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Abstract

Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic
interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called
‘‘barrels’’ correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized
into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local
growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly
predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels
and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate
the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern
formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel
domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and
quantitatively even in complex and irregular domains.
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Introduction

Mechanisms underlying the attainment of the central nervous

system’s highly structured organization are varied and numerous.

The identification of developmentally regulated molecular signals

are critically important for understanding neural function as well

as fundamental processes of disease and repair. The complexity of

the details notwithstanding, it is likely that many aspects of neural

development can be understood in terms of relatively simple

operational principles that govern the specific interactions among

neurons and/or other elements, e.g., glia. Spatial patterns such as

coat markings in animal skin and colors and textures in seashells

are ubiquitous in biology, and theoretical studies have been able to

account for a remarkable variety of them using models based on

dynamical interactions among surprisingly small numbers of

factors [1–4]. In many cases, quite complex patterns can emerge

as a result of facilitatory – or positive – interactions among near-

neighbor elements and converse suppressive –, or negative –,

interactions more distally. This pattern of interaction has a long

history in sensory neuroscience starting with the classic work by

Hartline and Ratliff on lateral inhibition in the limulus retina [5]

and its extension to models of visual cortex development [6].

The rodent somatosensory cortex contains striking spatial

patterns of neuronal cell bodies and processes wherein discrete

anatomical structures in layer IV called ‘‘barrels’’ correspond

functionally with the representation of well-defined body surfaces

[7,8]. In the face area individual barrels, which are somewhat

circular in shape, are related one-to-one to individual whiskers. The

overall pattern of barrels is isomorphic with the pattern of mystacial

vibrissae, reflecting a strong influence of afferent fiber systems in

establishing the pattern (see Discussion). Viewed with cytochrome

oxidase staining, individual barrels themselves appear heteroge-

neous, with regions of intense staining separated by narrow, often

sinuous zones of less dense reactivity [9]. The cytochrome dense

regions form ‘‘subbarrel’’ domains that correspond to cyto- and

myeloarchitecture and that are enriched with thalamocortical axon

terminals [10,11]. Interestingly, subbarrels comprise a limited

number of spatial patterns, with certain patterns more likely to

appear in barrels corresponding to some whiskers than in others.

The observed patterns are highly reminiscent of canonical patterns

that populate circular domains containing diffusible media [1].

Here, we use a relatively simple model of chemoattraction and

diffusion to simulate subbarrel patterning, and we test the model’s

predictions about the effect of barrel size on the resulting patterns.

We find that predictable and sometimes quite complex subbarrel

patterns can emerge as a result of interactions occurring locally and

dynamically within the circular domain of the barrel.

Results

Cytochrome oxidase staining of individual whisker barrels

reveals that there are patterns in the innervation of thalamic axons

and that these patterns belong to only a few different classes.

Figure 1 shows an example of each of the subbarrel types classified

by [10] accompanied by an abstract representation of the pattern.

[10] denoted the patterns as as coffee bean (cb), baseball (bb),
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bull’s-eye (be) and mercedes (me). Smaller barrels and those found

in the mouse primary somatosensory cortex have either no

discernible patterns. The limited variety of patterns observed

suggests that these are not random but rather are a consequence of

some self-organizing principle such as seen in many other pattern

forming systems. Indeed, the sub-barrels strongly resemble

patterns seen on a vibrating circular drum.

There are many plausible models for pattern formation during

neural development. By way of illustration and to show the

underlying concepts, we will use a variant of the Keller-Segel [12]

equations for chemotaxis. In our formulation, we suggest that

thalamocortical axons within a single barrel undergo growth,

pruning, random motion, and chemoattraction. We suppose that

the axons or perhaps their target cells produce a chemical which

diffuses, degrades and attracts other axons. We introduce n(x,t)
which represents the density of thalamocortical axons and c(x,t)
representing the concentration of the chemoattractant. x is the

spatial position in the barrel which we take to be a disk of radius R.

The equations we analyze have the following form:

Ln(x,t)

Lt
~a{bn(x,t)zDn+2n(x,t){x+ n(x,t)+c(x,t)ð Þ ð1Þ

Lc(x,t)

Lt
~f (n(x,t)){mc(x,t)zDc+2c(x,t): ð2Þ

The parameter a represents the production of new axon branches,

{bn(x,t) is the pruning, Dn is the diffusion of the axons, and x is

degree of attraction of the chemoattractant c. Henceforth, we

assume that a~b~1 so that in absence of any interactions, the

axons uniformly fill the barrel with a density of 1. The function

f (c) is monotone increasing and represents the production of c
from the axons with density n. In simulations and analysis, we

choose it to be f (n)~bn2=(1zn2) which saturates to b as n
increases. The term {mc(x,t) is the decay of the chemoattractant

and Dc is its diffusion in the barrel. In absence of any spatial

interactions there is a homogeneous equilibrium solution,

n~1, c~f (1)=m. As this is a partial differential equation on the

disk, we must specify boundary conditions. We choose ‘‘no flux’’

conditions, that is, there is no movement of axons or chemoat-

tractant out of the barrel. Another possible choice which we

discuss later in this paper is to set the value at the boundary to be

the spatially homogeneous equilibrium state, n~1, c~f (1)=m.

