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Mendelian gene identification 
through mouse embryo viability screening
Pilar Cacheiro1, Carl Henrik Westerberg2, Jesse Mager3, Mary E. Dickinson4,5, Lauryl M. J. Nutter6, 
Violeta Muñoz‑Fuentes7, Chih‑Wei Hsu4,8, Ignatia B. Van den Veyver5,9, Ann M. Flenniken10, Colin McKerlie6, 
Stephen A. Murray11, Lydia Teboul12, Jason D. Heaney5, K. C. Kent Lloyd13, Louise Lanoue13, Robert E. Braun11, 
Jacqueline K. White11, Amie K. Creighton6, Valerie Laurin6, Ruolin Guo10, Dawei Qu10, Sara Wells12, 
James Cleak12, Rosie Bunton‑Stasyshyn12, Michelle Stewart12, Jackie Harrisson12, Jeremy Mason7, 
Hamed Haseli Mashhadi7, Helen Parkinson7, Ann‑Marie Mallon2, International Mouse Phenotyping 
Consortium, Genomics England Research Consortium and Damian Smedley1*   

Abstract 

Background: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the 
pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with 
disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate 
the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intoler‑
ance to loss‑of‑function variation has been previously described, providing evidence that gene essentiality should not 
be considered as a simple and fixed binary property.

Methods: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss‑of‑
function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal 
genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between 
these windows of lethality and various gene features including expression across development, paralogy and con‑
straint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene 
discovery and investigated unsolved cases from the 100,000 Genomes Project.

Results: We found that genes in the early gestation lethal category have distinct characteristics and are enriched 
for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple 
features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic pre‑
dicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We 
highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts.

Conclusions: Information on the developmental period at which embryonic lethality occurs in the knockout mouse 
may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The rate of molecular diagnosis through genomics 
approaches continues to improve. However, the diag-
nostic yield for Mendelian disorders varies significantly, 
ranging from 25 to 58% [1, 2] depending on the age of 
the proband, the type of disorder, the criteria for patient 
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inclusion (e.g. absence of a clear clinical diagnosis, previ-
ous attempts to provide a molecular diagnosis) and the 
availability of sequence data from family members, e.g. 
familial versus sporadic cases. Despite this progress, a 
considerable proportion of patients remain without a 
diagnosis. Potential strategies to address the challenge 
of undiagnosed patients and advance our understand-
ing of the molecular basis of these disorders include but 
are not limited to (i) identifying novel Mendelian disease 
genes [3]; (ii) developing experimental and computa-
tional approaches to assess the pathogenicity of variants 
of unknown significance in known disease genes; (iii) 
considering expansion of the phenotype of known dis-
ease genes [4]; (iv) investigating noncoding, regulatory 
variants; (v) assessing the contribution of structural vari-
ation [5]; (vi) investigating somatic mosaicism; and (vii) 
exploring alternative modes of inheritance, i.e. digenic or 
multigenic [2].

With regard to the first approach, the number of genes 
currently known to be associated with rare disorders 
comprises 20–25% of the protein coding genome accord-
ing to OMIM [6]. There are between 200 and 300 new 
disease-gene associations published every year [7], with 
many more to be uncovered. Frameworks such as the 
Clinical Genome Resource or the Genomics England 
(GEL) PanelApp, a publicly available knowledgebase 
containing expert curated gene panels related to human 
disorders, are key to summarise and assess all curated 
evidence and provide clinical validation for these gene-
disease pairs [8, 9]. The number of additional disease-
associated genes yet to be identified is estimated to be 
high, up to 1.5–3 times the number of currently known 
causative genes of Mendelian conditions [10].

The main approach to identify genes underlying auto-
somal recessive (AR) disorders has been homozygosity 
mapping combined with mutation screening in large 
consanguineous pedigrees. However, this is infrequent 
in outbred populations, where recessive disorders likely 
remain underdiagnosed [11]. The use of large exome 
and sequence datasets, including information on vari-
ant frequency and gene intolerance to variation metrics, 
has been widely implemented in rare disease diagnos-
tic pipelines. Conversely, in large cohorts such as those 
from UK Biobank [12] and gnomAD [13], we are unlikely 
to find homozygous loss-of-function (LoF) variants, 
i.e. complete knockouts, for many genes [14]. A recent 
study in the European population estimated that every 
individual is a carrier of at least 2 pathogenic variants in 
genes known to be associated with AR disease and con-
sequently up to 1% of couples within this population 
would be at risk of having a child affected by these dis-
orders. This risk increases for consanguineous couples 
and skeletal disorders and intellectual disabilities [15]. 

Additionally, variants associated with AR disorders could 
result in attenuated phenotypes in heterozygous carri-
ers [16]. Hence, identifying biallelic pathogenic variants 
in rare disease cohorts like the 100,000 Genomes Project 
(100KGP) [17] remains a crucial task that requires alter-
native approaches, including evaluating genes not yet 
associated with disease.

Combining different sources of information can boost 
the evidence for new disease-gene associations. Inte-
grating research and clinical datasets has proven to be 
effective at discovering the molecular basis for genetic 
disorders [18, 19]. Model organism information on via-
bility and cross-species phenotype comparisons in com-
bination with clinical data constitutes another powerful 
strategy. Some examples include the automatic detec-
tion of mouse models for human disease and phenotype-
based variant prioritisation using algorithms such as 
PhenoDigm and Exomiser [20–22]. Additionally, mouse 
data on essentiality can be used as a discovery and pri-
oritisation tool [23, 24]. We previously developed a gene 
prioritisation strategy focused on neurodevelopmen-
tal disorders by integrating evidence of intolerance to 
LoF variation from multiple resources and data from 
large scale sequencing programmes [25]. Through this 
approach, combining viability data from mice and human 
cell line screens, we were able to identify a set of develop-
mentally lethal genes, i.e. genes not essential for cell pro-
liferation but required for organism development, which 
were enriched for autosomal dominant (AD), develop-
mental disease-associated genes. Investigation of clini-
cal cases with de novo variants in developmental lethal 
genes and phenotypic overlap between the knockout 
mouse and affected individuals led us to prioritise a set 
of 9 candidate genes. Two of these genes have since been 
validated [26, 27].

To improve and expand these successful strategies 
to other types of disorders, here we again leverage evi-
dence from high-throughput mouse phenotype screens 
conducted by the International Mouse Phenotyping 
Consortium (IMPC) to further explore the spectrum of 
intolerance to LoF variation. For genes with null alleles 
that result in a lethal phenotype in a primary viabil-
ity screen (i.e. no live homozygous animals identified 
between 14 days of age and weaning), the IMPC per-
forms a secondary embryo viability screen to determine a 
‘window of lethality’ (WoL) by examining the survival of 
homozygous null mutants at different embryonic devel-
opmental time points [24]. In the present study, we fur-
ther dissected this set of lethal genes in the mouse with 
the primary aim of investigating how they can inform 
human disease gene discovery.

First, we explored these WoL and show how they relate to 
essentiality inferred from human cell proliferation assays, 
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gene expression across development, intolerance to vari-
ation metrics and duplication events. Secondly, we inves-
tigated these WoL in the context of human Mendelian 
disease and found that early-gestation lethal genes in the 
mouse are correlated with AR disease-associated genes, in 
particular those involved in inherited metabolic disorders, 
resulting mainly from enzyme deficiencies [28]. Finally, 
we developed two gene prioritisation strategies to identify 
novel candidate genes for this type of disorders: one based 
on gene similarity to biallelic inborn errors of metabolism 
(BIEM) genes, a broad category of genes that function in 
metabolism and impact, or are impacted by most cellular 
processes [29], and the other based on enrichment of bial-
lelic predicted pathogenic variants among unsolved meta-
bolic disorder cases from the 100KGP [17].

Methods
Data sources
IMPC mouse data
Mouse primary and secondary viability data were 
obtained from the IMPC resource [30].

Primary viability data: http:// ftp. ebi. ac. uk/ pub/ datab 
ases/ impc/ all- data- relea ses/ relea se- 15.0/ resul ts/ viabi lity. 
csv. gz (DR15) [Downloaded 28.09.21].

Phenotype annotations [31, 32]: DR15.0 / DR16.0.
Embryonic viability data: Detailed information on the 

primary and secondary viability pipelines, including defi-
nitions, procedures and protocols, can be found at https:// 
www. mouse pheno type. org/ impre ss/ index. These include 
the following: Viability Primary Screen, Viability E9.5 Sec-
ondary Screen, Viability E12.5 Secondary Screen, Viability 
E14.5-E15.5 Secondary Screen, Viability E18.5 Secondary 
Screen, Homozygote Viability at Weaning Screen. A full 
description of the WoL is available (File S1 [33]).

Entire set of human protein coding genes 
with the corresponding mouse orthologues
One-to-one human orthologues were obtained from 
the HUGO Gene Nomenclature Committee (HGNC) 
resource [34]: http:// ftp. ebi. ac. uk/ pub/ datab ases/ genen 
ames/ hgnc/ tsv/ locus_ groups/ prote in- coding_ gene. txt 
[Downloaded 28.09.21].

All other gene features used in this study correspond 
to human orthologue gene annotations. Gene symbols, 
Ensembl and Uniprot identifiers were converted into 
HGNC unique identifiers. Where there was any ambigu-
ity about gene id mapping, the annotation was discarded.

Human cell proliferation scores
CRISPR knockout screens from the Achilles pipeline 
(release 21Q3) for 902 cell lines and the correspond-
ing cell line information were obtained from the Dep-
Map portal [35]: https:// depmap. org/ portal/ downl oad/ all/ 

(Achilles_gene_effect_CERES.csv) [Downloaded 28.09.21]. 
Gene effect scores are direct estimates of the effect of a gene 
knockout on viability. Thus, a more negative CERES score 
indicates more depletion in the cell line. Average scores per 
gene were computed. In order to establish a binary thresh-
old to classify genes as cellular essential and non-essential, 
previous data on cell essentiality, based on 11 cell lines from 
3 different studies, was used to compute F1 scores derived 
from confusion matrices generated when considering differ-
ent CERES mean scores and the classification from these 3 
studies, and mean score cut-offs of −0.40, −0.45, and −0.55 
were found to maximise the F1 scores across the different 
datasets, similar to the −0.45 threshold estimated with infor-
mation from 485 cell lines [25, 30].

Gene expression across development
Human gene expression (RPKM) across development for 
brain, cerebellum, heart, kidney, liver, ovary and testis was 
obtained from Cardoso-Moreira et  al. [36] https:// apps. 
kaess mannl ab. org/ evode voapp/ [Downloaded 10.08.21].

Data on comparison of temporal trajectories between 
human genes and their orthologues in mouse for brain and 
cerebellum was obtained from Cardoso-Moreira et al. [37].

Intolerance to variation scores
gnomaAD v2.1.1 constraint metrics [13] (LOEUF, pLI and pRec) 
and DOMINO scores [38]: https:// gnomad. broad insti tute. org/ 
downl oads# v2con strai nt; https:// wwwfbm. unil. ch/ domino/ 
[Downloaded 10.08.21] SCoNeS [39] and RVIS [40] scores.

Gene duplicates
Annotation of paralogues of human genes was obtained 
from Ensembl Biomart (Ensembl Genes 104) [41] https:// 
www. ensem bl. org/ bioma rt/ martv iew/. Only protein cod-
ing paralogues with HGNC ids and % amino acid identity 
≥20% were considered [Downloaded 10.08.21].

Protein‑protein interactions
Human protein network data (scored links between pro-
teins) were obtained from STRING [42] https:// strin gdb. 
org/ cgi/ downl oad? sessi onId=% 24inp ut% 3E% 7Bses sionId% 
7D& speci es_ text= Homo+ sapie ns [Downloaded 13.08.21].

Pathways
Lowest level pathways were obtained from Reactome 
[43] https:// react ome. org/ downl oad/ curre nt/ UniPr ot2Re 
actome. txt and https:// react ome. org/ downl oad/ curre nt/ 
React omePa thways. txt [Downloaded 10.08.21].

Protein families
PFAM protein families [44] were obtained through 
Ensembl biomart (Ensembl Genes 104) https:// www. 
ensem bl. org/ bioma rt/ martv iew/ [Downloaded 10.08.21].

http://ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/release-15.0/results/viability.csv.gz
http://ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/release-15.0/results/viability.csv.gz
http://ftp.ebi.ac.uk/pub/databases/impc/all-data-releases/release-15.0/results/viability.csv.gz
https://www.mousephenotype.org/impress/index
https://www.mousephenotype.org/impress/index
http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/locus_groups/protein-coding_gene.txt
http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/locus_groups/protein-coding_gene.txt
https://depmap.org/portal/download/all/
https://apps.kaessmannlab.org/evodevoapp/
https://apps.kaessmannlab.org/evodevoapp/
https://gnomad.broadinstitute.org/downloads#v2constraint
https://gnomad.broadinstitute.org/downloads#v2constraint
https://wwwfbm.unil.ch/domino/
https://www.ensembl.org/biomart/martview/
https://www.ensembl.org/biomart/martview/
https://stringdb.org/cgi/download?sessionId=%24input%3E%7BsessionId%7D&species_text=Homo+sapiens
https://stringdb.org/cgi/download?sessionId=%24input%3E%7BsessionId%7D&species_text=Homo+sapiens
https://stringdb.org/cgi/download?sessionId=%24input%3E%7BsessionId%7D&species_text=Homo+sapiens
https://reactome.org/download/current/UniProt2Reactome.txt
https://reactome.org/download/current/UniProt2Reactome.txt
https://reactome.org/download/current/ReactomePathways.txt
https://reactome.org/download/current/ReactomePathways.txt
https://www.ensembl.org/biomart/martview/
https://www.ensembl.org/biomart/martview/
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Protein complex
Corum protein complex information [45] was accessed at: 
https:// mips. helmh oltzm uench en. de/ corum/# downl oad 
[Downloaded 13.08.21].

Disease features
Mendelian disease genes, disease category and mode 
of inheritance
Diagnostic grade ‘green’ genes with sufficient evidence 
for disease association and their corresponding modes of 
inheritance were obtained from GEL PanelApp, a publicly 
available knowledge base containing gene panels related 
to human disorders [9]. A total number of 313 gene pan-
els (excluding additional findings) were investigated. 
Information on allelic requirement and level of evidence 
of disease causation was retrieved for our analysis. Genes 
from 186 gene panels containing level 2 disease category 
information (21 categories) were used for the analysis 
based on disease classification https:// Panel App. genom 
icsen gland. co. uk/ panels/ [Downloaded 10.08.21].

Human Phenotype Ontology annotations
Phenotypes were obtained from the Human Phenotype 
Ontology (HPO) (genes to phenotypes) [46] and mapped 
to the top level of the ontology, broadly corresponding to 
the physiological system affected. Co-occurrence with the 
most frequent systems affected (neurological and mus-
culoskeletal) were computed for early lethal genes (EL) 
versus non early lethal genes (NEL). https:// hpo. jax. org/ 
app/ downl oad/ annot ation; https:// raw. githu buser conte nt. 
com/ oboph enoty pe/ human- pheno type- ontol ogy/ master/ 
hp. obo [Downloaded 23.08.21, HPO notes: format-ver-
sion: 1.2 data-version: hp/releases/2021-08-02].

