1,877 research outputs found

    Vibration isolation with high thermal conductance for a cryogen-free dilution refrigerator

    Full text link
    We present the design and implementation of a mechanical low-pass filter vibration isolation used to reduce the vibrational noise in a cryogen-free dilution refrigerator operated at 10 mK, intended for scanning probe techniques. We discuss the design guidelines necessary to meet the competing requirements of having a low mechanical stiffness in combination with a high thermal conductance. We demonstrate the effectiveness of our approach by measuring the vibrational noise levels of an ultrasoft mechanical resonator positioned above a SQUID. Starting from a cryostat base temperature of 8 mK, the vibration isolation can be cooled to 10.5 mK, with a cooling power of 113 μ\muW at 100 mK. We use the low vibrations and low temperature to demonstrate an effective cantilever temperature of less than 20 mK. This results in a force sensitivity of less than 500 zN/Hz\sqrt{\mathrm{Hz}}, and an integrated frequency noise as low as 0.4 mHz in a 1 Hz measurement bandwidth

    Interactions among climate, topography and herbivory control greenhouse gas (CO2, CH4 and N2O) fluxes in a subarctic coastal wetland

    Get PDF
    High-latitude ecosystems are experiencing the most rapid climate changes globally, and in many areas these changes are concurrent with shifts in patterns of herbivory. Individually, climate and herbivory are known to influence biosphere-atmosphere greenhouse gas (GHG) exchange; however, the interactive effects of climate and herbivory in driving GHG fluxes have been poorly quantified, especially in coastal systems that support large populations of migratory waterfowl. We investigated the magnitude and the climatic and physical controls of GHG exchange within the Yukon-Kuskokwim Delta in western Alaska across four distinct vegetation communities formed by herbivory and local microtopography. Net CO2 flux was greatest in the ungrazed Carex meadow community (3.97 ± 0.58 [SE] µmol CO2 m−2 s−1), but CH4 flux was greatest in the grazed community (14.00 ± 6.56 nmol CH4 m−2 s−1). The grazed community is also the only vegetation type where CH4 was a larger contributor than CO2 to overall GHG forcing. We found that vegetation community was an important predictor of CO2 and CH4 exchange, demonstrating that variation in regional gas exchange is best explained when the effect of grazing, determined by the difference between grazed and ungrazed communities, is included. Further, we identified an interaction between temperature and vegetation community, indicating that grazed regions could experience the greatest increases in CH4 emissions with warming. These results suggest that future GHG fluxes could be influenced by both climate and by changes in herbivore population dynamics that expand or contract the vegetation community most responsive to future temperature change

    Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities

    Get PDF
    Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains. © 2009 Ermentrout et al

    Identifying Archaeological Bone via Non-Destructive ZooMS and the Materiality of Symbolic Expression: Examples from Iroquoian Bone Points.

    Get PDF
    Today, practical, functional and symbolic choices inform the selection of raw materials for worked objects. In cases where we can discern the origin of worked bone, tooth, ivory and antler objects in the past, we assume that similar choices are being made. However, morphological species identification of worked objects is often impossible due to the loss of identifying characteristics during manufacture. Here, we describe a novel non-destructive ZooMS (Zooarchaeology by Mass Spectrometry) method which was applied to bone points from Pre-Contact St. Lawrence Iroquoian village sites in southern Quebec, Canada. The traditional ZooMS technique requires destructive analysis of a sample, which can be problematic when dealing with artefacts. Here we instead extracted proteins from the plastic bags in which the points had been stored. ZooMS analysis revealed hitherto unexpected species, notably black bear (Ursus americanus) and human (Homo sapiens sapiens), used in point manufacture. These surprising results (confirmed through genomic sequencing) highlight the importance of advancing biomolecular research in artefact studies. Furthermore, they unexpectedly and exceptionally allow us to identify and explore the tangible, material traces of the symbolic relationship between bears and humans, central to past and present Iroquoian cosmology and mythology

    North American precipitation isotope (δ18O) zones revealed in time series modeling across Canada and northern United States

    Get PDF
    Delineating spatial patterns of precipitation isotopes ("isoscapes") is becoming increasingly important to understand the processes governing the modern water isotope cycle and their application to migration forensics, climate proxy interpretation, and ecohydrology of terrestrial systems. However, the extent to which these patterns can be empirically predicted across Canada and the northern United States has not been fully articulated, in part due to a lack of time series precipitation isotope data for major regions of North America. In this study, we use multiple linear regressions of CNIP, GNIP, and USNIP observations alongside climatological variables, teleconnection indices, and geographic indicators to create empirical models that predict the δ18O of monthly precipitation (δ18Oppt) across Canada and the northern United States. Five regionalization approaches are used to separate the study domain into isotope zones to explore the effect of spatial grouping on model performance. Stepwise regression-derived parameterizations quantified by permutation testing indicate the significance of precipitable water content and latitude as predictor variables. Within the Canadian Arctic and eastern portion of the study domain, models from all regionalizations capture the interannual and intraannual variability of δ18Oppt. The Pacific coast and northwestern portions of the study domain show less agreement between models and poorer model performance, resulting in higher uncertainty in simulations throughout these regions. Long-term annual average δ18Oppt isoscapes are generated, highlighting the uncertainty in the regionalization approach as it compounds over time. Additionally, monthly time series simulations are presented at various locations, and model structure uncertainty and 90% bootstrapped prediction bounds are detailed for these predictions. Key Points: Empirical models are developed to simulate 18O of monthly precipitation Precipitable water content describes the most variance in precipitation 18O Uncertainty in modeling monthly and long-term precipitation 18O is assesse

    Unique determination of “subatomic” contrast by imaging covalent backbonding

    Get PDF
    The origin of so-called “subatomic” resolution in dynamic force microscopy has remained controversial since its first observation in 2000. A number of detailed experimental and theoretical studies have identified different possible physicochemical mechanisms potentially giving rise to subatomic contrast. In this study, for the first time we are able to assign the origin of a specific instance of subatomic contrast as being due to the back bonding of a surface atom in the tip−sample junction

    Late-Glacial to Late-holocene Shifts in Global Precipitation Delta(sup 18)O

    Get PDF
    Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta(sup 18)O. Here we present a synthesis of 86 globally distributed groundwater (n 59), cave calcite (n 15) and ice core (n 12) isotope records spanning the late-glacial (defined as 50,000 to 20,000 years ago) to the late-Holocene (within the past 5000 years). We show that precipitation delta(sup 18)O changes from the late-glacial to the late-Holocene range from -7.1% (delta(sup 18)O(late-Holocene) > delta(sup 18)O(late-glacial) to +1.7% (delta(sup 18)O(late-glacial) > delta(sup 18)O(late-Holocene), with the majority (77) of records having lower late-glacial delta(sup 18)O than late-Holocene delta(sup 18)O values. High-magnitude, negative precipitation delta(sup 18)O shifts are common at high latitudes, high altitudes and continental interiors
    corecore