305 research outputs found

    Dual Purpose Lyot Coronagraph Masks for Simultaneous High-Contrast Imaging and High-Resolution Wavefront Sensing

    Full text link
    Directly imaging Earth-sized exoplanets with a visible-light coronagraph instrument on a space telescope will require a system that can achieve 1010\sim10^{-10} raw contrast and maintain it for the duration of observations (on the order of hours or more). We are designing, manufacturing, and testing Dual Purpose Lyot coronagraph (DPLC) masks that allow for simultaneous wavefront sensing and control using out-of-band light to maintain high contrast in the science focal plane. Our initial design uses a tiered metallic focal plane occulter to suppress starlight in the transmitted coronagraph channel and a dichroic-coated substrate to reflect out-of-band light to a wavefront sensing camera. The occulter design introduces a phase shift such that the reflected channel is a Zernike wavefront sensor. The dichroic coating allows higher-order wavefront errors to be detected which is especially critical for compensating for residual drifts from an actively-controlled segmented primary mirror. A second-generation design concept includes a metasurface to create polarization-dependent phase shifts in the reflected beam, which has several advantages including an extended dynamic range. We will present the focal plane mask designs, characterization, and initial testing at NASA's High Contrast Imaging Testbed (HCIT) facility.Comment: To appear in the Proceedings of the SPIE, Techniques and Instrumentation for Detection of Exoplanets X

    A role for insulator elements in the regulation of gene expression response to hypoxia

    Get PDF
    Hypoxia inducible factor (HIF) up-regulates the transcription of a few hundred genes required for the adaptation to hypoxia. This restricted set of targets is in sharp contrast with the widespread distribution of the HIF binding motif throughout the genome. Here, we investigated the transcriptional response of GYS1 and RUVBL2 genes to hypoxia to understand the mechanisms that restrict HIF activity toward specific genes. GYS1 and RUVBL2 genes are encoded by opposite DNA strands and separated by a short intergenic region (~1 kb) that contains a functional hypoxia response element equidistant to both genes. However, hypoxia induced the expression of GYS1 gene only. Analysis of the transcriptional response of chimeric constructs derived from the intergenic region revealed an inhibitory sequence whose deletion allowed RUVBL2 induction by HIF. Enhancer blocking assays, performed in cell culture and transgenic zebrafish, confirmed the existence of an insulator element within this inhibitory region that could explain the differential regulation of GYS1 and RUVBL2 by hypoxia. Hence, in this model, the selective response to HIF is achieved with the aid of insulator elements. This is the first report suggesting a role for insulators in the regulation of differential gene expression in response to environmental signals

    Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction

    Get PDF
    The transcriptional response driven by Hypoxia-inducible factor (HIF) is central to the adaptation to oxygen restriction. Hence, the complete identification of HIF targets is essential for understanding the cellular responses to hypoxia. Herein we describe a computational strategy based on the combination of phylogenetic footprinting and transcription profiling meta-analysis for the identification of HIF-target genes. Comparison of the resulting candidates with published HIF1a genome-wide chromatin immunoprecipitation indicates a high sensitivity (78%) and specificity (97.8%). To validate our strategy, we performed HIF1a chromatin immunoprecipitation on a set of putative targets. Our results confirm the robustness of the computational strategy in predicting HIF-binding sites and reveal several novel HIF targets, including RE1-silencing transcription factor co-repressor (RCOR2). In addition, mapping of described polymorphisms to the predicted HIF-binding sites identified several single-nucleotide polymorphisms (SNPs) that could alter HIF binding. As a proof of principle, we demonstrate that SNP rs17004038, mapping to a functional hypoxia response element in the macrophage migration inhibitory factor (MIF) locus, prevents induction of this gene by hypoxia. Altogether, our results show that the proposed strategy is a powerful tool for the identification of HIF direct targets that expands our knowledge of the cellular adaptation to hypoxia and provides cues on the inter-individual variation in this response

    BioMagResBank

    Get PDF
    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pKa values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional 1H and 13C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions

    MASH Explorer: A Universal Software Environment for Top-Down Proteomics

    Get PDF
    Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics. MASH Explorer integrates multiple spectral deconvolution and database search algorithms into a single, universal platform which can process top-down proteomics data from various vendor formats, for the first time. It addresses the urgent need in the rapidly growing top-down proteomics community and is freely available to all users worldwide. With the critical need and tremendous support from the community, we envision that this MASH Explorer software package will play an integral role in advancing top-down proteomics to realize its full potential for biomedical research

    Clinical trial of a probiotic and herbal supplement for lung health

    Get PDF
    IntroductionDysbiosis of the gut microbiome may augment lung disease via the gut-lung axis. Proteobacteria may contribute to tissue proteolysis followed by neutrophil recruitment, lung tissue injury, and perpetuation of chronic inflammation. To study the effects of probiotics across the gut-lung axis, we sought to determine if a Lactobacillus probiotic and herbal blend was safe and well-tolerated in healthy volunteers and asthmatic patients.MethodsWe conducted a 1-month randomized, open-label clinical trial in Cork, Ireland with healthy and asthmatic patients who took the blend twice a day. The primary endpoint was safety with exploratory endpoints including quality of life, lung function, gut microbiome ecology, and inflammatory biomarkers.ResultsAll subjects tolerated the blend without adverse events. Asthmatic subjects who took the blend showed significant improvements in lung function as measured by forced expiratory volume and serum short chain fatty acid levels from baseline to Week 4. The gut microbiome of asthmatic subjects differed significantly from controls, with the most prominent difference in the relative abundance of the proteobacteria Escherichia coli. Administration of the probiotic maintained overall microbial community architecture with the only significant difference being an increase in absolute abundance of the probiotic strains measured by strain-specific PCR.ConclusionThis study supports the safety and efficacy potential of a Lactobacillus probiotic plus herbal blend to act on the gut-lung axis. However, due to the lack of a control group, a longer blinded, placebo-controlled study will be warranted to confirm the efficacy improvements observed in this trial.Clinical trial registrationhttps://clinicaltrials.gov/, identifier NCT05173168

    Sins of Omission

    Full text link
    Little is known about the relative incidence of serious errors of omission versus errors of commission. Objective : To identify the most common substantive medical errors identified by medical record review. Design : Retrospective cohort study. Setting : Twelve Veterans Affairs health care systems in 2 regions. Participants : Stratified random sample of 621 patients receiving care over a 2-year period. Main Outcome Measure : Classification of reported quality problems. Methods : Trained physicians reviewed the full inpatient and outpatient record and described quality problems, which were then classified as errors of omission versus commission. Results : Eighty-two percent of patients had at least 1 error reported over a 13-month period. The average number of errors reported per case was 4.7 (95% confidence intervals [CI]: 4.4, 5.0). Overall, 95.7% (95% CI: 94.9%, 96.4%) of errors were identified as being problems with underuse. Inadequate care for people with chronic illnesses was particularly common. Among errors of omission, obtaining insufficient information from histories and physicals (25.3%), inadequacies in diagnostic testing (33.9%), and patients not receiving needed medications (20.7%) were all common. Out of the 2,917 errors identified, only 27 were rated as being highly serious, and 26 (96%) of these were errors of omission. Conclusions : While preventing iatrogenic injury resulting from medical errors is a critically important part of quality improvement, we found that the overwhelming majority of substantive medical errors identifiable from the medical record were related to people getting too little medical care, especially for those with chronic medical conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74567/1/j.1525-1497.2005.0152.x.pd

    What role can videogames play in the COVID-19 pandemic?

    Get PDF
    Video games are often thought of as trite activities for younger generations. However, research in game studies over the last few decades have revealed that games can be valuable tools for growth and connection, particularly among older generations. Exploring the ways digital games can be used as tools for connection has gained increased attention in recent months with global quarantines as a result of COVID-19. This article reviews the research that has examined the utility of digital games for older adults, focusing specifically on the ways in which games can be tools for social connectedness and psychological healing for older adults and intergenerationally. Special focus will be placed on the role games can play for post-traumatic stress among first responders
    corecore