Prenatal and perinatal lethal genes in humans
A set of 624 genes associated to prenatal and perinatal 
lethality based on OMIM records obtained from Dawes 
et al. [6, 47] were used for the analysis. OMIM text fields 
across the database were queried through the API for 
terms associated with early lethality, before or shortly 
after birth. A total of 86 search terms were queried, 
including ‘early death’, ‘fetal death’, ‘lethal AND prenatal’, 
’lethal AND perinatal’, ‘lethal AND neonatal’ among oth-
ers. The clinical descriptions for each of the initial hits 
were reviewed to exclude genes with no explicit evidence.

Prediction of early lethal genes
Several genes have undergone the IMPC primary viabil-
ity assessment, but the embryonic stage at which lethal-
ity occurs has not yet been investigated. To increase the 
pool of potential candidate early lethal genes, we built 
a classifier using human cell proliferation scores from 
902 lines as predictor variables. For that we used the R 

implementation of Generalized Additive Model Selec-
tion, gamsel [48]. The training set consisted of 895 
genes, 430 early-lethal (EL) and 465 non-early lethal 
(NEL). Imputation of missing values was performed 
via nuclear-norm regularisation implemented in the 
softImpute [49] R package. Cross validation (5-fold) 
ROC-AUCs and accuracy were computed to assess the 
performance of the model. A set of 33 genes externally 
assessed as EL [50] was used as additional validation 
(File S2 [33]).

Gene similarity approach
Similarity with known genes associated to biallelic forms 
of inherited metabolic disorders (biallelic inborn error 
of metabolism green genes from PanelApp, BIEM) was 
assessed according to 5 attributes (5ps): (p1) being a 
paralogue of a known BIEM gene according to Ensembl 
genes 104 and a threshold of % amino acid identity of 20% 
[41]; (p2) sharing a Reactome pathway (lowest level) with 
a BIEM gene [43]; (p3) belonging to the same Corum 
protein complex of a BIEM gene [45]; (p4) being a direct 
interactor within the protein-protein interaction network 
(high confidence cut-off 0.7) of a BIEM gene according 
to STRING [42]; and (p5) sharing a PFAM protein fam-
ily with a BIEM gene [44]. The number of features shared 
was computed for every early lethal gene—assessed and 
predicted (File S3 [33]).

Investigation of cases from the 100KGP
To investigate the occurrence and enrichment of 
homozygous LoF variants in cases from the 1000KGP 
among our set of EL genes in the mouse, we searched for 
variants in those genes in 35,422 families, 631 of which 
were recruited under the categories of interest (‘undi-
agnosed metabolic disorders’ and ‘mitochondrial disor-
ders’). One important caveat is that these are not healthy 
population controls, and we cannot rule out that patients 
recruited under other categories show similar metabolic 
phenotypes, which means that these ratios can be an 
underestimation. The number of observed homozygous 
LoF and missense variants prioritised by Exomiser based 
on variant scores [20] were compared between cases and 
pseudo controls to compute observed versus expected 
ratios (File S4) [33].

Statistical analysis and software
R software [51] including the following packages were 
used for data integration and analysis: tidyverse [52], 
matrixStats [53], epitools [54], DescTools [55], oddsratio 
[56]; data visualisation: waffle [57], ggridges [58], alluvial 
[59], cowplot [60], upSetR [61]; ontologies: ontologyIndex 

https://mips.helmholtzmuenchen.de/corum/#download
https://panelapp.genomicsengland.co.uk/panels/
https://panelapp.genomicsengland.co.uk/panels/
https://hpo.jax.org/app/download/annotation
https://hpo.jax.org/app/download/annotation
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
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[62]; modelling and prediction: softImpute [49], gam-
sel [48], pROC  [63]. To test for significant differences in 
the proportions of cellular essential genes, genes with no 
paralogues, paralogues properties, Mendelian disease 
genes, modes of inheritance and disease categories across 
the 3 WoL and to perform pairwise comparisons, Pear-
son’s chi-squared (two-sided) was used as implemented 
in prop.test and pairwise.prop.test functions. In the case 
of continuous variables, to test for significant differences 
between the three WoL, we used the non-parametric 
Kruskal-Wallis test to compare the three groups and post 
hoc Dunn’s test for pairwise comparisons (two-sided) 
using their R implementations: kruskal.test and dunnTest 
functions. The null hypotheses being that the distribution 
of the CERES depletion scores for the different tissues, 
the levels of gene expression across development and 
several intolerance to variation metrics is the same across 
WoL. For each cell lineage, all the gene individual scores 
were used to assess statistical significance. 95% CI for the 
median score for each window and cell line were com-
puted using the exact method implemented in the Medi-
anCI function in the DescTools R package. The thresholds 
for statistical significance after multiple testing correc-
tions are specified in Additional file 1: Tables S1-S4. Odds 
ratios (OR) were calculated by unconditional maximum 
likelihood estimation (Wald) and confidence intervals 
(CI) using the normal approximation, with the corre-
sponding adjusted P values (Benjamini-Hochberg, BH) 
for the test of independence using the oddsratio function 
(Additional file 1: Table S5). To evaluate the performance 
of our approach to identify candidate genes, F-scores 
were computed for our strategy based on EL genes and 
alternative ones based on pRec, DOMINO, SCoNeS and 
LOEUF scores. Precision and recall were estimated based 
on the number of predicted recessive genes using the sug-
gested thresholds for the different scores and the number 
of BIEM genes in each of these sets of candidate genes. 
A multiple logistic regression model was fitted using EL 
and these other metrics as predictors of BIEM genes and 
the ORs associated with each predictor for specific incre-
ment steps were estimated as implemented in the or_glm 
function (Additional file 1: Tables S6-S7).

Results
Gaining functional knowledge from WoL
The IMPC measures viability between 14 days of age and 
weaning and, for lethal strains, employs a high-through-
put embryonic phenotyping pipeline to examine embryo 
viability and phenotypes at embryonic day (E) E9.5, E12.5, 
E15.5 and/or E18.5. The developmental period dur-
ing which lethality occurs in the mouse can be summa-
rised by establishing a set of WoL. A WoL for a gene was 
defined by the interval between the latest developmental 

stage at which live homozygous null embryos (mice) are 
identified and the earliest stage at which no live homozy-
gous embryos are found [24]. Complete lethality by E9.5 
was classified as early-gestation lethal (EL), by E12.5 or 
E15.5 as mid-gestation lethal (ML), and viability at E15.5 
or E18.5 as late-gestation lethal (LL). These WoL approxi-
mately correlate with the pre-organogenesis, organogen-
esis and post-organogenesis phases of mouse embryonic 
development, while also providing sufficient sample sizes 
to perform downstream statistical analyses. Among 895 
embryonic lethal genes with one-to-one human ortho-
logues assessed in the IMPC to date, nearly half (430, 
48%) are EL, 155 (17%) ML, and 310 (35%) are LL. A full 
description of the WoL is available (File S1 [33]) and the 
distribution of lines per window can be found in Fig. 1.

