
Manuscript submitted to eLife

History of childbirths relates to1

region-specific brain aging patterns2

in middle and older-aged women3

Ann-Marie G. de Lange1,2,3*, Claudia Barth3, Tobias Kaufmann3, Melis Anatürk1,4,4

Sana Suri1,4, Klaus P. Ebmeier1, Lars T. Westlye2,3,55

*For correspondence:
ann-marie.delange@psych.ox.ac.uk

Present address: Department of
Psychiatry, University of Oxford,
Oxford, UK

1Department of Psychiatry, University of Oxford, Oxford, UK; 2Department of6

Psychology, University of Oslo, Oslo, Norway; 3NORMENT, Institute of Clinical Medicine,7

University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital,8

Oslo, Norway; 4Wellcome Centre for Integrative Neuroimaging, University of Oxford,9

Oxford, UK; 5KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo,10

Oslo, Norway11

12

Abstract Pregnancy involves maternal brain adaptations, but little is known about how parity13

influences women’s brain aging trajectories later in life. In this study, we replicated previous14

findings showing less apparent brain aging in women with a history of childbirths, and identified15

regional brain aging patterns linked to parity in 19,787 middle and older-aged women. Using16

novel applications of brain-age prediction methods, we found that a higher number of previous17

childbirths was linked to less apparent brain aging in striatal and limbic regions. The strongest18

effect was found in the accumbens - a key region in the mesolimbic reward system, which plays19

an important role in maternal behavior. While only prospective longitudinal studies would be20

conclusive, our findings indicate that subcortical brain modulations during pregnancy and21

postpartum may be traceable decades after childbirth.22

23

Introduction24

Pregnancy involves a number of maternal brain adaptations (Barha and Galea, 2017; Fox et al.,25

2018; Hillerer et al., 2014; Eid et al., 2019; Boddy et al., 2015). In rodents, changes in volume,26

cell proliferation, and dendritic morphology (Hillerer et al., 2014; Kinsley et al., 2006), as well as27

altered neurogenesis in the hippocampus (Eid et al., 2019; Rolls et al., 2008) are found across28

pregnancy and postpartum. In humans, reduction in total brain volume has been observed during29

pregnancy, reversing within six months of parturition (Oatridge et al., 2002). Reductions in striatal30

volumes, particularly putamen, have been reported shortly after delivery (Lisofsky et al., 2016),31

and pregnancy-related reductions in gray matter volume have been found in regions subserving32

social cognition; the bilateral lateral prefrontal cortex, the anterior and posterior midline, and the33

bilateral temporal cortex (Hoekzema et al., 2017). Conversely, a recent study showed no evidence34

of decrease in gray matter volume following childbirth, but instead detected a pronounced gray35

matter increase in both cortical and subcortical regions (Luders et al., 2020). Prefrontal cortical36

thickness and subcortical volumes in limbic areas have been positively associated with postpartum37

months (Kim et al., 2018), indicating that changes in brain structure may depend on region and38

time since delivery (Luders et al., 2020; Duarte-Guterman et al., 2019; Hoekzema et al., 2017; Kim39

et al., 2018, 2010). For instance, from 2–4 weeks to 3–4 months postpartum, gray matter volume40

1 of 17

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084616doi: bioRxiv preprint 

ann-marie.delange@psych.ox.ac.uk
https://doi.org/10.1101/2020.05.08.084616
http://creativecommons.org/licenses/by-nd/4.0/


Manuscript submitted to eLife

increases have been found in areas involved in maternal behaviours and motivation, such as the41

amygdala, substantia nigra, hypothalamus, and prefrontal cortex (Kim et al., 2010).42

While gray matter reductions have been reported up to 2 years post-pregnancy, most stud-43

ies are limited to the postpartum period, and little is known about how previous pregnancies in-44

fluence women’s brain aging later in life. Evidence from animal studies shows that middle-aged45

multiparous rats have stronger cellular response to estrogens in the hippocampus compared to46

virgin female rats (Barha and Galea, 2011), suggesting that neuroplastic potential across the adult47

lifespan may be influenced by previous pregnancies. Moreover, hippocampal neurogenesis has48

been shown to increase during middle age in primiparous rats and decrease in nulliparous rats49

over the same period (Eid et al., 2019). While longitudinal studies on parity and brain aging in50

humans are lacking, cumulative number of months pregnant has been associated with decreased51

risk for Alzheimer’s disease (Fox et al., 2018), and we recently documented less evident brain ag-52

ing in parous relative to nulliparous women in >12,000 UK Biobank participants using an magnetic53

resonance imaging (MRI)-derived biomarker of global brain aging (de Lange et al., 2019).54

