88 research outputs found

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Application of infrared thermography in computer aided diagnosis

    Get PDF
    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care

    Young Chinese Children\u27s Remote Peer Interactions and Social Competence Development during the COVID-19 Pandemic

    No full text
    The COVID-19 pandemic has changed the way young children engage in peer communication. The aim of this study was to explore how young children engaged in peer interaction remotely by examining young children\u27s multimodal interactions during the pandemic. Visual and audio data posted to Douyin (China\u27s most popular live-streaming site) between January 23, 2020 and May 6, 2020 were collected and analyzed. Mediated discourse analysis was used to explore young children\u27s remote interactions as captured on video recordings. Results support the critical role of play materials and tangible tools in mediating young children\u27s peer interactions and participation in remote environments

    Attenuation of Experimental Autoimmune Myocarditis by si-RNA Mediated CD40 Silencing

    No full text

    Preparation, Characterization, and Inhibition of Hyaluronic Acid Oligosaccharides in Triple-Negative Breast Cancer

    No full text
    Hyaluronic acid (hyaluronan, HA) is a critical component of the extracellular matrix and plays an important biological function of interacting with different molecules and receptors. In this study, both odd- and even-numbered HA oligosaccharides (HAOs) with specific degrees of polymerization (DP) were prepared by different hydrochloric acid hydrolyses, and their structures were characterized by means of HPLC, ESI-MS, and NMR. The data show that the odd-numbered HAOs (DP3-11) have a glucuronic acid reducing end, while the even-numbered HAOs (DP2-10) have an N-acetylglucosamine reducing end. Biological evaluations indicated that all HAOs significantly inhibited the growth and migration of triple-negative breast cancer (TNBC) MDA-MB-231 cells. Among these oligosaccharides, the HA tetrasaccharide (DP4) was confirmed to be the minimum fragment necessary to inhibit MDA-MB-231 cells. Our data suggest that HAOs have potential value in the treatment of TNBC
    • …
    corecore