Human cellular essential genes correlate with mouse EL 
genes
We previously reported that EL genes show a consider-
able overlap with human cellular essential genes [25]. 
The CERES dependency scores obtained from CRISPR 
knockout screens through the Achilles pipeline [35] com-
pute the depletion effect on cell proliferation. A lower 
and more negative value is the result of greater depletion 
of cancer cells upon genetic perturbation and indicates 
higher essentiality [64]. Plotting median proliferation 
scores and the corresponding 95% CI of genes for differ-
ent human cell lines across tissues, we observed a clear 
distinction between the three WoL. The set of EL genes 
stands alone as a distinctive category from the ML and 
LL genes that have closer median values (Additional 
file  2: Fig. S1). The differences in score distribution are 
consistent and statistically significant across cell line-
ages (P value < 2.2e−50), with a few exceptions when 
comparing ML and LL sets (Additional file 1: Table S1). 
Considering the average CERES score across 902 cell 
lines, we observed that only EL genes are found in the 
bins with lowest scores, and that the percentage of ML 
and LL genes within bins increased with higher values of 
this score (Fig. 2a, Additional file 2: Fig. S2a). When cel-
lular essentiality is considered as a binary property after 
categorising the mean scores using a cut-off of −0.45 (≤ 
−0.45: ‘cellular essential’, >−0.45: ‘cellular non-essential’; 
see the ‘Methods’ section), 73% of EL genes are essential 
in human cell lines, compared to 25% of ML genes and 
only 6% of LL genes (P value < 2.2e−50) (Fig. 2b, Addi-
tional file 1: Table S1). Alternative thresholds are consid-
ered in Additional file 2: Fig. S2b-2c and show a similar 
enrichment. Cell line essentiality was previously explored 
for mouse viable genes and showed that > 99% are non-
essential in human cell lines [25]. We additionally exam-
ined individual cell lines to discard any potential cell line 
specific effect, and the percentage of EL genes found 
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Fig. 1 Description of WoL and distribution of lethal genes across these windows. Three‑dimensional microCT images of wild‑type mouse embryos 
corresponding to E9.5, E12.5, E15.5 and E18.5. The waffle chart shows the total number of lethal genes characterised through the secondary viability 
screening and their distribution by WoL. EL genes, where the embryo dies before E9.5 constitute nearly 50% of all the lethal genes in this dataset. 
This stage broadly correlates with the pre‑organogenesis phase of embryonic development. Non‑early lethal genes are divided into ML (17%) 
and LL (35%). The complete set of genes associated with each WoL is available in File S1 [33]. WoL, windows of lethality; E, embryonic day; EL, early 
gestation lethal; ML, mid gestation lethal; LL, late gestation lethal
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Fig. 2 WoL and gene features. a Distribution of mean CERES depletion scores. Histograms represent the probability distribution of mean CERES 
scores across cell lines for each WoL. b WoL and cellular essential genes. Percentage of EL, ML and LL genes considered cellular essential when 
a mean CERES depletion score across cell lines of −0.45 is considered as threshold. c Gene expression in brain. Boxplots show the distribution 
of human gene expression values for genes within each WoL across selected developmental stages for human brain. d SCoNeS scores. Boxplots 
show the distribution of SCoNeS scores, the predicted probability of a given gene being AR. The dashed grey line represents a threshold (SCoNeS 
> 0.75) used to identify genes underlying AR disorders. e LOEUF scores. Boxplots show the distribution of LOEUF scores across WoL. Low LOEUF 
scores indicate strong selection against predicted loss‑of‑function (pLoF) variation in a gene. The dashed grey line represents a threshold (LOEUF 
<0.35) used to identify genes that are constrained against pLoF variation. f WoL and paralogues. Barplots represent the percentage of genes with 
no paralogues (singletons) across WoL, with the proportion of genes with no duplicates decreasing across development stages. Tests for differences 
between WoL available in Additional file 1: Table S1‑S3. For plots a–f, the data shown correspond to gene annotations for the human orthologues. 
WoL, windows of lethality; EL, early gestation lethal; ML, mid gestation lethal; LL, late gestation lethal; LOEUF, LoF observed/expected upper bound 
fraction; SCoNeS, supervised consensus negative selection; AR, autosomal recessive
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to be essential in each cell line based on this threshold 
ranges from 58 to 79% with a mean value of 72% (ML 
mean 24%, range 15–34%; LL mean 9%, range 5–25%).

EL genes consistently show higher levels of human gene 
expression across developmental stages
Examination of human gene expression data [36] showed 
a consistent pattern of expression in brain across devel-
opmental stages with the human orthologues of mouse 
EL genes being expressed at higher levels, on average, 
compared to the orthologues of mouse ML and LL genes, 
and with the differences in gene expression between EL 
and LL genes being statistically significant across most 
developmental stages (Fig.  2c, Additional file  2: Fig. 
S3a, Additional file  1:Table  S2). A similar pattern was 
observed for other organs with data available, including 
cerebellum, heart, kidney, liver, ovary and testis (data 
not shown). High levels of expression may help identify 
key developmental processes. To that end, gene expres-
sion patterns during early human development have been 
used to predict essential genes lacking a known human 
disease association [65]. To assess whether the organ 
development trajectories for these genes differ substan-
tially between mouse and human, we investigated the 
similarity of spatiotemporal gene expression profiles for 
the two species. We found that 78 and 82% of the entire 
set of genes studied showed the same trajectory for cer-
ebellum and brain respectively, with no significant differ-
ences observed between WoL and in concordance with 
what was observed for the entire set of genes with data 
available [37] (Additional file  2: Fig. S3b). Similarities 
in gene expression do not always imply conserved phe-
notypes between mouse and human, but can serve as a 
proxy for how translatable the findings for these genes 
are to human disease.

Intolerance to LoF variation differs across WoL
EL genes are more likely to underlie an AR condition, 
based on higher Supervised Consensus Negative Selec-
tion scores (SCoNeS) [39], a metric that estimates the 
predicted probability of a gene being AR, particularly 
when compared to LL genes (unadjusted P value = 
5.45e−07; Fig.  2d). When the LoF observed/expected 
upper bound fraction (LOEUF) [13], a quantitative meas-
ure of the observed depletion of LoF variation compared 
to a null mutational model, was investigated, we observed 
an inverted pattern, with EL genes showing higher mean 
values of this score (weaker selection against predicted 
LoF variants) compared to ML and LL genes (unadjusted 
P values 6.70e−03 and 2.69e−04 respectively; Fig.  2e). 
Albeit only nominally statistically significant, this obser-
vation agrees with our previous findings that develop-
mental lethal genes, those genes that are not essential 

for cell survival but required for organism development, 
and that broadly correlate with ML or LL genes, are more 
intolerant to heterozygous LoF variation compared to 
cellular lethal genes, those found to be essential in human 
cell lines and lethal in the mouse, and more likely to be 
EL [25]. Additional constraint metrics were explored, 
including pLI and pRec [13], RVIS [40] and DOMINO 
[38] (Additional file 2: Fig. S3c-3f ). DOMINO scores rep-
resent a gene level metric based on a machine learning 
approach that extracts discriminant information from a 
broad set of features and computes the probability for a 
gene to carry dominant mutations. Based on this meas-
urement, EL genes were also more likely to be linked to 
AR disease compared to LL genes (unadjusted P value = 
3.39e−05; Additional file 2: Fig. S3g). The results for the 
statistical tests of significance are shown in Additional 
file 1: Table S3.

Gene duplicates and time of duplication event are distinctive 
features of EL genes
EL genes have the highest proportion of genes with 
no paralogues (singletons). This proportion decreases 
gradually from ML to LL genes (unadjusted P value = 
1.41e−20; Fig.  2f ). Not only are EL genes more likely 
to be singletons, but also, for those genes that do have 
paralogues, the number of paralogues is lower and the 
paralogues are more likely to be older, with longer times 
since the duplication event when compared to ML or LL 
genes, which suggests more time to evolve new functions 
(Additional file 2: Fig. S4a, S4b). Thus, not only do gene 
duplications, or the lack thereof, seem to play a role in 
essentiality but so do the number of paralogues and the 
time of the duplication event. Similar observations were 
made by others using different species and/or defini-
tions of essentiality [66, 67]. Paralogues of EL genes are 
also more likely to be EL, and similarly paralogues of ML/
LL genes are more likely to be ML/LL (Additional file 2: 
Fig. S4c). This implies that paralogues are predominantly 
essential at the same developmental stage, potentially 
reflecting similar key functions at the cellular level and 
early stages of organism development. The differences 
in all these metrics are statistically significant when 
comparing EL vs LL genes (Additional file  1: Table  S3). 
Additionally, by dividing genes into singletons and dupli-
cates, we explored the proportion of genes that are cel-
lular essential among these two sets of genes for the three 
WoL (Additional file 2: Fig. S4d). Previous studies investi-
gating the relationship between essentiality, developmen-
tal expression and gene duplication have suggested that 
timing of developmental expression influences the ability 
of a gene in a paralogue pair to compensate for the loss of 
function of the other gene [68].
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WoL and Mendelian disease
It is well established that there is an association between 
lethal genes in the mouse and human disease genes [24, 
47]. Our previous study showed that this enrichment 
was mainly driven by developmental lethal genes [25] so 
we hypothesised that the distribution of disease genes 
across WoL may not be uniform and that information 
about WoL could reveal additional correlations. When 
translating our WoL to relevant developmental stages in 
humans, the EL mouse category broadly correlates with 
the human pre-organogenesis stage occurring during 
the first 2 weeks of development. The ML class relates 
to human organogenesis occurring during the embry-
onic period from weeks 3 through 8, and ending in the 
first trimester, around week 9 of gestation. Lastly, the LL 
category aligns with the human foetal stage, from week 9 
until birth [69].