In the current study, we first aimed to replicate our previously reported findings described55

in de Lange et al. (2019), where less apparent brain aging was found in women with a history of56

childbirths. Brain-age prediction methods were used to derive estimates of global brain aging,57

which was analysed in relation to number of previous (live) childbirths in 8880 newly added UK58

Biobank participants. Brain-age prediction is commonly used to estimate an individual’s age based59

on their brain characteristics (Cole and Franke, 2017), and individual variation in "brain age" esti-60

mates has been associated with a range of clinical and biological factors (Cole and Franke, 2017;61

Kaufmann et al., 2019; Franke and Gaser, 2019; Cole et al., 2018, 2019; Cole, 2019; Smith et al.,62

2019; Cole et al., 2017; de Lange et al., 2020a,b). As compared to MRI-derived measures such as63

cortical volume or thickness, brain-age prediction adds a dimension by capturing deviations from64

normative trajectories identified bymachine learning. While traditional brain age approaches sum-65

marize measures across regions to produce a single, global aging estimate - often with high predic-66

tion accuracy, models of distinct and regional aging patterns can providemore refined biomarkers67

that may capture additional biological detail (Kaufmann et al., 2019; Smith et al., 2020; Eavani68

et al., 2018). In this study, we utilized novel applications of brain-age prediction methods based69

on cortical and subcortical volumes to identify regions of particular importance for maternal brain70

aging, using a total sample of 19,787 UK Biobank women.71

Results72

Associations between previous childbirths and global brain aging:73

To replicate our findings described in de Lange et al. (2019), we trained a brain-age prediction74

model on the part of the current sample that overlapped with the previous study (N = 10,907), and75

applied it to the newly added participants (N = 8880) using the procedure described inMethods and76

Materials. When applied to the test set, the modeled age prediction showed an accuracy of R2 =77

0.34, root mean square error (RMSE) = 6.00, and Pearson’s r (predicted versus chronological age)78

= 0.58; 95% confidence interval (CI) = [0.57, 0.59], p < 0.001. Corresponding to our previous results,79

an associationwas found between a higher number of previous childbirths and less apparent brain80

aging in the group of newly added participants: � = −0.13 standard error (SE) = 0.03, t = −4.07, p =81

4.79×10−5. To adjust for age-bias in the brain age prediction as well as age-dependencies in number82

of childbirths (Le et al., 2018), chronological agewas included as a covariate in the linear regression.83

To test for non-linear relationships, polynomial fitswere run for number of childbirths and brain84

age gap; one including intercept and a linear term (�) only, and one including intercept, linear, and85

quadratic terms (
). For these analyses, the brain age gap estimations were first corrected for86

chronological age using linear regression (Le et al., 2018), and the residuals were used in the fits.87

A comparison of the two models showed that the inclusion of the quadratic term did not provide88

a better fit (F = 0.06, p = 0.804). The results from the fit including the linear term only showed89
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a significant linear effect (� = −0.12 ± 0.03;F = 16.10, p = 6.05 × 10−5), while the results from the90

fit including both terms showed that only the linear term was significant (� = −0.14 ± 0.072; 
 =91

0.004 ± 0.02;F = 8.08, p = 3.11 × 10−4). The two fits are shown in Figure 1. As a cross check, the92

fits were rerun with orthogonal polynomials, showing corresponding results (� = −13.44 ± 3.35,93


 = 0.83 ± 3.35;F = 8.08, p = 3.11 × 10−4).94
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Figure 1. Results from first and second degree polynomial fits for number of childbirths and global brainaging in the newly added participants (N = 8880). The black points indicate the mean brain age gap ±standard error within groups of women based on number of childbirths (x-axis). The red and blue linesrepresent the results of the fits, and the shaded areas indicate the ± 95% confidence intervals for each fit. Thehorizontal dashed line indicates 0 on the y-axis. Number of participants in each group: 0 births = 2065, 1 birth= 1014, 2 births = 3912, 3 births = 1493, 4 births = 311, 5 births = 67, 6 births = 13, 7 births = 3, 8 births = 1, and9 births = 1. The group of women with 6-9 children were merged to obtain sufficient statistics for least squarefits using the standard error on the means as weights.

