91 research outputs found

    Can Investor Sentiment Help Explain Stock Market Crises?

    Get PDF
    Traditional financial theory, assuming rationality and stock market prices justified by fundamentals, has failed to explain the occurrence of several large stock market crises. Theories in behavioral finance suggest stock market overvaluation, eventually leading to stock market crises, partly occur due to noise trading. In this thesis, noise is captured through investor sentiment with the purpose of investigating the relationship between stock market crises and investor sentiment. Individual investor sentiment is the general optimism or pessimism towards the present and future economy among individual investors. To proxy the individual investor sentiment Consumer Confidence Indices have been used. Results, from logit and OLS models, show that an increase in investor sentiment optimism seems to increase the probability of stock market crises occurring on four major stock markets. Further, the effect of investor sentiment explaining stock market returns seems to have been larger during the subprime mortgage crisis than during the dot-com bubble

    Are Pre-Scheduled Macroeconomic News Days Different From Other Days? – A Cross-Sectional Analysis of the Swedish Stock Market

    Get PDF
    This thesis has examined if there is any difference in the relationship between different risk factors and the cross-section of assets excess returns on the Swedish stock market between days when macroeconomic news is scheduled to be announced (announcement days) and other days (normal days). The Fama and Macbeth two-pass regression method have been used for investigating the hypothesis that announcement days are different from normal days. The main results illustrate that there is no difference between announcement days and normal days in general, but for the time period 2010-2013 there is a clear difference between the two kinds of days. On announcement days, some of the implications of the CAPM hold, which is no intercept and a positive risk premium for market risk, but on normal days the CAPM does not holds

    Shift from widespread symbiont infection of host tissues to specific colonization of gills in juvenile deep-sea mussels

    Get PDF
    The deep-sea mussel Bathymodiolus harbors chemosynthetic bacteria in its gills that provide it with nutrition. Symbiont colonization is assumed to occur in early life stages by uptake from the environment, but little is known about this process. In this study, we used fluorescence in situ hybridization to examine symbiont distribution and the specificity of the infection process in juvenile B. azoricus and B. puteoserpentis (4-21 mm). In the smallest juveniles, we observed symbionts, but no other bacteria, in a wide range of epithelial tissues. This suggests that despite the widespread distribution of symbionts in many different juvenile organs, the infection process is highly specific and limited to the symbiotic bacteria. Juveniles >= 9mm only had symbionts in their gills, indicating an ontogenetic shift in symbiont colonization from indiscriminate infection of almost all epithelia in early life stages to spatially restricted colonization of gills in later developmental stages

    Robust Tracking of a Mobile Beacon using Time Differences of Arrival with Simultaneous Calibration of Receiver Positions

    Get PDF
    Abstract-Localization based on time differences of arrival (TDOA) has turned out to be a promising approach when neither receiver positions nor the positions of signal origins are known a priori. In this paper, we consider calibration-free tracking of a mobile beacon using TDOA, i.e., the positions of the receivers are not given. We propose a probabilistic formulation using a particle filter to simultaneously localize the signal beacon and the receivers. Our method is robust against measurement outliers and incorrect initialization. This is achieved through a probabilistic sensor model for TDOA data which explicitly considers the measurement uncertainty and takes into account disproportional errors caused by measurement outliers. For the reliable initialization of the particle filter, we apply an iterative optimization approach to multiple subsets of TDOA data, where the best solution is implicitly selected by appropriate weighing of the sensor model. We verify the robustness of our approach in extensive experiments in a spacious indoor environment by an ultrasound beacon moving on various trajectories. We demonstrate that our approach ensures a proper initialization of the particle filter and provides accurate position estimates for the signal beacon and the receivers even in case of measurement outliers. Compared to position references of an optical motion capture system we achieve mean position errors below 5 centimeters

    The influence of light and Water mass on bacterial population dynamics in the Amundsen Sea Polynya

    Get PDF
    Abstract Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas) form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC). For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs). In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs). Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya

    Summer comes to the Southern Ocean: how phytoplankton shape bacterioplankton communities far into the deep dark sea