Basic ideas of pattern formation
The main idea of spontaneous pattern formation is to show that

spatially homogeneous activity in a model is unstable to perturba-

tions that have a characteristic wave-length but stable to other

Figure 1. Examples of individual cytochrome oxidase stained barrels showing the four basic subbarrel patterns, illustrated schematically
to the right of the corresponding photomicrograph. See also Fig. 4 [10]. Each sub-barrel is approximately 200 mm in diameter (see text and figure 3).
doi:10.1371/journal.pcbi.1000537.g001

Author Summary

Complex spatial patterning, common in the brain as well
as in other biological systems, can emerge as a result of
dynamic interactions that occur locally within developing
structures. In rodent somatosensory cortex, groups of
neurons called ‘‘barrels’’ correspond to individual whiskers
on the contralateral face. Barrels themselves often contain
subbarrels organized into one of a few characteristic
patterns. We suggest that these so-called subbarrel
patterns arise spontaneously during development through
a pattern-forming instability. We use a simple chemotaxis
and branching model to explain the patterns and their
dependence on the size of the barrel.

Pattern Formation in Whisker Barrels
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perturbations. Thus, those in the unstable regime will grow and

produce a symmetry-breaking instability. The classic way to implement

this type of instability in biological systems is to have lateral inhibition

in the model. Equations (1–2) have lateral inhibition ‘‘hidden’’

within their structure as we will see. Imagine a small heterogeneity

in the density of thalamocortical axons, n at some spatial region

(figure 2Bi). This induces an increase in the chemoattractant, c

which draws neighboring axons up the chemical gradient. The

result is fewer axons in the immediate neighborhood around this

point (dashed arrows in figure 2Bii). Less chemoattractant is

produced since there are fewer axons. This leads to local minima in

c and thus axons move away forming secondary peaks (solid arrows,

figure 2Biii) which in turn produce secondary valleys (dashed

arrows.) The net result of these lateral interactions is a periodic

pattern in one-spatial dimension (Fig. 2C). The spatial scale of the

pattern is dependent on the diffusion of the chemoattractant, the

spread of the axons, and the degree of chemotaxis. That is, in

Figure 2C the distance between peaks is completely determined by

these physical parameters. In small domains there may be only a

single peak (or even no pattern) while in larger domains there may

be many (Figs. 2Di–Dii). In this sense, the larger domains have more

complicated patterns. The granularity of the pattern is determined

by physical and chemical properties of the elements, so that the

larger the domain, the more peaks and valleys possible. (We will

discuss this sequence of figures further in the linear stability analysis.)

Here, we have described a one-dimensional pattern. In the barrels,

the radius of the barrel plays the role of domain length, so that larger

barrels should have more peaks and thus more complex two-

dimensional patterns, corresponding to subbarrels. In the next

section, we make these intuitive arguments mathematically precise

by analyzing equations (1–2).

Linear stability theory
We assume that in equation (1), a~b~1 and in equation (2)

that m~1: We assume there are no-flux boundary conditions. This

means that (n,c)~(1,f (1)) is a spatially constant steady state

solution. We linearize the model equations about the equilibrium,

n(x,t)~1zN(x,t) and c(x,t)~f (1)zC(x,t) where (N,C) are

small perturbations. To linear order,

LN

Lt
~{NzDn+2N{x+2C

LC

Lt
~f ’(1)N{CzDc+2C:

We note that the only spatial operator in the linearized equations

is the Laplacian. Let u(x) be an eigenfunction of the Laplacian on

the barrel domain with no-flux boundary conditions with

eigenvalue {k2:

Figure 2. Basics of pattern formation in one dimension. A) Spatial interactions of the ‘‘surround inhibition’’- or ‘‘Mexican hat’’ type (Ai) and its
Fourier transform (Aii); note peaks at nonzero values of k. B) Interactions destabilize the uniform state. (Bi) small inhomogeneities (solid arrow) are
amplified (Bii) by local positive feedback (solid arrow) while neighboring regions are depressed (dashed arrows). In Biii, because of the depression,
neighboring regions are amplified (solid arrows) and their outer neighbors are in turn depressed (dashed arrows). C) Final patterned state. D) The
complexity of the pattern is determined by the size of the domain. Di) there is a minimal length scale for creating a pattern; Dii) as domain size
increases, the pattern expands to fill it; Diii) if the domain is large enough, a repeat of the pattern is inserted.
doi:10.1371/journal.pcbi.1000537.g002

Pattern Formation in Whisker Barrels
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+2u(x)~{k2u(x):

Then the general solution to the linear equations is

N(x,t)

C(x,t)

� �
~eltu(x)

{
N
{
C

 !

where l is an eigenvalue and ({N,{C)T is the corresponding

constant eigenvector for the matrix:

M(k) :~
{1{Dnk2 xk2

f ’(1) {1{Dck2

 !
: ð3Þ

If there are any values of k2 such that the real part of the

eigenvalue, l, is positive, then the homogeneous equilibrium will

be unstable, and we can expect patterns to grow that have the

basic shape of the eigenfunction, u(x). All parameters in the matrix

are positive including f ’(1). For two-dimensional matrices, a

necessary and sufficient condition for eigenvalues having negative

real parts is that the trace (sum of diagonals) be negative and the

determinant be positive. Clearly the trace is negative for all k and

the determinant is

D :~1zDnDck4{½f ’(1)x{(D{nzDc)�k2: ð4Þ

For both small and large values of k, the determinant is positive. If

xf ’(1) is smaller than DczDn, then the determinant is positive for

all k and there can be no pattern forming instability, since the

homogeneous state is always stable. However, if the chemotaxis is

large enough and the production term, f ’(1), is large, then the

term in the square brackets can be positive, and it is thus possible

for the determinant to be negative. Thus, we want to find the value

of k2 which minimizes the determinant and we want this

minimum to be negative. The minimum occurs when

k2~
1

2

xf ’(1){(DczDn)

DcDn

:~k2
c :

There are several parameters we could vary to produce an

instability. For reasons of convenience, we use the diffusion of the

chemoattractant as our main parameter and find that the

determinant vanishes when

Dc~Dnzxf ’(1){2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf ’(1)Dn

p
:~D�c :

That is, if DcwD�c then the spatially uniform state is stable and if it

is smaller than D�c , the spatially uniform state is unstable. To

simplify this even further and for use when we simulate the full

nonlinear system, we set x~Dn, so that

D�c~½f ’(1)z1{2
ffiffiffiffiffiffiffiffiffiffi
f ’(1)

p
�Dn: ð5Þ

As long as f ’(1)w1, we can find a positive value of Dc which

produces the pattern forming instability. With x~Dn and

Dc~D�c , the critical value of k2 is

k2
c~

1

Dn

ffiffiffiffiffiffiffiffiffiffi
f ’(1)

p
{1

f ’(1)z1{2
ffiffiffiffiffiffiffiffiffiffi
f ’(1)

p : ð6Þ

The larger the value of k2
c , the finer will be the pattern that arises

from the loss of stability of the uniform state. That is, for small

values of k2
c the pattern will have little spatial variation and would,

e.g., correspond to a mouse barrel. Small values of k2
c are

associated with large values of Dn; the larger is Dn, the coarser will

be the pattern. We finally note that Dn effectively sets the size of

our system: large values of Dn correspond to small domains and

small values of Dn correspond to large domains.

kc is set by the physiology, so that we can regard the ‘‘size’’ of

the barrel to be the ‘‘bifurcation parameter.’’ Since the domain

size is finite, the set of values that k can take is discrete. Thus, as

the characteristic length of the domain increases, there will be

jumps in the number of local extrema in the patterns. This is why

the pattern appears to stretch in the transition shown in

figure 2D1–3.

The form of the patterns
So far, the description of instability has been general in that we

have not made use of the shape or size of the domain (the barrels).

In this section, we state our main results which describe the

patterns one expects to form spontaneously as we decrease the

diffusivity of the chemoattractant. Recall from the previous

section, that the spatial form of the patterns is determined by

u(x), the eigenfunction for the Laplacian. In this section we

consider a simple disk-shaped region, because the solutions are

explicit. Later, we numerically compute eigenfunctions for an

irregular domain and see qualitatively similar results.