Regional brain aging patters:95

To identify groups of imaging features based on their covariance, we performed hierarchical clus-96

tering on the Spearman rank-order correlations using an average of right and left hemispheremea-97

sures for each feature. Five clusterswere identified, as shown in Figure 2. All featureswere grouped98

according to their associated cluster ID, and separate models were run to estimate brain age for99

each cluster using the brain-age prediction procedure described inMethods and Materials. The fea-100

tures contained in each cluster are listed in Table 1. The cluster-specific model performances are101

shown in Table 2.102

To testwhether the relative prediction accuracy of themodels dependedonnumber of features,103

the models were rerun using the four strongest contributing features from each model as input104

variables. The feature contributions were calculated using permutation feature importance, defin-105

ing the decrease inmodel performance when a single feature value is randomly shuffled (Breiman,106

2001). The results are shown in Table 3.107
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Figure 2. Dendrogram based on hierarchical clustering on the Spearman rank-order correlations of allfeatures. The colours represent clusters (C) of features that are grouped together based on commoncovariance. A list of imaging features contained in each of the clusters are provided in Table 1. The y-axisshows the degree of co-linearity between the features, with higher y-values indicating less co-linearitybetween clusters.

Table 1. List of imaging features contained in each of the clusters identified based on hierarchical clustering(Figure 2). All feature names represent regional volume.
Cluster 1

Cuneus Isthmuscingulate Lateraloccipital Lingual
Pericalcarine Precuneus Superiorparietal
Cluster 2

Caudalanteriorcingulate Lateralorbitofrontal Medialorbitofrontal Paracentral
Parsopercularis Parsorbitalis Parstriangularis Postcentral
Posteriorcingulate Precentral Rostralmiddlefrontal Superiorfrontal
Superiortemporal Supramarginal Transversetemporal Insula
Cluster 3

Banks of superior temporal sulcus Fusiform Inferiorparietal Inferiortemporal
Middletemporal Parahippocampal Thalamus Putamen
Hippocampus Amygdala Accumbens
Cluster 4

Caudalanteriorcingulate Entorhinal Rostralanteriorcingulate Frontalpole
Temporalpole
Cluster 5

Brain-Stem Cerebellum Caudate Pallidum
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Table 2. The accuracy of the age prediction measured by Pearson’s r (predicted versus chronological age), R2,root mean square error (RMSE), and mean absolute error (MAE) for each of the cluster-specific models. 95 %confidence intervals are indicated in square brackets. RMSE and MAE are reported in years. Nfeat = numberof features contained in the cluster. P-values were < 0.001 for all models.

Model Nfeat r R2 RMSE MAE

Cluster 1 7 0.32 [0.31, 0.33] 0.10 [0.10, 0.11] 7.00 5.79
Cluster 2 16 0.38 [0.36, 0.39] 0.14 [0.13, 0.15] 6.86 5.64
Cluster 3 11 0.48 [0.47, 0.49] 0.23 [0.23, 0.24] 6.48 5.29
Cluster 4 5 0.13 [0.11, 0.14] 0.02 [0.01, 0.02] 7.36 6.13
Cluster 5 4 0.21 [0.19, 0.22] 0.04 [0.04, 0.05] 7.25 6.04

Table 3. The accuracy of the age prediction when including the four strongest contributing features for eachmodel. 95 % confidence intervals are indicated in square brackets. RMSE and MAE are reported in years.
Nfeat = number of features included. P-values were < 0.001 for all models.

Model Nfeat r R2 RMSE MAE

Cluster 1 4 0.32 [0.31, 0.33] 0.10 [0.10, 0.11] 7.01 5.80
Cluster 2 4 0.34 [0.33, 0.35] 0.11 [0.11, 0.12] 6.96 5.75
Cluster 3 4 0.46 [0.45, 0.47] 0.21 [0.21, 0.22] 6.55 5.36
Cluster 4 4 0.12 [0.11, 0.13] 0.02 [0.01, 0.02] 7.36 6.14
Cluster 5 4 0.21 [0.19, 0.22] 0.04 [0.04, 0.05] 7.25 6.04

Associations between previous childbirths and regional brain aging:108

The cluster-specific associations with number of previous childbirths are shown in Table 4.109

Table 4. Relationships between number of previous childbirths and estimated brain aging for each cluster.Cluster-specific brain age gap was entered as the dependent variable and number of (live) childbirths wasentered as independent variable for each analysis. Chronological age was included for covariate purposes.
P-values are provided before and after FDR correction. Significant relationships (< 0.05) are marked with anasterisk in the pcorr column. SE = standard error.

