints available at http://www.ciw.edu/boss/ftp/planets/icaice.p

    Planet formation in highly inclined binaries

    Full text link
    We explore planet formation in binary systems around the central star where the protoplanetary disk plane is highly inclined with respect to the companion star orbit. This might be the most frequent scenario for binary separations larger than 40 AU, according to Hale (1994). We focus on planetesimal accretion and compute average impact velocities in the habitable region and up to 6 AU from the primary.Comment: Accepted for publication on A&

    Shape models and physical properties of asteroids

    Full text link
    Despite the large amount of high quality data generated in recent space encounters with asteroids, the majority of our knowledge about these objects comes from ground based observations. Asteroids travelling in orbits that are potentially hazardous for the Earth form an especially interesting group to be studied. In order to predict their orbital evolution, it is necessary to investigate their physical properties. This paper briefly describes the data requirements and different techniques used to solve the lightcurve inversion problem. Although photometry is the most abundant type of observational data, models of asteroids can be obtained using various data types and techniques. We describe the potential of radar imaging and stellar occultation timings to be combined with disk-integrated photometry in order to reveal information about physical properties of asteroids.Comment: From Assessment and Mitigation of Asteroid Impact Hazards boo

    The formation of Kuiper-belt Binaries through Exchange Reactions

    Full text link
    Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper-belt. The discovered binaries have four characteristics they comprise a few percent of the TNOs, the mass ratio of their components is close to unity, their internal orbits are highly eccentric, and the orbits are more than 100 times wider than the primary's radius. In contrast, theories of binary asteroid formation tend to produce close, circular binaries. Therefore, a new approach is required to explain the unique characteristics of the TNO binaries. Two models have been proposed. Both, however, require extreme assumptions on the size distribution of TNOs. Here we show a mechanism which is guaranteed to produces binaries of the required type during the early TNO growth phase, based on only one plausible assumption, namely that initially TNOs were formed through gravitational instabilities of the protoplanetary dust layer.Comment: 12pages, 4 figure

    Collisional Velocities and Rates in Resonant Planetesimal Belts

    Full text link
    We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and Dynamical Astronomy

    Formation of Kuiper Belt Binaries

    Full text link
    It appears that at least several percent of large Kuiper belt objects are members of wide binaries. Physical collisions are too infrequent to account for their formation. Collisionless gravitational interactions are more promising. These provide two channels for binary formation. In each, the initial step is the formation of a transient binary when two large bodies penetrate each other's Hill spheres. Stabilization of a transient binary requires that it lose energy. Either dynamical friction due to small bodies or the scattering of a third large body can be responsible. Our estimates favor the former, albeit by a small margin. We predict that most objects of size comparable to those currently observed in the Kuiper belt are members of multiple systems. More specifically, we derive the probability that a large body is a member of a binary with semi-major axis of order a. The probability depends upon sigma, the total surface density, Sigma, the surface density of large bodies having radius R, and theta=10^-4, the angle subtended by the solar radius as seen from the Kuiper belt. For (sigma/Sigma)R<a< R/theta, the probability is just (Sigma/rho R)theta^-2, the optical depth of the large bodies divided by the solid angle subtended by the Sun. For R<a<r_u=(sigma/Sigma)R, it varies inversely with semimajor axis and reaches (sigma/rho R)theta^-2 at a=R. Based on current surveys of the Kuiper belt, we estimate Sigma/rho=3 10^-4cm and R=100km. We obtain sigma/rho=0.3cm by extrapolating the surface density deduced for the minimum mass solar nebula. Rough predictions are: outside of the critical separation r_u/a_odot=3'', the binary probability is 0.3%; at separations of 0.2'', comparable to current resolving capabilities, it reaches 5%, in agreement with results from the HST binary survey by Brown

