419 research outputs found

    High pressure study of BaFe2As2 - role of hydrostaticity and uniaxial stress

    Full text link
    We investigate the evolution of the electrical resistivity of BaFe2As2 single crystals with pressure. The samples used were from the same batch grown from self flux and showed properties that were highly reproducible. Samples were pressurised using three different pressure media: pentane-isopentane (in a piston cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces spin density wave order and favours the appearance of superconductivity, similar to what is seen in SrFe2As2.Comment: 11 page

    Neutron scattering study of transverse magnetism

    Get PDF
    In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    The Dynamics of Democracy, Development and Cultural Values

    Get PDF
    Over the past decades many countries have experienced rapid changes in their economies, their democratic institutions and the values of their citizens. Comprehensive data measuring these changes across very different countries has recently become openly available. Between country similarities suggest common underlying dynamics in how countries develop in terms of economy, democracy and cultural values. We apply a novel Bayesian dynamical systems approach to identify the model which best captures the complex, mainly non-linear dynamics that underlie these changes. We show that the level of Human Development Index (HDI) in a country drives first democracy and then higher emancipation of citizens. This change occurs once the countries pass a certain threshold in HDI. The data also suggests that there is a limit to the growth of wealth, set by higher emancipation. Having reached a high level of democracy and emancipation, societies tend towards equilibrium that does not support further economic growth. Our findings give strong empirical evidence against a popular political science theory, known as the Human Development Sequence. Contrary to this theory, we find that implementation of human-rights and democratisation precede increases in emancipative values

    Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature

    Get PDF
    Achieving the high sensitivity necessary for trace gas detection in the midinfrared mol. fingerprint region generally requires long absorption path lengths. In addn., for wider application, esp. for field measurements, compact and cryogen free spectrometers are definitely preferable. An alternative approach to conventional linear absorption spectroscopy employing multiple pass cells for achieving high sensitivity is to combine a high finesse cavity with thermoelec. (TE) cooled quantum cascade lasers (QCLs) and detectors. We have investigated the sensitivity limits of an entirely TE cooled system equipped with an .apprx.0.5 m long cavity having a small sample vol. of 0.3 l. With this spectrometer cavity enhanced absorption spectroscopy employing a continuous wave QCL emitting at 7.66 micro m yielded path lengths of 1080 m and a noise equiv. absorption of 2 * 10-7 cm-1 Hz-1/2. The mol. concn. detection limit with a 20 s integration time was found to be 6*108 mols./cm3 for N2O and 2 * 109 mols./cm3 for CH4, which is good enough for the selective measurement of trace atm. constituents at 2.2 mbar. The main limiting factor for achieving even higher sensitivity, such as that found for larger vol. multi pass cell spectrometers, is the residual mode noise of the cavity. On the other hand the application of TE cooled pulsed QCLs for integrated cavity output spectroscopy and cavity ring-down spectroscopy (CRDS) was found to be limited by the intrinsic frequency chirp of the laser. Consequently the accuracy and advantage of an abs. internal absorption calibration, in theory inherent for CRDS expts., are not achievable

    Dynamic remodeling of the plastid envelope membranes - a tool for chloroplast envelope in vivo localizations

    Get PDF
    Breuers FKH, Bräutigam A, Geimer S, et al. Dynamic remodeling of the plastid envelope membranes - a tool for chloroplast envelope in vivo localizations. Frontiers in Plant Science. 2012;3: 7.Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity. Here, we describe a novel approach to distinguish the localization of proteins between the two membranes using a straightforward approach based on live cell imaging coupled with transient expression. We base our approach on analyses of the distribution of GFP-fusions, which were aimed to verify outer envelope membrane proteomics data. To distinguish between outer envelope and inner envelope protein localization, we used AtTOC64-GFP and AtTIC40-GFP, as respective controls. During our analyses, we observed membrane proliferations and loss of chloroplast shape in conditions of protein over-expression. The morphology of the proliferations varied in correlation with the suborganellar distribution of the over-expressed proteins. In particular, while layers of membranes built up in the inner envelope membrane, the outer envelope formed long extensions into the cytosol. Using electron microscopy, we showed that these extensions were stromules, a dynamic feature of plastids. Since the behavior of the membranes is different and is related to the protein localization, we propose that in vivo studies based on the analysis of morphological differences of the membranes can be used to distinguish between inner and outer envelope localizations of proteins. To demonstrate the applicability of this approach, we demonstrated the localization of AtLACS9 to the outer envelope membrane. We also discuss protein impact on membrane behavior and regulation of protein insertion into membranes, and provide new hypotheses on the formation of stromules

    Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

    Full text link
    We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schr\"odinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure

    The antecedents of biliary cancer: a primary care case–control study in the United Kingdom

    Get PDF
    In a case–control study using a large UK primary care database, we found that non-steroidal anti-inflammatory drugs had no protective effect against biliary carcinomas (cholangiocarcinoma and gall bladder cancer). Increased risks were observed for cigarette smoking, diabetes, gallstone disease and obesity
    corecore