Number of childbirths vs cluster-specific brain age estimates

Cluster � SE t p pcorr
1 -0.054 0.016 -3.282 0.001 0.002*
2 -0.010 0.018 -0.552 0.581 0.726
3 -0.133 0.021 -6.385 1.754 × 10−10 8.768 × 10−10*
4 -0.003 0.010 -0.278 0.781 0.781
5 -0.056 0.012 -4.620 3.868 × 10−16 9.670 × 10−6*

As shown in Table 4, brain aging estimates based on three clusters were each significantly associ-110

ated with number of previous childbirths. To test whether the associations were statistically differ-111

ent from each other, pairwise Z tests for correlated samples (Eq. 1, Methods and Materials) were112

run on the cluster-specific associations with number of childbirths. The results showed that clus-113

ter 3 was more strongly related to number of previous childbirths relative to the other clusters, as114

shown in Figure 3.115
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Figure 3. Top plot: Matrix showing pairwise differences between the cluster-specific associations withnumber of childbirths, based on Z tests for correlated samples (Eq.1). Bottom left plot: Uncorrected -Log10p-values of the differences between the cluster-specific associations. Bottom right plot: -Log10 p-valuescorrected for multiple comparisons using FDR, with only significant values (< 0.05) displayed. C = cluster.

To investigate further specificity, the clustering procedure was repeated on the features in cluster116

3 - the cluster showing the strongest association with number of childbirths. Two subclusters were117

identified based on the covariance of the features, as shown in Figure 4. Subcluster 1 included118

5 features; subcluster 2 included 6 features. The features were matched with the cluster they119

belonged to, and separate models were run to generate brain-age predictions for each subclus-120

ter. The subcluster-specific model performances are shown in Table 5, and their associations with121

number of previous childbirths are shown in Table 6.122

Table 5. The accuracy of the age prediction measured by Pearson’s r (predicted versus chronological age), R2,root mean square error (RMSE), and mean absolute error (MAE) for each of the subcluster-specific models. 95% confidence intervals are indicated in square brackets. RMSE and MAE are reported in years. Nfeat = numberof features contained in the cluster. P-values were < 0.001 for both models.

Model Nfeat r R2 RMSE MAE

Subcluster 1 5 0.33 [0.31, 0.34] 0.11 [0.10, 0.12] 6.99 5.79
Subcluster 2 6 0.47 [0.45, 0.48] 0.22 [0.20, 0.23] 6.54 5.35
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Figure 4. Dendrogram based on hierarchical clustering on the Spearman rank-order correlations of thefeatures contained in Cluster 3, which showed the strongest association with number of childbirths (seeFigure 3). The colours represent clusters of features that are grouped together based on common covariance;subcluster 1 in green and subcluster 2 in red. The y-axis shows the degree of co-linearity between thefeatures, with higher y-values indicating less co-linearity between clusters. STS = superior temporal sulcus.

Table 6. Relationships between number of previous childbirths and estimated brain aging for eachsubcluster. Subcluster-specific brain age gap was entered as the dependent variable and number of childbirthswas entered as independent variable for each analysis. Chronological age was included for covariatepurposes. P-values are provided before and after FDR correction.
Number of childbirths vs subcluster-specific brain age estimates

Subcluster � SE t p pcorr
1 -0.071 0.016 -4.321 1.563 × 10−5 1.563 × 10−5

2 -0.124 0.020 -6.169 7.024 × 10−10 1.405 × 10−9

Table 7. Difference in quadrature between the subcluster-specific associations with number of childbirths,calculated using Eq. 1 (Methods and Materials).
Comparison Z p pcorr

Subcluster 1 vs subcluster 2 -5.32 1.01 × 10−7 2.03 × 10−7
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Figure 5. Regions in subcluster 2 - the cluster that showed the strongest association with number of previouschildbirths. A = anterior, G = gyrus, P = posterior. Figure created using the ggseg plotting tool for brain atlasesin R (Mowinckel and Vidal-Piñeiro, 2019).

To control for potential confounding factors, the analyses of number of previous childbirths versus123

subcluster 2 brain age estimates were rerun including assessment location, education, body mass124

index (BMI), diabetic status, hypertension, smoking and alcohol intake, menopausal status (’yes’,125

’no’, ’not sure, had hysterectomy’, and ’not sure, other reason’), and oral contraceptive (OC) and126

hormonal replacement therapy (HRT) status (previous or current user vs never used) as covariates.127

16,512 women had data on all variables and were included in the analyses. The results showed128

an association of � = −0.12, SE = 0.02, t = −5.36, p = 8.27 × 10−8 between number of childbirths129

and subcluster 2, indicating that the covariates could not fully explain the association. Number of130

previous childbirths and age at first birth correlated r = −0.294, p = 6.90 × 10−296 (corrected for age).131

To test for an association with brain aging, an analysis was run with subcluster 2 brain age as the132

dependent variable and age at first birth as independent variable, including all the covariates (age,133

assessment location, education, BMI, diabetic status, hypertension, smoking and alcohol intake,134

menopausal status, OC and HRT use). No association was found (� = 0.010, SE = 0.01, t = 1.64, p =135

0.102, N = 12, 937).136

Single-region associations:137

To investigate the unique contributions of each region in subcluster 2 to the association with pre-138

vious childbirths, separate brain-age prediction models were run with each feature as input, yield-139

ing 11 region-specific brain age estimates. Table 8 shows the correlation between predicted and140

chronological age for each region-specificmodel, and their associations with number of childbirths.141

As the regions within the cluster were correlated (see Figure 4), we tested for unique contributions142

by first running a multiple regression analysis with all region-specific brain age estimates as in-143

dependent variables and number of childbirths as the dependent variable, before eliminating the144

regions one at a time to compare the log-likelihood of the full and reduced models. The signifi-145

cance of model differences was calculated using Wilk’s theorem (Wilks, 1938) as √2(ΔLL), where146

ΔLL = LL1 − LL2; the difference in log-likelihood between the reduced model (LL1) and the full147

model (LL2). The results showed that only the accumbens contributed uniquely to the association148
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with number of previous childbirths. The association when excluding accumbens from subcluster149

2 was � = −0.098, SE = 0.020, t = −5.001, p = 5.766 × 10−07, indicating that the association was not150

solely driven by this region.151

Table 8. Region-specific age prediction accuracy (correlation between predicted and chronological age; rAge)and association with number of childbirths (�CB , standard error (SE), t, p, and pcorr) for each of theregion-specific brain age gap estimates. Chronological age was included in the analyses for covariatepurposes. 95 % confidence intervals are indicated in square brackets. P-values are reported before and afterFDR correction.
Subcluster 2 region rAge �CB SE t p pcorr
Parahippocampal 0.24 [0.23, 0.25] -0.020 0.012 -1.650 0.099 0.099
Thalamus 0.35 [0.34, 0.36] -0.048 0.016 -2.991 0.003 0.003
Putamen 0.24 [0.22, 0.25] -0.053 0.012 -4.401 1.08 × 10−5 2.253 × 10−5

Hippocampus 0.33 [0.32, 0.34] -0.061 0.016 -3.923 8.77 × 10−5 1.315 × 10−4

Amygdala 0.29 [0.27, 0.30] -0.061 0.014 -4.393 1.13 × 10−5 2.252 × 10−5

Accumbens 0.31 [0.30, 0.32] -0.101 0.015 -6.812 9.90 × 10−12 5.937 × 10−11

Table 9. Difference in log-likelihood (ΔLL) between regression analyses against number of children. Thedifference is calculated between models where all cluster features are included and models where singlefeatures are left out one at the time. P-values are reported before and after FDR correction.
Left-out feature ΔLL Z p pcorr
Parahippocampal 0.051 0.322 0.758 0.758
Thalamus 0.753 1.227 0.376 0.563
Putamen 1.819 1.907 0.129 0.388
Hippocampus 0.352 0.839 0.561 0.673
Amygdala 0.813 1.275 0.354 0.563
Accumbens 10.568 4.597 2.05 × 10−5 1.232 × 10−4

As a cross check, we investigated associations between previous childbirths and regional volumes152

in subcluster 2. Separate analyses were run with the volume measure for each region as depen-153

dent variables and number of previous childbirths as the independent variable, including age,154

assessment location, education, BMI, diabetic status, hypertension, smoking and alcohol intake,155

menopausal status, and OC and HRT status as covariates. 16,516 women had data on all variables156

and were included in the analysis. The associations between number of previous childbirths and157

regional volume corresponded to the associations with brain age estimates, as shown in Table 10.158

Table 10. Relationships between number of previous childbirths and volume for each region in subcluster 2.
P-values are provided before and after FDR correction.

