1,409 research outputs found

    Early Age Response of Jointed Plain Concrete Pavements to Environmental Loads

    Get PDF
    The behavior of jointed plain concrete pavements during the initial time period following paving provides vital information concerning how the pavement structure will perform throughout its intended life. A primary contributor to the development of stresses in pavements following paving comes from environmental conditions, particularly from differential thermal and moisture gradients throughout the pavement depth.The following study analyzes the response of a jointed plain concrete pavement structure during the period of initial concrete strength gain (first 72 hours after paving) and throughout a full cycle of seasonal conditions (first ten months after paving). The response of the pavement structure is characterized through the analysis of on-site climatic conditions, analysis of embedded strain, temperature, and moisture gages, as well as through manual field data collection.The field data collection effort conducted for this study is described in terms of an overview of the site conditions, construction parameters, instrumentation utilized and data acquisition employed. The climatic response of the pavement structure was analyzed, with particular emphasis on curling and warping.This study investigated the strain response of the pavement structure with respect to the parameters influencing strain location and magnitude. Both the early-age (the first 72-hours after paving) and the seasonal strain response with respect to spatial characteristics and level of restraint were analyzed.Based on the results from this study, the built-in construction gradient was found to be 0.7 °F/in. at the edge of the slab and negligible at midpanel. In general, the measured curvature tended to be 7 percent larger for unrestrained slabs when compared to restrained slabs. The tie and dowel bars produced a reduction in strain with changes in temperature of approximately 0.34 to 0.41 microstrain/°F at locations near the joints. The strains measured in the restrained slabs also tended to be more uniform than for the unrestrained slabs. A couple of seasonal observations were also made. The average strain at midslab was -450 microstrain in the fall and -600 microstrain in the winter with diurnal strain fluctuations being the lowest in the winter. This study also evaluated the drying shrinkage that occurred in the slab. Drying shrinkage increased drastically during the first 50 days after construction and continued through the winter but began to decrease during the spring when rain events occur more frequently

    Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes

    Full text link
    We model buoyancy-driven convection with chimneys -- channels of zero solid fraction -- in a mushy layer formed during directional solidification of a binary alloy in two-dimensions. A large suite of numerical simulations is combined with scaling analysis in order to study the parametric dependence of the flow. Stability boundaries are calculated for states of finite-amplitude convection with chimneys, which for a narrow domain can be interpreted in terms of a modified Rayleigh number criterion based on the domain width and mushy-layer permeability. For solidification in a wide domain with multiple chimneys, it has previously been hypothesised that the chimney spacing will adjust to optimise the rate of removal of potential energy from the system. For a wide variety of initial liquid concentration conditions, we consider the detailed flow structure in this optimal state and derive scaling laws for how the flow evolves as the strength of convection increases. For moderate mushy-layer Rayleigh numbers these flow properties support a solute flux that increases linearly with Rayleigh number. This behaviour does not persist indefinitely, however, with porosity-dependent flow saturation resulting in sub-linear growth of the solute flux for sufficiently large Rayleigh numbers. Finally, we consider the influence of the porosity dependence of permeability, with a cubic function and a Carmen-Kozeny permeability yielding qualitatively similar system dynamics and flow profiles for the optimal states.Comment: 20 pages, 10 figures. Changes from previous version correct typos, expand on discussion of the method including new appendix A, and minor changes to the discussion. A modified final version has been accepted for publication in the Journal of Fluid Mechanic

    Implementation of Weigh-in-Motion Data Quality Control and Real-Time Dashboard Development

    Get PDF
    State agencies have implemented weigh-in-motion (WIM) sensors for years to assess and monitor various aspects of highway commercial motor vehicle traffic. This study analyzes 3.5 years of WIM data from 33 WIM sites provided by the Indiana Department of Transportation (INDOT) and compares systematic procedures to identify WIM locations with measurement errors. The following areas are examined: WIM accuracy and precision, class 9 front axle weight, left-right front axle residual, and impact of pavement smoothing on WIM performance. The statistical distribution of Class 9 truck’s front axle weight as a performance metric is suggested for automated online software. This study also assessed the accuracy and precision of two WIM sites by direct comparison with weight data obtained at Indiana State Police certified weigh scales. A 5 month study on I-94 collected 564 static weights and found that 98% of the WIM weights were within ± 5% of the static weights. A second study on I-70 collected 262 static weights and found that 87% of the WIM weights were within ± 5% of the static weights after statistical adjustment

    Influence of Diporeia Density on Diet Composition, Relative Abundance, and Energy Density of Planktivorous Fishes in Southeast Lake Michigan