    Get PDF
    18 pages, 6 figures, 1 table, supporting information https://doi.org/10.1002/ecs2.2641During austral spring and summer, the coastal Antarctic experiences a sharp increase in primary production and a steepening of biotic and abiotic gradients that result from increased solar radiation and retreating sea ice. In one of the largest seasonally ice-free regions, the Amundsen Sea Polynya, pelagic samples were collected from 15 sites during a massive Phaeocystis antarctica bloom in 2010/2011. Along with a suite of other biotic and abiotic measurements, bacterioplankton were collected and analyzed for community structure by pyrosequencing of the 16S rRNA gene. The aims were to identify patterns in diversity and composition of heterotrophic bacterioplankton and to test mechanistic hypotheses for explaining these differences along variations in depth, water mass, phytoplankton biomass, and organic and inorganic nutrients. The overall goal was to clarify the relationship between primary producers and bacterioplankton community structure in the Southern Ocean. Results suggested that both epipelagic and mesopelagic bacterioplankton communities were structured by phytoplankton blooming in the euphotic zone. As chlorophyll a (chl-a) increased in surface waters, the abundance of surface bacterioplankton increased, but their diversity decreased. Similarity in bacterioplankton community composition between surface-water sites increased as the bloom progressed, suggesting that algal blooms may homogenize surface-water bacterioplankton communities at larger spatial scales. Below the euphotic zone, the opposite relationship was found. Mesopelagic bacterioplankton diversity increased with increasing chl-a in the overlying surface waters. This shift may be promoted by several factors including local increase in organic and inorganic nutrients from particles sinking out of the euphotic zone, an increase in niche differentiation associated with the particle flux, interactions with deep-dwelling macrozooplankton, and release from competition with primary producers. Additional multivariate analyses of bacterioplankton community structure and nutrient concentrations revealed distinct depth horizons, with bacterioplankton communities having maximum alpha and beta diversity just below the euphotic zone, while nutrient composition gradually homogenized with increasing depth. Our results provide evidence for bloom-driven (bottom-up) control of bacterioplankton community diversity in the coastal Southern Ocean and suggest mechanisms whereby surface processes can shape the diversity of bacterioplankton communities at great depthThe study was funded by the Swedish Research Council (grants to SB and LR) and the U.S. National Science Foundation through the ASPIRE project (ANT‐0839069

    The potential of regenerative agriculture to improve soil health on Gotland, Sweden

    Get PDF
    Background Regenerative agriculture has gained attention in mainstream media, academic literature, and international politics in recent years. While many practices and outcomes relate to RA, there is no uniform definition of the term, and only a few comprehensive scientific studies exist of "real-life" farms and the complexity of what is considered regenerative management and its impact on soil health. Aims This study aimed to relate the impact of single and various combinations of regenerative management practices to soil health indicators on Gotland, Sweden. Methods Soil health of 17 farm fields and six gardens was assessed on 11 farms that had applied regenerative agricultural practices for zero to 30 years. We measured a variety of physical (bulk density , infiltration rate, wet aggregate stability, root depth and abundance, penetration resistance), chemical (pH, electric conductivity, C:N ratio, total organic carbon ) and biological (earthworm abundance, active carbon, microbial biomass carbon) soil indicators. These parameters were related to regenerative practices (reduced tillage, application of organic matter , livestock integration, crop diversity, and share of legumes and perennials) through a combination of hierarchical clustering, Analysis of Variance and Tukey's tests, principal component analysis, and multiple linear regressions. Results At our study sites, the application of organic matter had a positive impact on bulk density, carbon-related parameters, wet aggregate stability, and infiltration rate, while reduced tillage and increased share of perennials combined had a positive impact on vegetation density, root abundance and depth, and wet aggregate stability. The field plots were divided into four clusters according to their management, and we found significantly higher values of total organic carbon (*), C:N (*), infiltration rate (**), and earthworm abundance (*) for crop-high-org-input, the management cluster with highest values of organic matter application and no tillage. We found significantly higher values of vegetation density (***) and root abundance (**) for perm-cover-livestock, the cluster with no tillage, integration of livestocks, and permanent cover (*** p 0.1). Conclusions We support existing knowledge on positive impacts of regenerative practices, namely, the addition of an organic amendment that improved C-related parameters, as well as the positive effects on soil structure of reduced tillage in combination with an increased share of perennials. We argue for an outcome-based, and principle-led concept of RA as a context-dependent agricultural approach

    Living on borrowed time – Amazonian trees use decade‐old storage carbon to survive for months after complete stem girdling

    Get PDF
    Nonstructural carbon (NSC) reserves act as buffers to sustain tree activity during periods when carbon (C) assimilation does not meet C demand, but little is known about their age and accessibility; we designed a controlled girdling experiment in the Amazon to study tree survival on NSC reserves. We used bomb-radiocarbon (14C) to monitor the time elapsed between C fixation and release (‘age’ of substrates). We simultaneously monitored how the mobilization of reserve C affected δ13CO2. Six ungirdled control trees relied almost exclusively on recent assimilates throughout the 17 months of measurement. The Δ14C of CO2 emitted from the six girdled stems increased significantly over time after girdling, indicating substantial remobilization of storage NSC fixed up to 13–14 yr previously. This remobilization was not accompanied by a consistent change in observed δ13CO2. These trees have access to storage pools integrating C accumulated over more than a decade. Remobilization follows a very clear reverse chronological mobilization with younger reserve pools being mobilized first. The lack of a shift in the δ13CO2 might indicate a constant contribution of starch hydrolysis to the soluble sugar pool even outside pronounced stress periods (regular mixing). © 2018 The Authors. New Phytologist © 2018 New Phytologist Trus

    Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

    Get PDF
    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45′N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5′-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry
    corecore