Number of childbirths vs regional volume
Region � SE t p pcorr
Parahippocampal 1.730 1.647 1.051 0.293 0.293
Thalamus 7.364 3.627 2.030 0.042 0.051
Putamen 9.369 3.215 2.914 0.004 0.005
Hippocampus 7.359 2.295 3.207 0.001 0.003
Amygdala 4.946 1.094 4.522 6.165 × 10−6 1.849 × 10−5

Accumbens 3.311 0.554 5.979 2.291 × 10−9 1.374 × 10−8
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Discussion159

The results showed that a higher number of previous childbirths was associated with less apparent160

brain aging in striatal and limbic regions, including the accumbens, putamen, thalamus, hippocam-161

pus, and amygdala. The most prominent effect was seen in the accumbens, which is part of the162

ventral striatum and a key region in the mesolimbic system involved in reward processing and re-163

inforcement learning (Haber and Knutson, 2010). The mesolimbic system plays a pivotal role in164

the rapid emergence of adequate maternal behavior directly after birth due to its role in motiva-165

tion, reward, and the hedonic value of stimuli (Brunton and Russell, 2008; Numan and Woodside,166

2010). In rodents, this circuit is activated by pup-related cues that strongly motivate and reinforce167

maternal care, such as odor (Fleming et al., 1989), ultrasonic vocalization (Robinson et al., 2011),168

and suckling (Ferris et al., 2005). Low levels of maternal care have been associated with reduced169

dopamine releasewithin the nucleus accumbens in response to pup cues (Champagne et al., 2004),170

and in humans, motherhood has been linked to anatomical changes in the ventral striatum, with171

volume reductions promoting responsivity to offspring cues (Hoekzema et al., 2020). Togetherwith172

the ventral striatum, regions including the thalamus, parietal cortex, and brainstem also serve im-173

portant functions for processing pup-related somatosensory information (Kim et al., 2010), and174

some evidence suggests that structural reorganization occurs in the thalamus, parietal lobe, and175

somatosensory cortex as a result of physical interactions with pups during nursing (Kinsley et al.,176

2008; Xerri et al., 1994). A recent study by Luders et al. (2020) found an increase in regional vol-177

umes including the thalamus in women postpartum, corroborating functional MRI (fMRI) studies178

showing maternal thalamic activation in response to their offspring (Paul et al., 2019; Rocchetti179

et al., 2014). During mother–infant interaction, brain activation has also been shown to increase180

in the striatum (including putamen and accumbens), amygdala, substantia nigra, insula, inferior181

frontal gyrus, and temporal gyrus (Rocchetti et al., 2014). To summarize, the brain regions iden-182

tified in the current study largely overlap with neural circuitry underpinning maternal behavior,183

indicating that brain modulations during pregnancy and postpartum may be traceable decades184

after childbirth.185

In addition to the regions overlapping with the maternal circuit, we found a link between hip-186

pocampal brain aging and previous childbirths. This association concurs with animal studies show-187

ing enhanced hippocampal neurogenesis in middle age in parous relative to nulliparous rats (Eid188

et al., 2019), and fewer hippocampal deposits of amyloid precursor protein in multiparous relative189

to primiparous and virgin animals (Love et al., 2005). Contrary to the findings in middle-aged ani-190

mals, reduced hippocampal neurogenesis has been reported during the postpartum period, coin-191

cidingwith enhancedmemory performance in primiparous compared to nulliparous rodents (Kins-192

ley and Lambert, 2008). In combination with the evidence of both increased and decreased re-193

gional volume in humans postpartum (Luders et al., 2020; Hoekzema et al., 2017; Kim et al., 2018),194

these findings emphasize that pregnancy-related brain changes may be highly dynamic.195

Pregnancy represents a period of enhanced neuroplasticity of which several underlyingmecha-196

nisms could confer long-lasting effects on the brain. Fluctuations in hormones including estradiol,197

progesterone, prolactin, oxytocin, and cortisol are known to influence brain plasticity (Galea et al.,198

2014; Simerly, 2002; Barha and Galea, 2010), and levels of estradiol - a potent regulator of neu-199

roplasticity (Barha and Galea, 2010) - rise up to 300-fold during pregnancy (Schock et al., 2016)200

and fall 100–1000 fold postnatally (Nott et al., 1976). Hormonal modulations are closely linked201

to pregnancy-related immune adaptations such as the proliferation of Treg cells (Kieffer et al.,202

