We discuss the experimental feasibility of quantum simulation with trapped
ion crystals, using magnetic field gradients. We describe a micro structured
planar ion trap, which contains a central wire loop generating a strong
magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above
the surface. On the theoretical side, we extend a proposal about spin-spin
interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al,
J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where
planar ion traps promise novel physics: Spin-spin coupling strengths of
transversal eigenmodes exhibit significant advantages over the coupling schemes
in longitudinal direction that have been previously investigated. With a chip
device and a magnetic field coil with small inductance, a resonant enhancement
of magnetic spin forces through the application of alternating magnetic field
gradients is proposed. Such resonantly enhanced spin-spin coupling may be used,
for instance, to create Schr\"odinger cat states. Finally we investigate
magnetic gradient interactions in two-dimensional ion crystals, and discuss
frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure