37 research outputs found

    Stability analysis of digital microwave power amplifiers

    Get PDF
    This work presents a stability analysis of microwave power amplifiers (PAs) driven by binary pulse trains, as in the case of class-S PAs. First, using a simplified digital PA test bench in class-D configuration, different qualitative behaviors are obtained when varying the pulsewidth, including subharmonic and incommensurable oscillations. The mechanisms affecting the stability properties are studied with a harmonic balance-based formulation, by means of pole-zero identification and bifurcation detection. A sufficiently high number of harmonic components must be considered, together with the Krylov decomposition for an efficient computation of the inverse of the Jacobian matrix. It is demonstrated that, when varying the pulsewidth, the distinct pairs of complex-conjugate poles may shift to the right-hand side of the complex plane and, therefore, lead to different kinds of unstable behavior. This phenomenon is related to the dependence of the critical poles on the average value of the input signal. Boundaries of the various types of unstable behavior are traced in the plane defined by the pulse repetition rate and pulsewidth, using bifurcation detection techniques. All the predicted phenomena have been confirmed experimentally. In a second step, the algorithms derived from the simple class-D circuit are transferred to study the stability of a more complex tri-band class-S amplifier. It has been analyzed versus the input bitrate, obtaining a fully stable behavior that has been validated experimentally.This work has been supported by the Spanish Government under contract TEC2014-60283-C3-1-R, the European Regional Development Fund (ERDF/FEDER) and the Parliament of Cantabria (12.JP02.64069)

    Health benefits of microalgae and their microbiomes

    Get PDF
    Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro- and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.publishedVersio

    Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture

    Get PDF
    [EN] Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch culturesSIThis work was funded by Biotechnology and Biological Sciences Research Council Grant BB/F003439/1, ERA-NET SysMO Project GEN2006-27745-E/SYS Grant P-UK-01-11-3i, and Research Council of Norway Project 181840/I30. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact

    Global non-axisymmetric perturbation configurations in a composite disc system with an isopedic magnetic field: relation between dark matter halo and magnetic field

    Full text link
    We study global non-axisymmetric stationary perturbations of aligned and unaligned logarithmic spiral configurations in an axisymmetric composite differentially rotating disc system of scale-free stellar and isopedically magnetized gas discs coupled by gravity. The gas disc is threaded across by a vertical magnetic field BzB_z with a constant dimensionless isopedic ratio λ2πGΣ(g)/Bz\lambda\equiv 2\pi\sqrt{G} \Sigma^{(g)}/B_z of surface gas mass density Σ(g)\Sigma^{(g)} to BzB_z with GG being the gravitational constant. Our exploration focuses on the relation between λ\lambda and the dark matter amount represented by a ratio fΦˉ/Φf\equiv\bar{\Phi}/\Phi in order to sustain stationary perturbation configurations, where Φˉ\bar{\Phi} is the gravitational potential of a presumed axisymmetric halo of dark matter and Φ\Phi is the gravitational potential of the composite disc matter. High and low λ\lambda values correspond to relatively weak and strong magnetic fields given the same gas surface mass density, respectively. The main goal of our model analysis is to reveal the relation between isopedic magnetic fields and dark matter halo in spiral galaxies with globally stationary perturbation configurations. Our results show that, fairly strong yet realistic magnetic fields require a considerably larger amount of dark matter in aligned and unaligned cases than weak or moderate magnetic field strengths. We discuss astrophysical and cosmological implications of our findings. For examples, patterns and pattern speeds of galaxies may change during the course of galactic evolution. Multiple-armed galaxies may be more numerous in the early Universe. Flocculent galaxies may represent the transitional phase of pattern variations in galaxies.Comment: 21 pages, 5 figures, accepted for publication in MNRA

    Vulnerable plaques and patients: state-of-the-art

    Get PDF
    Despite advanced understanding of the biology of atherosclerosis, coronary heart disease remains the leading cause of death worldwide. Progress has been challenging as half of the individuals who suffer sudden cardiac death do not experience premonitory symptoms. Furthermore, it is well-recognized that also a plaque that does not cause a haemodynamically significant stenosis can trigger a sudden cardiac event, yet the majority of ruptured or eroded plaques remain clinically silent. In the past 30 years since the term 'vulnerable plaque' was introduced, there have been major advances in the understanding of plaque pathogenesis and pathophysiology, shifting from pursuing features of 'vulnerability' of a specific lesion to the more comprehensive goal of identifying patient 'cardiovascular vulnerability'. It has been also recognized that aside a thin-capped, lipid-rich plaque associated with plaque rupture, acute coronary syndromes (ACS) are also caused by plaque erosion underlying between 25% and 60% of ACS nowadays, by calcified nodule or by functional coronary alterations. While there have been advances in preventive strategies and in pharmacotherapy, with improved agents to reduce cholesterol, thrombosis, and inflammation, events continue to occur in patients receiving optimal medical treatment. Although at present the positive predictive value of imaging precursors of the culprit plaques remains too low for clinical relevance, improving coronary plaque imaging may be instrumental in guiding pharmacotherapy intensity and could facilitate optimal allocation of novel, more aggressive, and costly treatment strategies. Recent technical and diagnostic advances justify continuation of interdisciplinary research efforts to improve cardiovascular prognosis by both systemic and 'local' diagnostics and therapies. The present state-of-the-art document aims to present and critically appraise the latest evidence, developments, and future perspectives in detection, prevention, and treatment of 'high-risk' plaques occurring in 'vulnerable' patients

    Cross-National Measurement Invariance of the Teacher and Classmate Support Scale

    Get PDF
    The cross-national measurement invariance of the teacher and classmate support scale was assessed in a study of 23202 Grade 8 and 10 students from Austria, Canada, England, Lithuania, Norway, Poland, and Slovenia, participating in the Health Behaviour in School-aged Children (HBSC) 2001/2002 study. A multi-group means and covariance analysis supported configural and metric invariance across countries, but not full scalar equivalence. The composite reliability was adequate and highly consistent across countries. In all seven countries, teacher support showed stronger associations with school satisfaction than did classmate support, with the results being highly consistent across countries. The results indicate that the teacher and classmate support scale may be used in cross-cultural studies that focus on relationships between teacher and classmate support and other constructs. However, the lack of scalar equivalence indicates that direct comparison of the levels support across countries might not be warranted

    The dynamic architecture of the metabolic switch in Streptomyces coelicolor

    Get PDF
    [EN] Background: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.Results: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.Conclusions: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological settingSIWe are very grateful to Mervyn Bibb for his generous support with the Affymetrix custom microarray design. We acknowledge the excellent technical help of K. Klein, S. Poths, M. Walter, A. Øverby and E. Hansen. This project was supported by grants of the ERA-NET SySMO Project [GEN2006-27745-E/SYS]: (P-UK-01-11-3i) and the Research Council of Norway [project no. 181840/I30

    Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obsessive-compulsive disorder (OCD) is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome) or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome), suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients.</p> <p>Methods</p> <p>We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA).</p> <p>Results</p> <p>No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients.</p> <p>Conclusions</p> <p>Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD.</p
    corecore