477 research outputs found

    History of childbirths relates to region-specific brain aging patterns in middle and older-aged women

    Get PDF
    Pregnancy involves maternal brain adaptations, but little is known about how parity influences women’s brain aging trajectories later in life. In this study, we replicated previous findings showing less apparent brain aging in women with a history of childbirths, and identified regional brain aging patterns linked to parity in 19,787 middle and older-aged women. Using novel applications of brain-age prediction methods, we found that a higher number of previous childbirths was linked to less apparent brain aging in striatal and limbic regions. The strongest effect was found in the accumbens – a key region in the mesolimbic reward system, which plays an important role in maternal behavior. While only prospective longitudinal studies would be conclusive, our findings indicate that subcortical brain modulations during pregnancy and postpartum may be traceable decades after childbirth

    The maternal brain: Region‐specific patterns of brain aging are traceable decades after childbirth

    Get PDF
    Pregnancy involves maternal brain adaptations, but little is known about how parity influences women's brain aging trajectories later in life. In this study, we replicated previous findings showing less apparent brain aging in women with a history of childbirths, and identified regional brain aging patterns linked to parity in 19,787 middle‐ and older‐aged women. Using novel applications of brain‐age prediction methods, we found that a higher number of previous childbirths were linked to less apparent brain aging in striatal and limbic regions. The strongest effect was found in the accumbens—a key region in the mesolimbic reward system, which plays an important role in maternal behavior. While only prospective longitudinal studies would be conclusive, our findings indicate that subcortical brain modulations during pregnancy and postpartum may be traceable decades after childbirth

    Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias

    Get PDF
    Machine learning has been increasingly applied to neuroimaging data to predict age, deriving a personalized biomarker with potential clinical applications. The scientific and clinical value of these models depends on their applicability to independently acquired scans from diverse sources. Accordingly, we evaluated the generalizability of two brain age models that were trained across the lifespan by applying them to three distinct early-life samples with participants aged 8-22 years. These models were chosen based on the size and diversity of their training data, but they also differed greatly in their processing methods and predictive algorithms. Specifically, one brain age model was built by applying gradient tree boosting (GTB) to extracted features of cortical thickness, surface area, and brain volume. The other model applied a 2D convolutional neural network (DBN) to minimally preprocessed slices of T1-weighted scans. Additional model variants were created to understand how generalizability changed when each model was trained with data that became more similar to the test samples in terms of age and acquisition protocols. Our results illustrated numerous trade-offs. The GTB predictions were relatively more accurate overall and yielded more reliable predictions when applied to lower quality scans. In contrast, the DBN displayed the most utility in detecting associations between brain age gaps and cognitive functioning. Broadly speaking, the largest limitations affecting generalizability were acquisition protocol differences and biased brain age estimates. If such confounds could eventually be removed without post-hoc corrections, brain age predictions may have greater utility as personalized biomarkers of healthy aging

    Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging

    Get PDF
    The concept of brain maintenance refers to the preservation of brain integrity in older age, while cognitive reserve refers to the capacity to maintain cognition in the presence of neurodegeneration or aging‐related brain changes. While both mechanisms are thought to contribute to individual differences in cognitive function among older adults, there is currently no “gold standard” for measuring these constructs. Using machine‐learning methods, we estimated brain and cognitive age based on deviations from normative aging patterns in the Whitehall II MRI substudy cohort (N = 537, age range = 60.34–82.76), and tested the degree of correspondence between these constructs, as well as their associations with premorbid IQ, education, and lifestyle trajectories. In line with established literature highlighting IQ as a proxy for cognitive reserve, higher premorbid IQ was linked to lower cognitive age independent of brain age. No strong evidence was found for associations between brain or cognitive age and lifestyle trajectories from midlife to late life based on latent class growth analyses. However, post hoc analyses revealed a relationship between cumulative lifestyle measures and brain age independent of cognitive age. In conclusion, we present a novel approach to characterizing brain and cognitive maintenance in aging, which may be useful for future studies seeking to identify factors that contribute to brain preservation and cognitive reserve mechanisms in older age

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure

    Get PDF
    Background Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the robustness of these associations are needed. Methods We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to test the associations between IIV and psychopathology (n = 8622, age = 8.9–11.1 years) and IIV and white matter microstructure (n = 7958, age = 8.9–11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts. Results Increased IIV in both short and long RTs was positively associated with the specific attention problems factor (Cohen’s d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12). Conclusions Using a large sample and a data-driven dimensional approach to psychopathology, the results provide novel evidence for a small but specific association between IIV and attention problems in children and support previous findings on the relevance of white matter microstructure for IIV.publishedVersio

    Constructing personalized characterizations of structural brain aberrations in patients with dementia using explainable artificial intelligence

    Get PDF
    Deep learning approaches for clinical predictions based on magnetic resonance imaging data have shown great promise as a translational technology for diagnosis and prognosis in neurological disorders, but its clinical impact has been limited. This is partially attributed to the opaqueness of deep learning models, causing insufficient understanding of what underlies their decisions. To overcome this, we trained convolutional neural networks on structural brain scans to differentiate dementia patients from healthy controls, and applied layerwise relevance propagation to procure individual-level explanations of the model predictions. Through extensive validations we demonstrate that deviations recognized by the model corroborate existing knowledge of structural brain aberrations in dementia. By employing the explainable dementia classifier in a longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich explanations complement the model prediction when forecasting transition to dementia and help characterize the biological manifestation of disease in the individual brain. Overall, our work exemplifies the clinical potential of explainable artificial intelligence in precision medicine

    An evolutionary timeline of the oxytocin signaling pathway.

    Get PDF
    Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)
    corecore