23 research outputs found

    SmÀrta hos djur

    Get PDF
    We have made a litterature study about pain in animals. In this studie we have brought up areas like sign of pains in animals, pain relief and the care perspective. Pain is perceived when body tissue is damaged or nearly damaged by stimuli. Nociceptors, which are receptors placed at nerve endings, responds to a provocation of pain and transmit an impulse along the nerve to the brain via the spinal cord. Pain is urgent or chronic, and can be divided into nociceptive pain (somatic pain and visceral pain) and neuropathic pain. Different pain mechanisms can arise, such as referred pain, which is when signals of pain are referred to other parts of the body. Another example is peripheral or central sensitisation, which means an increased sensitivity to pain. Wind-up is the result of increased pain by repeated stimuli. Reflexes are an important defense mechanism. The body has its own pain-limiting mechanisms, such as the gate theory and the release of endogen opioides. Placebo and nocebo are positive respectively negative expectancy effects. There are many reasons as to why pain is negatively perceived. Apart from the actual suffering, prolonged pain can result in a weakened immune system and a deterioration of the wound healing process. There are many opinions about animal's pain. Recurring questions include whether animals can feel pain; how this pain is perceived; whether or not the pain relief is sufficient; and how to reduce pain. Nowadays it is well known that animals can sense pain in a similar way as humans, but the degree of pain might be difficult to judge. There are several different techniques and tools to help judge the degree of pain. Among others, scales that omit from animal behaviour. As the main purpose of veterinarians and animal nurses is to decrease their patients' suffering, efforts must be made to decrease their pain. The basic concept for good care and pain management is 'Tender Loving Care', or TLC. Pain management (analgesic) is based either on blocking the nociceptores or on the body's own pain controling system. Analgesic drugs act in various ways on the peripheral and central nervous systems. Peripheral working analgetica has effect on pain and inflammations in a limited area (nociceptive pain). Central working analgetica acts in the central nerve system. Opioides, non-steroidal anti-inflammatory drugs (NSAIDs) and local anaesthetics are the main substanses that may be used as analgesics, either alone or in combination. Alpha-2 adrenoreceptor agonists, dissociative drugs, benzodiazepines, and to some extent corticosteroides, may also be used as pain relievers. In addition, nonpharmacologic measures, such as acupuncture, Transcutaneous Electrical Nerve Stimulator (TENS), massage and laser treatments can relief pain by stimulating the body's own painlimiting mechanisms

    A mouse informatics platform for phenotypic and translational discovery

    Get PDF
    The International Mouse Phenotyping Consortium (IMPC) is providing the world’s first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers

    Genome-wide screening reveals the genetic basis of mammalian embryonic eye development.

    Get PDF
    BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease

    Mendelian gene identification through mouse embryo viability screening.

    Get PDF
    BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases

    Prevalence of sexual dimorphism in mammalian phenotypic traits.

    Get PDF
    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans

    Human and mouse essentiality screens as a resource for disease gene discovery.

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery
    corecore