We used PanelApp as the source of Mendelian genes to 
perform subsequent analyses [9]. Genes are rated accord-
ing to level of evidence to support the phenotype asso-
ciation: ‘green’ means high level of evidence from several 
unrelated families and/or strong additional functional 
data, ‘amber’ moderate evidence and ‘red’ not enough 
evidence. The advantages of using this source of diag-
nostic genes include the high-level disease categorisa-
tion and allelic requirement annotations that allows for 
tailored analysis, the categorisation of genes according to 
the level of evidence for the gene-disease association and 
the potential to map directly to patient data recruited in 
the 100KGP.

Disease category and mode of inheritance are not uniformly 
distributed across WoL
Although the three WoL are all enriched for Mendelian 
disease genes, their properties differ. The proportion of 
genes associated with rare disorders is lowest among the 
EL, followed by the ML and LL genes (Fig.  3a). When 
allelic requirement is considered, this trend is reversed 
for AR disorder-associated genes, where the EL fraction 
showed a significantly higher number of biallelic genes 
compared to LL genes (unadjusted P value = 5.16e−06; 

Fig.  3b; results for the statistical tests of significance in 
Additional file 1: Table S4).

Further dissection of disease genes according to Pan-
elApp high level disease categories showed that (1) the 
proportion of neurodevelopmental disorder associ-
ated genes is higher than expected among the three 
WoL compared to baseline, with the highest percentage 
among LL genes; (2) the proportion of genes associated 
to metabolic disorders follows the inverse pattern, with 
EL genes showing the highest percentage of inherited 
metabolic disease genes (46%), followed by ML (28%) 
and showing the lowest percentage among the LL (18%) 
(unadjusted P value = 2.7e−06); most notably, this is the 
only disease category with a higher percentage of disease 
genes among the EL compared to ML and LL genes; (3) 
a higher percentage of skeletal disorder genes is found in 
ML set, although this association is only nominally sig-
nificant; and (4) for the remaining disease categories, the 
frequency of disease genes among the EL genes shows 
values comparable to baseline or even lower, indicative 
of depletion of these disease categories among the EL 
genes (Fig. 3c, Additional file 2: Fig. S5a, Additional file 1: 
Table S4). In order to assess the strength of the associa-
tion between EL genes and the different disease catego-
ries, OR were computed using the entire set of non-EL 
genes, i.e. all those genes with IMPC data on viability, 
including ML, LL, subviable and viable categories (see 
the ‘Methods’ section). Three disease categories showed 
a positive association (with a lower bound of the 95% CI 
for the OR > 1): metabolic disorders (OR = 4.4; adjusted 
P value = 3.34e−16), dysmorphic and congenital abnor-
mality syndromes (OR = 2.3; adjusted P value = 0.034) 
and neurology and neurodevelopmental disorders (OR = 
2; adjusted P value = 2.56e-05) (Fig. 3d).

Given that most inborn errors of metabolism (IEM) 
show neurological manifestations, and neurodevelop-
mental disorders are still the most predominant disease 
category across the three WoL, we further explored the 
gene overlap between neurodevelopmental and meta-
bolic disease categories to assess any potential confound-
ing effect. The combination of genes associated with both 
metabolic and neurodevelopmental disorders was found 

Fig. 3 WoL and human disease. a Mendelian disease genes. Barplots represent the percentage of rare disease associated genes in each WoL 
according to PanelApp, only ‘green’ genes with a high level of evidence for the gene‑disease association were included. b Mode of inheritance. 
Barplots represent the percentage of Mendelian genes by associated allelic requirement across WoL, only monoallelic or biallelic genes were 
included. c Disease category. Mendelian genes by disease type according to PanelApp level 2 disease categories, with the bars indicating the 
percentage of PanelApp genes mapping each disease class for the 3 WoL. For plots a–c, the dashed grey line represents the baseline percentage for 
the entire set of protein coding genes (19,197 genes according to HGNC, a) or PanelApp ‘green’ genes (3384 genes, b, c). d Disease categories OR 
and BH adjusted P values for EL genes compared to ANEL genes: this included mid and late gestation lethal genes as well as subviable and viable 
categories. e Disease category overlap. Overlap between genes associated with the most frequent disease categories across WoL for EL, ML and LL 
genes respectively. Tests for differences between WoL are available in Additional file 1: Table S4. WoL, windows of lethality; EL, early gestation lethal; 
ML, mid gestation lethal; LL, late gestation lethal; HGNC, HUGO Gene Nomenclature Committee; ANEL, all non‑early gestation lethal genes; OR, 
odds ratio; BH, Benjamini‑Hochberg

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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to be predominant among the EL class, opposite to what 
we observed among the ML and LL classes, where neu-
rodevelopmental only genes are the prevalent disease 
class, thus providing additional evidence for the IEM 
association with EL genes (Fig. 3e).

The analysis of HPO phenotypes associated with 
known inborn error of metabolism genes showed that 
the five most frequent physiological systems affected are 
nervous system, followed by musculoskeletal, metabo-
lism/homeostasis, growth abnormality, and digestive. An 
enrichment analysis showed no significant differences 
in the frequency of any of these phenotypes among EL 
genes when compared to ML and LL genes (Additional 
file 2: Fig. S5b, Additional file 1: Table S5).

Evidence of prenatal and perinatal lethality in humans
Among the wide range of Mendelian phenotypes 
observed in humans, prenatal lethality poses a unique 
challenge in terms of providing a molecular diagnosis. 
Development failure may occur at any point between 
fertilisation and birth. Estimates suggest that 20–30% of 
implanted embryos fail to develop beyond week 6 [70]; 
similarly early embryo losses occurring between implan-
tation and clinical recognition could be around 10–25% 
[71]. A proportion of first trimester miscarriages where 
no chromosomal abnormalities are detected could have a 
Mendelian or polygenic origin [72, 73].

We previously hypothesised that many human genes 
contributing to prenatal lethality are likely unidentified 
and not captured in current disease databases due to 
early embryo losses and miscarriages either being unno-
ticed, or when they are detected, the difficulty in deter-
mining the molecular basis of this extreme phenotype. 
Here, we used a set of 624 genes associated with early 
lethality in humans curated from OMIM [6, 47]. We 
found that 19% of EL disease-associated genes are linked 
to pre- and perinatal lethality. For LL genes, this per-
centage is 31% (Additional file 1: Fig. S5c). Based on our 
hypothesis that most genes associated to early-gestation 
lethality in humans remain unrecognised, the set of EL 
genes in the mouse constitutes a source of candidates of 
interest in the field of foetal precision medicine.