    Full text link
    The benthic amphipod Diporeia spp. is an important prey for many fish in offshore areas of the Great Lakes, but its abundance has been rapidly decreasing. To assess the influence of Diporeia availability on the food habits, relative abundance, and energetics of planktivorous fish, the diet composition, catch per unit effort (CPUE), and energy density of plantkivorous fish in southeast Lake Michigan during 2000–2001 were compared among locations with different Diporeia densities. Diporeia densities at St. Joseph, Michigan, were near 0/m2 over much of the bottom but averaged more than 3,800/m2 at Muskegon and Little Sable Point, Michigan. Consistent with these differences in Diporeia density, fish diet composition, CPUE, and energy density varied spatially. For example, alternative prey types comprised a larger fraction of the diets of bloater Coregonus hoyi, large (>100 mm total length) alewife Alosa pseudoharengus, and slimy sculpin Cottus cognatus at St. Joseph than at Muskegon and Little Sable Point. This pattern was seasonally dependent for alewives and bloaters because Diporeia were eaten mainly in June. Food biomass per stomach was not lower at St. Joseph than elsewhere, suggesting that the spatial variation in diet composition was due to greater consumption of alternative prey by fish at St. Joseph. Although slimy sculpin and bloaters were able to feed on alternative prey, the CPUE of these species at certain depths was considerably lower at St. Joseph than at Muskegon or Little Sable Point, indicating that Diporeia availability may also influence fish abundance and distribution. Finally, a link between Diporeia density and fish energetics was suggested by the comparatively low energy density of deepwater sculpin Myoxocephalus thompsonii and large alewives at St. Joseph, a result that may reflect the low energy content of other prey relative to Diporeia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141042/1/tafs0588.pd

    Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction

    Get PDF
    Multi-wavelength Near-Infrared (NIR) Tomography was utilized in this study to non-invasively quantify physiological parameters of breast tumors using direct spectral reconstruction. Frequency domain NIR measurements were incorporated with a new spectrally constrained direct chromophore and scattering image reconstruction algorithm, which was validated in simulations and experimental phantoms. Images of total hemoglobin, oxygen saturation, water, and scatter parameters were obtained with higher accuracy than previously reported. Using this spectral approach, in vivo NIR images are presented and interpreted through a series of case studies (n=6 subjects) having differing abnormalities. The corresponding mammograms and ultrasound images are also evaluated. Three of six cases were malignant (infiltrating ductal carcinomas) and showed higher hemoglobin (34–86% increase), a reduction in oxygen saturation, an increase in water content as well as scatter changes relative to surrounding normal tissue. Three of six cases were benign, two of which were diagnosed with fibrocystic disease and showed a dominant contrast in water, consistent with fluid filled cysts. Scatter amplitude was the main source of contrast in the volunteer with the benign condition fibrosis, which typically contains denser collagen tissue. The changes monitored correspond to physiological changes associated with angiogenesis, hypoxia and cell proliferation anticipated in cancers. These changes represent potential diagnostic indicators, which can be assessed to characterize breast tumors

    Exposing the Interplay Between Enzyme Turnover, Protein Dynamics and the Membrane Environment in Monoamine Oxidase B

    Get PDF
    There is an increasing realization that structure-based drug design may show improved success rates by understanding the ensemble of conformations and sub-states accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson’s disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear and routes to drugging this target would be valuable and relevant. Evidence of a radical in either the transition state or resting state of MAO-B is present throughout the literature, and is suggested to be a flavin semiquinone, a tyrosyl radical or both. Here we see evidence of a resting state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. Based on enzyme kinetic studies, enzyme variants and molecular dynamics simulations we find evidence for the crucial importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to effects on the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity, protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these drug targets

    Short-Haul Revitalization Study Final Report

    Get PDF
    A feasibility study was performed for an advanced commercial short-haul aircraft to evaluate the potential for increased service for short-haul flights that operate out of regional and community airports. An analysis of potential origin-destination markets and trip distances resulted in a seat capacity selection of 48 passengers and a design range of 600 NM. A down-select of advanced technologies resulted in a hybrid-electric propulsion system being chosen as the primary enabling technology. A conceptual design of the advanced aircraft was developed, and a mission and sizing analysis was performed, comparing variants of the advanced aircraft with different levels of electrification. Fairly aggressive levels of electrification and battery specific energy are needed for the hybridelectric architecture to realize any benefit in terms of total energy cost for the 600 NM design mission. The development and operational costs were estimated for the advanced aircraft and compared to the baseline. This analysis demonstrated the negative effect of the cost to develop the hybrid-electric technology on the eventual operating cost. A market analysis was performed to determine possible passenger demand for the advanced shorthaul aircraft. According to the market analysis, there is potential demand for such an aircraft, but not necessarily in many of the smaller regional and community airports that were the intended beneficiaries of this new aircraft concept
    • …
    corecore