17 research outputs found

    Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion (Halyomorpha halys)

    Get PDF
    BACKGROUND: The Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (StÄl) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species with a rapidly expanding range in North America and Europe. In the US, it is a household pest and also caused unprecedented damage to agriculture crops. Exploring its climatic limits and estimating its potential geographic distribution can provide critical information for management strategies. METHODOLOGY/PRINCIPALS: We used direct climate comparisons to explore the climatic niche occupied by native and invasive populations of BMSB. Ecological niche modelings based on the native range were used to anticipate the potential distribution of BMSB worldwide. Conversely, niche models based on the introduced range were used to locate the original invasive propagates in Asia. Areas with high invasion potential were identified by two niche modeling algorithms (i.e., Maxent and GARP). CONCLUSIONS/SIGNIFICANCE: Reduced dimensionality of environmental space improves native model transferability in the invade area. Projecting models from invasive population back to native distributional areas offers valuable information on the potential source regions of the invasive populations. Our models anticipated successfully the current disjunct distribution of BMSB in the US. The original propagates are hypothesized to have come from northern Japan or western Korea. High climate suitable areas at risk of invasion include latitudes between 30°-50° including northern Europe, northeastern North America, southern Australia and the North Island of New Zealand. Angola in Africa and Uruguay in South America also showed high climate suitability

    Quantifying Sources of Variability in Infancy Research Using the Infant-Directed-Speech Preference

    Get PDF
    Psychological scientists have become increasingly concerned with issues related to methodology and replicability, and infancy researchers in particular face specific challenges related to replicability: For example, high-powered studies are difficult to conduct, testing conditions vary across labs, and different labs have access to different infant populations. Addressing these concerns, we report on a large-scale, multisite study aimed at (a) assessing the overall replicability of a single theoretically important phenomenon and (b) examining methodological, cultural, and developmental moderators. We focus on infants’ preference for infant-directed speech (IDS) over adult-directed speech (ADS). Stimuli of mothers speaking to their infants and to an adult in North American English were created using seminaturalistic laboratory-based audio recordings. Infants’ relative preference for IDS and ADS was assessed across 67 laboratories in North America, Europe, Australia, and Asia using the three common methods for measuring infants’ discrimination (head-turn preference, central fixation, and eye tracking). The overall meta-analytic effect size (Cohen’s d) was 0.35, 95% confidence interval = [0.29, 0.42], which was reliably above zero but smaller than the meta-analytic mean computed from previous literature (0.67). The IDS preference was significantly stronger in older children, in those children for whom the stimuli matched their native language and dialect, and in data from labs using the head-turn preference procedure. Together, these findings replicate the IDS preference but suggest that its magnitude is modulated by development, native-language experience, and testing procedure

    Arbuscular mycorrhiza symbiosis in viticulture: a review

    No full text
    International audienceAbstractViticulture is a major worldwide economic sector with a vine area of 7.52 million ha, wine production of 288 Mhl, and wine exports of 26 billion euros. Nevertheless, viticulture has to adapt to new challenges of pest management, such as pesticide reduction, and climate change, such as increasing droughts. Viticulture adaptation can benefit from arbuscular mycorrhiza, a plant–fungus symbiosis. Here, we review the ecosystemic services of arbuscular mycorrhiza for grapevine production. The major points are the following: (1) arbuscular mycorrhiza fungi increase grapevine growth and nutrition by a better access to soil nutrients and by activating the regulation of plant transport proteins for phosphorus (P), nitrogen (N), and other elements. (2) Arbuscular mycorrhiza fungi increase the tolerance to abiotic stresses such as water stress, soil salinity, iron chlorosis, and heavy metal toxicity. (3) Arbuscular mycorrhiza fungi protect against biotic stresses such as root diseases. (4) Arbuscular mycorrhiza fungi produce glycoproteins and a dense hyphal network that increases soil stability and save soil nutrients up to 14 % of the grape production income. (5) P fertilisation reduces mycorhization. (6) Using herbaceous plants as cover crops favors arbuscular mycorrhiza fungi

    Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses

    Get PDF
    Climate change is expected to bring longer periods of drought and this may affect the plant’s ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant’s jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine—but not serine—protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance
    corecore