Predicting new EL genes in the mouse
Since the number of IMPC mouse lines that have under-
gone the primary viability assessment is higher than 
those with a secondary evaluation to identify the embry-
onic stage at which lethality occurs, we tried to predict 
additional EL genes among lethal genes without second-
ary viability data to have a larger pool of candidate genes. 
For this, we used a penalised likelihood approach to fit a 
generalised additive model using proliferation (essential-
ity) scores from multiple human cell lines as predictors 

[35] and subsequently used that model to make the pre-
dictions. This added a further set of 362 predicted EL 
genes (out of 725 lethal genes with no secondary viabil-
ity assessment) to the previous 430 EL genes assessed 
through embryo viability screening. Details on the 
model, predictive accuracy, and predictor variables are 
described in the ‘Methods’ section and Additional file 2: 
Fig. S6. Of 33 genes in our prediction set that were exter-
nally assessed as EL [50], 29 were correctly predicted by 
the classifier (87.9%) [33]. CRISPR knockout screens to 
identify those genes affecting cell survival across hun-
dreds of genomically characterised cancer cell lines [74] 
can consequently assist with the identification of early-
gestation lethal lines in the mouse.

Similarity with known BIEM genes
A gene similarity strategy was applied to 792 (assessed 
and predicted) human orthologues to mouse EL genes 
based on features shared with 552 diagnostic-grade 
BIEM genes from PanelApp. This approach was based 
on the unknown gene sharing at least one of 5 attrib-
utes: (p1) being a paralogue of a known BIEM gene; (p2) 
sharing a pathway with a BIEM gene; (p3) belonging to 
the same protein complex as a known BIEM gene; (p4) 
interacting with a known BIEM gene; and/or (p5) shar-
ing a PFAM protein family with a known BIEM gene. 
This gene ranking approach served a dual purpose: (1) to 
identify completely novel disease genes and (2) to bring 
additional proof for those genes in PanelApp that are not 
considered diagnostic-grade genes, i.e. ‘amber’ and ‘red’ 
genes. Among novel EL genes not associated with any 
disease in PanelApp, 53–60% share at least one of the 
above five attributes with a BIEM gene. This percent-
age increases to 69–74% when the non-diagnostic-grade 
genes in PanelApp excluding the IEM panel are examined 
and to 100% for the non-diagnostic-grade genes on the 
IEM panel (Fig. 4a).

Ten of the EL non-disease-associated genes are of par-
ticular interest as they share 4 of the 5 attributes with 
BIEM genes: CHKA, FDX1, GGPS1, GLRX3, HMGCS1, 
MGAT1 and SLC39A10 are paralogous and direct inter-
actors as well as belonging to the same protein family(ies) 
and pathway(s) while MRPS25, PRMT1 and RPA1 are 
interactors, share a protein family(ies) and pathway(s) 
and are also part of the same protein complex(es). The 
complete gene list and annotations are provided in [33]. 
Four of these genes, Ggps1, Mrps25, Prmt1 and Rpa1, 
show abnormal metabolic phenotypes in the heterozy-
gous viable mouse [31]. MRPS25 is a member of the 
human mitochondrial ribosomal protein gene family, 
with evidence from mouse embryos indicating compro-
mised mitochondrial function [75]. Several other mito-
chondrial ribosomal small (MRPS) and large (MRPL) 
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Fig. 4 Gene similarity approach. a Genes sharing features with BIEM genes for each category of EL genes based on evidence for the gene‑disease 
association. Each set of EL genes in the mouse (assessed and predicted) is broken down into 3 sub‑categories based on PanelApp evidence: 
genes associated with inborn errors of the metabolism, Mendelian disease genes in other disease categories and non‑disease genes. For genes 
in PanelApp panels, the genes are also subdivided into those with strong evidence for the gene‑disease association (green) and those with more 
limited evidence to date (red or amber). The percentage of genes sharing one of the 5 features (paralogue, protein family, ppi, pathway, protein 
complex) with known BIEM genes is shown for potential novel genes absent from PanelApp as well as those with more limited evidence (red 
or amber). For each sub‑category, those genes sharing ≥4 features with known BIEM genes are shown. Nine assessed and 5 predicted EL genes 
that are included in this figure as amber/red genes in the IEM panel are also green genes in other disease panels (see Files S3‑S4 [33]). b PRMT1 
IMPC mouse evidence. Mouse phenotypes and phenotypic similarity with human disorders. Heterozygous knockout phenotypes include several 
metabolic and neurological abnormalities. When computing the similarity between the mouse and human disease phenotypes associated with 
known disorders, we find phenotypic overlap with several early onset conditions, including defects of the metabolism coenzyme Q10 deficiency, 
primary, 8 and hypoxanthine guanine phosphoribosyltransferase partial deficiency. EL, early gestation lethal; BIEM, biallelic inborn errors of the 
metabolism; ppi, protein‑protein interaction; IMPC, International Mouse Phenotyping Consortium
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subunit genes are associated with different metabolic dis-
orders, and many of the remaining MRPS genes are also 
potentially associated with disease [76]. Evidence of path-
ogenicity of homozygous missense variants in this gene 
has been reported [77]. In the case of PRMT1, encoding 
a member of the protein arginine N-methyltransferase 
(PRMT) family, additional neurological phenotypes 
found in the IMPC knockout of the orthologous Prtm1 
imply a high phenotypic similarity with neonatal disor-
ders including several defects of the metabolism as com-
puted by PhenoDigm [32] (Fig.  4b). Emerging evidence 
supports the role of this family of enzymes in skeletal 
muscle and metabolic disease [78].

To evaluate this approach, and whether EL genes not 
associated with Mendelian disorders are more likely to 
share attributes with BIEM genes compared to non-EL 
and non-disease associated genes, we computed the ORs 
to obtain a measure of this association. Importantly, we 
found a significant association between sharing any of 
these 5 attributes with a BIEM gene and being EL (1.64 
fold-increase, adjusted P value = 2.7e−06). When these 
attributes were considered separately, the strongest asso-
ciation was observed for being part of the same protein 
complex as a BIEM gene (13.9 fold-increase, adjusted P 
value = 6.5e−20). Significant results were also obtained 
for sharing a pathway and interacting with a BIEM gene. 
EL genes were less likely to be a paralogue of a BIEM 
gene (OR = 0.49, adjusted P value = 0.018), which can 
be explained by the enrichment for singletons among this 
set of genes (Additional file 2: Fig. S7).

Disaggregating the set of EL genes by disease associa-
tion showed that the closer to the IEM disease class, the 
higher the percentage of genes in that category sharing 
attributes with BIEM genes. Consistently, EL genes are 
more likely to share attributes with BIEM genes com-
pared to non-EL genes.

Undiagnosed cases of inherited metabolic disorders 
from the 100KGP
An alternative approach, based on patient data, was also 
used to identify potential metabolic disease genes among 
the set of EL genes in the mouse. Cases recruited under 
the ‘undiagnosed metabolic disorder’ and ‘mitochon-
drial disorders’ categories in the 100KGP were investi-
gated for rare, segregating and biallelic LoF or predicted 
pathogenic missense variants in EL genes, using the 
Exomiser variant prioritisation tool [20]. Observed ver-
sus expected (OE) ratios per gene were computed by 
comparing the number of biallelic variants observed 
in these patients to those observed on a set of pseudo 
controls, i.e., patients recruited under other disease cat-
egories. Predicted homozygous or compound heterozy-
gous pathogenic variants were found in 21 EL genes (13 

assessed, 8 predicted) with OE ratios > 1 and observed in 
≤ 2 controls. None of the 21 genes showed enrichment of 
synonymous variants by these same criteria. Out of the 
21 genes, 3 involved biallelic LoF, 6 had biallelic LoF/mis-
sense and 12 had biallelic missense variants. Five of these 
genes are already classified as diagnostic grade genes in 
the IEM panel (COQ4, ELAC2, MRPL44, MSTO1 and 
SKIV2L) and three others are diagnostic grade genes in 
different neurology and neurodevelopmental disorder 
gene panels (EIF2B4, ELP1, EXOSC8). ALG2, NDUFA8 
and RNASEH2A are classified as amber or red in the 
IEM panel. For the cases associated with these 11 known 
disease genes, only those associated with MRPL44 and 
ALG2 biallelic variants have been diagnosed with these 
variants so far, with the others currently classified as vari-
ants of uncertain significance. For the remaining 10 genes 
(AFDN, CDK12, COQ3, GINS4, GPATCH1, INTS11, 
KIF2C, NUFIP1, PTPMT1, RCC1), there is no current 
evidence for a disease association in PanelApp or OMIM. 
The complete set of genes is provided in File S4 [33].