2017), which promotes an anti-inflammatory immune environment and contribute to the observed203

improvement in symptoms of autoimmune disease during pregnancy (Whitacre et al., 1999; Na-204

tri et al., 2019). In contrast, the transition to menopause marks a period of decline in ovarian205

hormone levels and can foster a pro-inflammatory phenotype involving increased risk for autoim-206

mune activity and neuronal injury. Beneficial immune adaptations in pregnancy could potentially207

have long-lasting effects, improving the response to menopause-related inflammation, and sub-208
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sequently leading to more favorable brain aging trajectories in multiparous women (Mishra and209

Brinton, 2018; Fox et al., 2018; Barth and de Lange, 2020). Anothermechanism throughwhich preg-210

nancymay have long-lasting effects onmaternal physiology is fetal microchimerism - the presence211

of fetal cells in the maternal body (Boddy et al., 2015). In mice, fetal cells have been found in sev-212

eral brain regions including the hippocampus, where they mature into neurons and integrate into213

the existing circuitry (Zeng et al., 2010). Further evidence for beneficial effects of childbirths on the214

aging brain stems from studies showing that telomeres are significantly elongated in parous rela-215

tive to nulliparous women (Barha et al., 2016), indicating that parity may slow the pace of cellular216

aging. However, parity has also been linked to Alzheimer’s-like brain pathology including neurofib-217

rillary tangle and neuritic plaque (Beeri et al., 2009; Chan et al., 2012), as well as increased risk218

of Alzheimer’s disease (Beeri et al., 2009; Colucci et al., 2006), with a higher risk in grand-parous219

women (> 5 childbirths) (Jang et al., 2018). Although our previous study showed some evidence of220

amoderate non-linear trend between number of childbirths and global brain aging (de Lange et al.,221

2019), this effect was not replicated in the current study. More research is needed to determine222

whether positive effects of pregnancies are less pronounced in grand-parous women, as findings223

could be biased by low power due to the relatively few women with five or more childbirths, as224

well as confounding factors such as socioeconomic status or stress levels (Zeng et al., 2016).225

In conclusion, the current study replicates preceding findings showing less apparent brain ag-226

ing in multiparous women (de Lange et al., 2019), and highlights brain regions that may be par-227

ticularly influenced by previous childbirths. While prospective longitudinal studies are needed to228

fully understand any enduring effects of pregnancy, our novel use of regional brain-age predic-229

tion - which captures deviations from normative aging - demonstrates that parity relates to region-230

specific brain aging patterns evident decades after a woman’s last childbirth.231
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Methods and Materials232

Sample characteristics:233

The sample was drawn from the UK Biobank (www.ukbiobank.ac.uk), and included an initial sample234

of 21,928 women. 1885 participants with known brain disorders were excluded based on ICD10235

diagnose (chapter V and VI, field F; mental and behavioral disorders and G; diseases of the nervous236

system, except G5 (http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270). 220 participants were237

excluded based on MRI outliers (see MRI data acquisition and processing) and 9 had missing data238

on number of previous childbirths, yielding a total of 19,787 participants that were included in the239

analyses. Sample demographics are provided in Table 11.240

Table 11. Sample demographics. GCSE = General Certificate of Secondary Education, NVQ = NationalVocational Qualification.
Age
Mean ± SD 63.59 ± 7.38
Range [years] 45.13 - 82.27
Number of childbirths (live)
Mean ± SD 1.72 ± 1.16
Range 0 - 9
N in each group:
0 = 4297 | 1 = 2459 | 2 = 8770
3 = 3334 | 4 = 729 | 5 = 142
6 = 43 | 7 = 7 | 8 = 5 | 9 = 1
Age at first birth (N = 15,446)
Mean ± SD 27.08 ± 5.01
Range 14 - 47
Years since last birth (N = 13,023)
Mean ± SD 33.37 ± 9.32
Range 6.77 - 60.34
Menopausal status (N = 19,781)
Yes 6117
No 10737
Not sure, had hystorectomy 1912
Not sure, other reason 1015
Ethnic background
%White 97.06
% Black 0.69
% Mixed 0.54
% Asian 0.75
% Chinese 0.37
% Other 0.55
% Do not know 0.03
Education
% University/college degree 44.71
% A levels or equivalent 14.09
% O levels/GCSE or equivalent 24.91
% NVQ or equivalent 3.17
% Professional qualification 5.65
% None of the above 5.91
Assessment location (imaging)
Newcastle 5139
Cheadle 11906
Reading 2742
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MRI data acquisition and processing:241

Adetailed overviewof theUKBiobankdata acquisition andprotocols is available in papers byAlfaro-242

