2,486 research outputs found

    The magnetic dipole transitions in the (cbˉ)(c\bar{b}) binding system

    Full text link
    The magnetic dipole transitions between the vector mesons BcB_c^* and their relevant pseudoscalar mesons BcB_c (BcB_c, BcB_c^*, Bc(2S)B_c(2S), Bc(2S)B_c^*(2S), Bc(3S)B_c(3S) and Bc(3S)B_c^*(3S) etc, the binding states of (cbˉ)(c\bar{b}) system) of the BcB_c family are interesting. To see the `hyperfine' splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (cbˉ)(c\bar{b}) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson BcB_c^* mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons BcB_c accordingly. Considering the possibility to observe the vector mesons via the transitions at Z0Z^0 factory and the potentially usages of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. precisely to calculate the rates for the transitions such as decays BcBcγB_c^*\to B_c\gamma and BcBce+eB_c^*\to B_c e^+e^-, and particularly work in the Behte-Salpeter framework. In the estimate, as a typical example, we carefully investigate the dependance of the rate Γ(BcBcγ)\Gamma(B_c^*\to B_c\gamma) on the mass difference ΔM=MBcMBc\Delta M=M_{B_c^*}-M_{B_c} as well.Comment: 10 pages, 2 figures, 1 tabl

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    A search for chameleon particles using a photon regeneration technique

    Full text link
    We report the first results from the GammeV search for chameleon particles, which may be created via photon-photon interactions within a strong magnetic field. Chameleons are hypothesized scalar fields that could explain the dark energy problem. We implement a novel technique to create and trap the reflective particles within a jar and to detect them later via their afterglow as they slowly convert back into photons. These measurements provide the first experimental constraints on the couplings of chameleons to photons.Comment: 4 pages, 3 figures, accepted to PRL, minor revisions to introduction and a more quantitative estimate of reflection conditio

    A fast Monte Carlo algorithm for site or bond percolation

    Full text link
    We describe in detail a new and highly efficient algorithm for studying site or bond percolation on any lattice. The algorithm can measure an observable quantity in a percolation system for all values of the site or bond occupation probability from zero to one in an amount of time which scales linearly with the size of the system. We demonstrate our algorithm by using it to investigate a number of issues in percolation theory, including the position of the percolation transition for site percolation on the square lattice, the stretched exponential behavior of spanning probabilities away from the critical point, and the size of the giant component for site percolation on random graphs.Comment: 17 pages, 13 figures. Corrections and some additional material in this version. Accompanying material can be found on the web at http://www.santafe.edu/~mark/percolation

    Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population

    Get PDF
    In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today's trans-Neptunian object (TNO) populations. The cold classical TNOs are ultra-red, while the dynamically excited "hot" population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both with inclinations i >30 degrees, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 +/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans

    Chemical Abundance Analysis of Tucana III, the Second rr-process Enhanced Ultra-Faint Dwarf Galaxy

    Get PDF
    We present a chemical abundance analysis of four additional confirmed member stars of Tucana III, a Milky Way satellite galaxy candidate in the process of being tidally disrupted as it is accreted by the Galaxy. Two of these stars are centrally located in the core of the galaxy while the other two stars are located in the eastern and western tidal tails. The four stars have chemical abundance patterns consistent with the one previously studied star in Tucana III: they are moderately enhanced in rr-process elements, i.e. they have + \approx +0.4 dex. The non-neutron-capture elements generally follow trends seen in other dwarf galaxies, including a metallicity range of 0.44 dex and the expected trend in α\alpha-elements, i.e., the lower metallicity stars have higher Ca and Ti abundance. Overall, the chemical abundance patterns of these stars suggest that Tucana III was an ultra-faint dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is the case for the one other galaxy dominated by rr-process enhanced stars, Reticulum II, Tucana III's stellar chemical abundances are consistent with pollution from ejecta produced by a binary neutron star merger, although a different rr-process element or dilution gas mass is required to explain the abundances in these two galaxies if a neutron star merger is the sole source of rr-process enhancement.Comment: 18 pages, 10 figures; accepted by Ap

    Measurement of the Strong Coupling Constant from Inclusive Jet Production at the Tevatron pˉp\bar pp Collider

    Get PDF
    We report a measurement of the strong coupling constant, αs(MZ)\alpha_s(M_Z), extracted from inclusive jet production in ppˉp\bar{p} collisions at s=\sqrt{s}=1800 GeV. The QCD prediction for the evolution of αs\alpha_s with jet transverse energy ETE_T is tested over the range 40<ETE_T<450 GeV using ETE_T for the renormalization scale. The data show good agreement with QCD in the region below 250 GeV. In the text we discuss the data-theory comparison in the region from 250 to 450 GeV. The value of αs\alpha_s at the mass of the Z0Z^0 boson averaged over the range 40<ETE_T<250 GeV is found to be αs(MZ)=0.1178±0.0001(stat)0.0095+0.0081(exp.syst)\alpha_s(M_{Z})= 0.1178 \pm 0.0001{(\rm stat)}^{+0.0081}_{-0.0095}{\rm (exp. syst)}. The associated theoretical uncertainties are mainly due to the choice of renormalization scale (^{+6%}_{-4%}) and input parton distribution functions (5%).Comment: 7 pages, 3 figures, using RevTeX. Submitted to Physical Review Letter

    Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields

    Get PDF
    Measurements of the physical properties of accretion disks in active galactic nuclei are important for better understanding the growth and evolution of supermassive black holes. We present the accretion disk sizes of 22 quasars from continuum reverberation mapping with data from the Dark Energy Survey (DES) standard star fields and the supernova C fields. We construct continuum lightcurves with the \textit{griz} photometry that span five seasons of DES observations. These data sample the time variability of the quasars with a cadence as short as one day, which corresponds to a rest frame cadence that is a factor of a few higher than most previous work. We derive time lags between bands with both JAVELIN and the interpolated cross-correlation function method, and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new measurements include disks around black holes with masses as small as 107\sim10^7 MM_{\odot}, which have equivalent sizes at 2500\AA \, as small as 0.1\sim 0.1 light days in the rest frame. We find that most objects have accretion disk sizes consistent with the prediction of the standard thin disk model when we take disk variability into account. We have also simulated the expected yield of accretion disk measurements under various observational scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find that the number of disk measurements would increase significantly if the default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
    corecore