For two of the amber or red genes in the IEM panel, 
ALG2 and NDUFA8, IMPC heterozygous knockout mice 
have neurological and metabolic phenotypes [31], pro-
viding additional evidence to validate this gene-disease 
association. In addition, ALG2 shares 4 features with 
known BIEM genes: protein family (2 genes), pathway 
(10 genes), paralogue (1 gene) and protein-protein inter-
action (9 genes). Similarly, NDUFA8 shares 3 features: 
protein complex (17 genes), pathways (44 genes) and pro-
tein-protein interaction (28 genes).

Four non-disease-associated genes have IMPC data for 
null alleles with heterozygous mouse mimicking some 
of the clinical features observed in patients. AFDN and 
NUFIP1 show neurological phenotypes in the ortholo-
gous mouse embryo or early adult [31, 32]. COQ3 and 
CDK12 also show neurological and other physiological 
system phenotypes [31, 32] shared between the undiag-
nosed patients and the knockout mouse. Detailed infor-
mation on the phenotypes observed in the patients is 
shown in Fig. 5a, b. They are of particular interest as sev-
eral other genes from the same family have already been 
associated with similar disorders, and the IMPC lines are 
the first reported mouse models with abnormal pheno-
types observed in the early adult heterozygous knockout 
[79].

COQ3 (coenzyme Q3, methyltransferase) is one of the 
genes required for the biosynthesis of Coenzyme Q10, 
which has many vital functions. Several genes involved 
in this pathway are associated with Primary CoQ10 Defi-
ciency, including PDSS1, PDSS2, COQ2, COQ4, COQ5, 
COQ6, COQ7, COQ8A, COQ8B and COQ9 [80]. The 
heterozygous Coq3 IMPC mouse shows several neu-
rological/behavioural phenotypes including abnormal 
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locomotor behaviour, abnormal vocalisation and 
decreased grip strength. No homozygous LoF variants 
have been observed for this gene according to gnomAD 

(pLI = 0; pRec = 0.283; DOMINO = very likely reces-
sive). The homozygous frameshift variant observed 
in the 100KGP cohort is present in gnomADv2.1.1 

Fig. 5 Candidate genes with biallelic inheritance involving LoF or (missense) predicted pathogenic variants in undiagnosed patients. a Mouse 
evidence. Genes with homozygous LoF or missense variants found in patients recruited under the ‘undiagnosed metabolic disorder’ and 
‘mitochondrial disorders’ disease categories with an OE ratio > 1, observed in ≤ 2 controls and with the IMPC heterozygous knockout mouse 
displaying abnormal phenotypes in the relevant physiological systems, partially mimicking the phenotypes observed in patients. b COQ3 and 
CDK12 belong to families and pathways with several genes associated with Mendelian disorders. The corresponding mode of inheritance and 
related/overlapping phenotypes for these known disease associated genes and evidence on viability from the IMPC are shown. Information on 
prioritised genes available in File S4 [33]. LoF, loss‑of‑function; OE, observed vs expected; IMPC, International Mouse Phenotyping Consortium; AD, 
autosomal dominant; AR, autosomal recessive
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(p.Lys366SerfsTer2), with an allele frequency of 6.04e−04 
but with no homozygous individuals for that allele. The 
OE ratio in our 100KGP study cohort is 18.7, with the 
other two different variants found in the set of pseudo 
controls recruited under the ‘unexplained sudden death 
in the young’ and ‘ultra-rare undescribed monogenic 
disorders’.

CDK12 (cyclin dependent kinase 12) is one of the 
cyclin-dependent kinases with a key role in molecular 
processes relevant during development. Several other 
protein kinases are involved in developmental disorders: 
CDK5, CDK6, CDK8, CDK10, CDK13 and CDK19 [81]. 
The phenotypic abnormalities observed in heterozygous 
Cdk12 IMPC mice include cardiac, haematopoietic, 
metabolic (decreased circulating HDL cholesterol level) 
and neurological features (decreased exploration in new 
environment) (Fig.  5b). The homozygous splice accep-
tor variant (c.1047-2A>G) is present in gnomADv2.1.1, 
with an allele frequency of 4.06e−4 and one homozygote 
observed in the South Asian population. This gene is in 
fact predicted to be highly intolerant to heterozygous LoF 
variation (pLI = 1; pRec = 0; DOMINO = very likely 
dominant). The OE ratio computed with biallelic variants 
in our GEL study cohort for this gene is 56.14 with no 
variants meeting the criteria described found in controls.

A note of caution is needed when interpreting the 
impact of these two homozygous LoF variants in COQ3 
and CDK12 identified in the 100KGP cohort due to their 
position on the transcript (near the end of the transcript 
and into a NAGNAG sequence, which may indicate a 
frame-restoring splice site, respectively), as indicated 
by gnomAD. Where available, data on gene expres-
sion across development for the aforementioned genes 
(AFDN, NUFIP1, COQ3 and CDK12) confirmed simi-
lar developmental gene expression profiles across time 
points from early organogenesis to adulthood in brain 
and cerebellum between mouse and human, which sup-
ports the translatability of the findings in the knockout 
mouse for these genes [37].

Discussion
Many predicted LoF variants identified in Mendelian 
disease sequencing studies are found in genes not pre-
viously associated with disease, making assessment of 
pathogenicity particularly challenging. High-throughput 
mouse standardised phenotyping screens including via-
bility assessment contribute to acquiring new knowledge 
about orthologues of such genes with limited functional 
data [82, 83]. By also exploring correlations between 
abnormal phenotype(s) in the knockout mouse and dis-
ease features in the human orthologues, we were able to 
identify novel candidates for Mendelian conditions.

Previously, we developed a successful framework to 
prioritise gene candidates for neurodevelopmental dis-
orders using mouse phenotyping data, with two of the 
top nine candidate genes, VPS4A and SPTBN1, hav-
ing been recently validated. In both cases, a causal link 
has been found between heterozygous, predominantly 
de novo mutations and distinctive developmental syn-
dromes [25–27]. Here we present another example 
of how the IMPC data resource can be combined with 
other sources of evidence to develop a tailored approach 
for disease-gene discovery and variant prioritisation to 
assist the diagnosis of inherited metabolic disorders.

The requirement of a gene for the survival of an organ-
ism, i.e. gene essentiality, can be disaggregated into more 
granular categories/WoL according to the embryonic 
period during which lethality occurs. In the present 
study, we show that these categories correlate with differ-
ent gene features, including gene expression across devel-
opment and intolerance to LoF variation. Higher levels of 
gene expression among cellular essential genes compared 
to non-essential genes have been previously reported 
across developmental stages [84]. Human embryonic 
gene expression data, integrated with other gene features 
has been used to identify essential genes, suggesting that 
gene-specific expression changes during early develop-
ment could be particularly relevant [65]. Importantly, 
housekeeping genes, defined as those genes being sta-
bly expressed irrespective of tissue and developmental 
stage, are not necessarily essential, and the genes that are 
both essential and invariably expressed may differ across 
organisms [85]. Additionally, the distribution of singleton 
and duplicated genes across these WoL supports hypoth-
eses about the ability of paralogues for functional com-
pensation at the cellular level [86]. EL genes are more 
likely to be singletons, and when paralogues exist, they 
tend to have originated earlier, suggesting more time to 
evolve new and/or distinct functions [66, 67]. Paralogue 
functional compensation is not a universal ability, and 
physical and functional dependencies of the paralogues 
could reduce their buffering capacity [87]. Studies of syn-
thetic lethality between paralogue pairs suggest which 
gene features may be associated with the ability to com-
pensate for each other’s function [88].