Almagro et al. (2018) and Miller et al. (2016). Raw T1-weighted MRI data for all participants were243

processed using a harmonized analysis pipeline, including automated surface-based morphome-244

try and subcortical segmentation. Volumes of cortical and subcortical brain regions were extracted245

based on the Desikan-Killiany atlas (Desikan et al., 2006) and automatic subcortical segmentation246

in FreeSurfer (Fischl et al., 2002), yielding a set of 68 cortical features (34 per hemisphere) and 17247

subcortical features (8 per hemisphere + the brain stem). The MRI data were residualized with re-248

spect to scanning site, data quality and motion using Euler numbers (Rosen et al., 2018) extracted249

from FreeSurfer, intracranial volume (Voevodskaya et al., 2014), and ethnic background using lin-250

ear models. To remove bad quality data likely due to subject motion participants with Euler num-251

bers of standard deviation (SD) ± 4 were identified and excluded (n = 192). In addition, participants252

with SD ± 4 on the global MRI measures mean cortical or subcortical gray matter volume were ex-253

cluded (n = 13 and n = 22, respectively), yielding a total of 19,796 participants with T1-weightedMRI254

data. Only participants who had data on number of previous childbirths in addition to MRI were255

included, and the final sample used in all subsequent analyses (unless otherwise stated) counted256

19,787 participants.257

Global and regional brain age prediction:258

Brain age prediction was used to estimate global and regional brain age based on the MRI data.259

In line with recent brain-age studies (de Lange et al., 2020a, 2019; Kaufmann et al., 2019), the XG-260

Boost regressor model, which is based on a decision-tree ensemble algorithm, was used to run the261

brain age prediction (https://xgboost.readthedocs.io/en/latest/python). XGboost includes advanced262

regularization to reduce overfitting (Chen and Guestrin, 2016), and uses a gradient boosting frame-263

work where the final model is based on a collection of individual models (https://github.com/dmlc/264

xgboost). Randomized search with ten folds and ten iterations was run to optimize parameters,265

using all imaging features as input. Scanned parameters ranges were set to maximum depth: [2,266

10, 1], number of estimators: [60, 220, 40], and learning rate: [0.1, 0.01, 0.05]. The optimized pa-267

rameters maximum depth = 6, number of estimators = 140, and learning rate = 0.1 were used for all268

subsequent models.269

To replicate our findings described in de Lange et al. (2019), we trained a global brain-age pre-270

diction model using the part of the current sample that overlapped with the previous study (N =271

10,907), and applied it to the newly added participants (N = 8880), before testing the association be-272

tween number of previous childbirths and global brain age in the group of new participants. Note273

that the training set of 10,907 participants overlapping with the previous study showed a lower N274

relative to the sample in de Lange et al. (2019) due to correction for the variables listed in sample275

characteristics.276

The full sample (19,787) was utilized to investigate regional brain aging. Averages of the right277

and left hemisphere measures were first calculated for each feature, and hierarcical clustering278

was performed on the Spearman rank-order correlation using Scikit-learn version 0.22.2 (https:279

//scikit-learn.org/stable/modules/clustering.html#clustering). All features were grouped according to280

their associated cluster ID, and separate prediction models were run with ten-fold cross valida-281

tion, providing cluster-specific brain age gap estimations (predicted age – chronological age) for282

each individual. To investigate model prediction accuracy, R2, RMSE, and MAE were calculated for283

each model, and correlation analyses were run for predicted versus chronological age. The same284

procedure was followed for subclusters and region-specific brain age predictions.285

Associations between previous childbirths and regional brain aging:286

To investigate associations between number of previous childbirths and brain aging, separate re-287

gression analyses were run using cluster-specific brain age gap estimates as the dependent vari-288

able, and number of childbirths as independent variable. Chronological age was included as a co-289
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variate, adjusting for age-bias in the brain age predictions as well as age-dependence in number290

of childbirths (Le et al., 2018; de Lange and Cole, 2020). P-values were corrected for multiple com-291

parisons using false discovery rate (FDR) correction (Benjamini and Hochberg, 1995). To directly292

compare the associations, Z tests for correlated samples (Zimmerman, 2012) were run using293

Z = (�m1 − �m2)∕
√

�2m1 + �2m2 − 2��m1�m2 (1)
where "m1" and "m2" represent model 1 and 2, the � terms represent the beta value from the294

regression fits, the � terms represent their errors, and � represents the correlation between the295

two sets of associations. The statistical analyses were conducted using Python 3.7.0.296
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