    Vertical structure of debris discs

    Full text link
    The vertical thickness of debris discs is often used as a measure of these systems' dynamical excitation and as clues to the presence of hidden massive perturbers such as planetary embryos. However, this argument could be flawed because the observed dust should be naturally placed on inclined orbits by the combined effect of radiation pressure and mutual collisions. We critically reinvestigate this issue and numerically estimate what the "natural" vertical thickness of a collisionally evolving disc is, in the absence of any additional perturbing body. We use a deterministic collisional code, following the dynamical evolution of a population of indestructible test grains suffering mutual inelastic impacts. Grain differential sizes as well as the effect of radiation pressure are taken into account. We find that, under the coupled effect of radiation pressure and collisions, grains naturally acquire inclinations of a few degrees. The disc is stratified with respect to grain sizes, with the smallest grains having the largest vertical dispersion and the bigger ones clustered closer to the midplane. Debris discs should have a minimum "natural" observed aspect ratio hmin∌0.04±0.02h_{min}\sim 0.04\pm0.02 at visible to mid-IR wavelengths where the flux is dominated by the smallest bound grains. These values are comparable to the estimated thicknesses of many vertically resolved debris discs, as is illustrated with the specific example of AU Mic. For all systems with h∌hminh \sim h_{min}, the presence (or absence) of embedded perturbing bodies cannot be inferred from the vertical dispersion of the discComment: accepted for publication in Astronomy and Astrophysics (full abstract in the pdf file

    Relative velocities among accreting planetesimals in binary systems: the circumbinary case

    Full text link
    We numerically investigate the possibility of planetesimal accretion in circumbinary disks, under the coupled influence of both stars' secular perturbations and friction due to the gaseous component of the protoplanetary disk. We focus on one crucial parameter: the distribution of encounter velocities between planetesimals in the 0.5 to 100km size range. An extended range of binary systems with differing orbital parameters is explored. The resulting encounter velocities are compared to the threshold velocities below which the net outcome of a collision is accumulation into a larger body instead of mass erosion. For each binary configuration, we derive the critical radial distance from the binary barycenter beyond which planetesimal accretion is possible. This critical radial distance is smallest for equal-mass binaries on almost circular orbits. It shifts to larger values for increasing eccentricities and decreasing mass ratio. The importance of the planetesimals' orbital alignments of planetesimals due to gas drag effects is discussed.Comment: accepted for publication in MNRA

    Planetary Microlensing at High Magnification

    Full text link
    Simulations of planetary microlensing at high magnification that were carried out on a cluster computer are presented. It was found that the perturbations due to two-thirds of all planets occur in the time interval [-0.5t_FWHM, 0.5t_ FWHM] with respect to the peak of the microlensing light curve, where t_FWHM is typically about 14 hours. This implies that only this restricted portion of the light curve need be intensively monitored for planets, a very significant practical advantage. Nearly all planetary detections in high magnification events will not involve caustic crossings. We discuss the issues involved in determining the planetary parameters in high magnification microlensing events. Earth mass planets may be detected with 1-m class telescopes if their projected orbital radii lie within about 1.5 - 2.5 AU. Giant planets are detectable over a much larger region. For multi-planet systems the perturbations due to individual planets can be separated under certain conditions. The size of the source star needs to be determined independently, but the presence of spots on the source star is likely to be negligible, as is the effect of planetary motion during an event.Comment: 12 pages, 13 embedded figures, accepted for publication by MNRA

    On the dynamics and collisional growth of planetesimals in misaligned binary systems

    Full text link
    Context. Abridged. Many stars are members of binary systems. During early phases when the stars are surrounded by discs, the binary orbit and disc midplane may be mutually inclined. The discs around T Tauri stars will become mildly warped and undergo solid body precession around the angular momentum vector of the binary system. It is unclear how planetesimals in such a disc will evolve and affect planet formation. Aims. We investigate the dynamics of planetesimals embedded in discs that are perturbed by a binary companion on a circular, inclined orbit. We examine collisional velocities of the planetesimals to determine when they can grow through accretion. We vary the binary inclination, binary separation, D, disc mass, and planetesimal radius. Our standard model has D=60 AU, inclination=45 deg, and a disc mass equivalent to the MMSN. Methods. We use a 3D hydrodynamics code to model the disc. Planetesimals are test particles which experience gas drag, the gravitational force of the disc, the companion star gravity. Planetesimal orbit crossing events are detected and used to estimate collisional velocities. Results. For binary systems with modest inclination (25 deg), disc gravity prevents planetesimal orbits from undergoing strong differential nodal precession (which occurs in absence of the disc), and forces planetesimals to precess with the disc on average. For bodies of different size the orbit planes become modestly mutually inclined, leading to collisional velocities that inhibit growth. For larger inclinations (45 degrees), the Kozai effect operates, leading to destructively large relative velocities. Conclusions. Planet formation via planetesimal accretion is difficult in an inclined binary system with parameters similar to those considered in this paper. For systems in which the Kozai mechanism operates, the prospects for forming planets are very remote.Comment: 24 pages, 16 figures, recently published in Astronomy and Astrophysic
    • 

    corecore