By looking at different features of human ortholo-
gous disease genes across the WoL, two observations 
stand out. First, the set of lethal genes in the mouse is 
enriched for Mendelian disease genes [24], but the pro-
portion of genes associated with disease is not consist-
ent across WoL with this enrichment mainly driven by 
LL genes. The lower proportion of disease genes among 
the EL compared to LL genes was previously reported 
when comparing cellular lethal with developmental lethal 
genes [25], as well as other categorisations of essential 
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genes [47, 89]. Second, we identified a strong association 
between EL genes and inherited metabolic disorders. 
This includes genes that are needed to maintain the met-
abolic machinery required to provide energy and basic 
components for cell survival. Most of the EL lines die 
prior to implantation or gastrulation, and differentiation 
into disease-associated tissues occurs at a later stage. This 
could explain why non-metabolic disease categories are 
underrepresented among the set of EL genes.

Building on this finding, we focused on the EL genes 
and gathered additional information on similarity with 
known disease genes associated with BIEM disorders. It 
is already known that members of paralogous gene fami-
lies where one gene is associated with human disease are 
more likely to be associated with Mendelian disorders 
themselves [90]. Similarly, disease-associated variants are 
enriched at sites conserved among paralogues [91, 92]. 
We used these and other observations to identify the EL 
genes showing most similarity to existing BIEM genes 
and, hence, most likely to be novel BIEM disease genes.

Inherited metabolic disorders comprise a large group 
of ~1450 disorders in which the primary alteration of a 
biochemical pathway leads to a set of biochemical, clini-
cal and/or pathophysiological features [93]. The majority 
manifest in new-borns, show predominantly neurological 
manifestations and can lead to sudden premature death 
[94]. By investigating patients recruited under this dis-
ease category from the 100KGP and looking at human 
orthologues of EL genes in the mouse for evidence of 
enrichment of biallelic LoF or predicted pathogenic mis-
sense variants, we were able to identify a set of candidate 
genes where the heterozygous knockout mouse mim-
icked some neurological and/or metabolic phenotypes 
observed in patients.

Two of the genes identified through our analysis, COQ3 
and CDK12, belong to pathways and extended gene fami-
lies associated with similar disorders, which strongly sup-
ports their involvement in the disease process. Further 
functional characterisation of these and other predicted 
pathogenic variants, together with the identification of 
additional probands with biallelic variants segregating 
with similar phenotypes, is still needed to establish a 
causal link, and to confirm that the candidate LoF vari-
ants result in the lack of protein product and/or have a 
discernible clinical phenotypic effect.

The approach described here is based on the prem-
ise that biallelic LoF in a gene leads to early embryonic 
lethality in mice but that biallelic LoF or missense vari-
ants in humans lead to recessively inherited metabolic 
disorders with related phenotypes in humans. In fact, 
for the four highlighted candidate genes identified in the 
GEL cohort, it is the heterozygous mouse model which is 
mimicking the phenotypes observed in patients carrying 

biallelic mutations. This somehow counterintuitive 
observation has been reported for other IEM disorders 
[95, 96]. Most metabolic disorders represent a spectrum 
of phenotypes. According to OMIM clinical records, 
more than a third of BIEM genes are associated with 
lethality before or soon after birth, indicating that a con-
siderable proportion of these conditions in humans are 
life threatening, leading to early death if untreated. And 
this proportion is likely an underestimation, given the 
limited sources of genes linked to prenatal and neonatal 
lethality in humans. Consistent with this observation, 
several genes in the same pathway or gene family of our 
candidate genes (COQ2, COQ4, COQ9, PDSS2) [97–100] 
have been associated with early lethality in humans.

Comparing lethality outcomes between mouse and 
human presents several limitations. Monoallelic muta-
tions required for early development (dominant lethals) 
are missing from our set of mouse embryonic lethal 
knockouts since they would not result in lines, introduc-
ing a bias towards recessive lethal genes. Similarly, while 
in the mouse knockouts the observed phenotype is most 
likely due to the loss of protein function, other types of 
mutation may lead to different molecular mechanisms 
and thus different phenotypic outcomes. True loss of 
protein function in these genes may be early embryonic 
lethal in humans whereas postnatal phenotypes could be 
caused by hypomorphic variants leading to partial LoF 
[101, 102]. Other explanations include potential mecha-
nisms of compensation through other genes in the path-
way in humans or differences in essentiality between 
the two species. Given the number of genes associated 
with lethality in the mouse (35% of the knockout lines 
are classified as lethal or subviable according to IMPC 
primary viability screening) [24, 25], monogenic factors 
could explain a proportion of the high and often under-
stated level of occurrence of miscarriages in human [72, 
103]. This, together with the potential lack of molecular 
diagnosis for confirmed miscarriages, leads to an under-
estimation in current disease databases of embryonic 
lethality as a Mendelian phenotype [104]. Even when 
gene essentiality does not perfectly correlate between 
the two species, the set of lethal genes in the mouse pro-
vides knowledge on the molecular functions and biologi-
cal processes [105] and constitutes an invaluable resource 
to identify relevant genes in humans, including those 
for which LoF variation may lead to pregnancy loss and 
other severe phenotypes with an early manifestation [47].

In summary, the embryonic stage at which lethality 
occurs in the mouse can be used to inform human dis-
ease. Several intolerance to variation scores inferred from 
human population sequencing data and a broad set of 
gene features estimate the predicted probability of a gene 
underlying AR conditions. Our target was a particular 
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subgroup of those genes, associated with BIEM disorders, 
and in this context our approach outperformed other 
potential strategies based on existing metrics (Additional 
file 1: Tables S6-S7). Integration of multi-species datasets 
and the extended use of standardised phenotypes is key 
to building novel Mendelian gene discovery approaches 
[3, 106]. This, coupled with the availability of data from 
large-scale sequencing programmes that allow for 
bespoke computational and statistical analysis for vari-
ant prioritisation, constitutes a powerful instrument for 
increasing the molecular diagnostic rate [17]. Addition-
ally, the set of genes essential for embryonic develop-
ment in the mouse may constitute an additional source of 
evidence for diagnosis of lethal foetal disorders [47, 107, 
108]. Whether this is the only observable outcome or the 
most extreme phenotype within a wider range of clinical 
features observed in patients, it will be crucial to cata-
logue these genes. Several efforts are being made in this 
area. The foetal medicine community and ontologists are 
currently working to extend the HPO to cover the pre-
natal phenotypic manifestations of disease, and including 
data on the time course of these manifestations, includ-
ing death will allow further comparisons between mouse 
and human phenotypes and discrimination between pre-
natal and postnatal phenotypes [109]. Additionally, we 
are collating all the information available from OMIM 
clinical records [6] and the literature to catalogue Men-
delian disease genes into lethality categories.

Conclusions
We have shown cross-species data integration and gene 
similarity approaches can complement other strategies 
to identify novel genes underlying Mendelian conditions. 
In particular, information on knockout mouse embryo 
lethality can be used to prioritise candidate genes asso-
ciated with particular types of disorders. Access to 
unsolved cases from rare disease genome sequencing 
programmes allows the screening of those genes for 
potentially pathogenic variants that will hopefully lead to 
a diagnosis and potentially new treatment options.
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