For a disk-shaped domain, it is convenient to write the

eigenvalue problem in polar coordinates, u(r,h) so that we must

solve:

L2u

Lr2
z

1

r

Lu

Lr
z

1

r2

L2u

Lh2
~{k2u

subject to no flux boundary conditions: Lu=Lr(R,h)~0: Since

u(r,h) must be 2p{periodic in h, we write u(r,h)~v(r)einh where

n~0,+1,+2, . . . and v(r) satisfies the ordinary differential

equation

r2v’’(r)zrv’(r)z(k2r2{n2)v(r)~0 ð7Þ

and v’(R)~0: (Here v’(r) denotes the derivative of v with respect

to r.) Equation (7) is Bessel’s differential equation and has solutions

that are well-defined at r~0,

v(r)~Jn(kr)

where Jn(x) is the Bessel function of the first kind of order n: We

need dv=dr to vanish at r~R the radius of the barrel. Thus, kR
must be a zero of the derivative of Jn(z). If we had chosen a

different boundary condition (such as the chemoattractant

concentration is fixed at the edge of the barrel), then instead of

v’(R)~0, we would have v(R)~0 and this would imply that kR
must be a zero of Jn(z) rather than a zero of its derivative.

Figure 3A shows the first 4 Bessel functions, orders 0–3, plotted

with respect to distance from the center of the barrel. When the

conditions at the boundary of the barrel are no flux, v’(R)~0,

Pattern Formation in Whisker Barrels
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then we are interested in the values of z such that J ’n(z)~0, that

is, the maxima and minima of the Bessel functions. If, instead, we

use fixed boundary conditions, then we are interested in the zero

crossings of the Bessel functions. Since we use no-flux conditions,

the critical value, kc and the radius of the barrel, R must be such

that kcR is one of the maxima or minima of the curves in this

figure. Recall that kc~K=
ffiffiffiffiffiffi
Dn

p
from equation (6) and K is

determined solely by the function f (n). Thus, we want KR=
ffiffiffiffiffiffi
Dn

p
to be an extreme value of one of the Bessel functions. By varying

the radius R (or equivalently, the diffusion, Dn, which is

convenient for numerical purposes), we can fix the pattern that

will arise as we lose stability of the homogeneous state. We can use

figure 3A to determine the shape of the emergent pattern. Fix

z~kcR to lie on one of the maxima or minima of the plotted

curves. The order of the curve, m, indicates the number of

maxima/minima we encounter as we move circumferentially

around the perimeter of the barrel. The number of maxima/

minima of the curve between z~0 and z~kcR indicates how

many maxima/minima will be encountered as we move radially

from the center of the barrel to its edge. The two simplest

examples to understand are the mercedes and the bullseye. Since

the order is zero for the bullseye, the pattern is rotationally

symmetric. As we move from the center outward, there will be a

peak at the center, followed by a valley, terminating with a peak at

the edge. By contrast, the mercedes is order 3. At the edge the

density of axons will show three maxima and three minima while

at the center the density is at the homogeneous state. Consider the

coffeebean. The density shows two maxima and two minima as we

traverse the circumference of the barrel with the center showing

the background density. The order of the baseball is m~1, so on

the perimeter there will be one maximum and one minimum.

However, as we move from the perimeter inward, we will

encounter a maximum between the perimeter and the center. We

remark that since the theory outlined here is linear, changing the

sign of the curves in figure 3A yields more patterns which are not

qualitatively different. However, consider the m~0 curve and the

point at the first minimum (around z~4). As plotted this curve

yields a pattern that is rotationally symmetric with a maximum

density at the center and a minimum density at the edge.

Reversing the sign of J0(z), we obtain a pattern with a minimum

in the center and a maximum at the perimeter, a ring-like pattern.

Changing the sign for patterns with mw0 is equivalent to rotating

the pattern. If kcR is smaller than the first extreme value of any of

the curves (approximately z~2 on the m~1 curve), then there can

be no patterns; this would be the case for the mouse barrels or

smaller barrels in the rat.

The patterns in Figure 3B are universal in that they emerge with

any dynamic pattern-forming mechanism; other reaction-diffusion

models or even a Hebbian learning model would produce the

same patterns at least to linear order. The stereotypy of patterns is

a consequence of the rotational symmetry of the problem; in fact,

symmetric bifurcation theory allows us to conclude that the

Figure 3. Patterns on a disk. A) Plots of the first 4 (denoted by m~0,1,2,3) Bessel functions, Jn(z) as a function of distance (z) from disk center.
Arrowheads delineate locations of dJn=dz~0, corresponding to the minimal disk size where a given pattern will first emerge. B) Three dimensional
views of the eigenfunctions showing their correspondence to the four basic subbarrel patterns. C) Mean radius of barrels containing particular
subbarrel patterns (Mo(use) = no pattern). Numbers above each bar indicate number of barrels measured. Dots within each bar indicate the
theoretical size of the barrel expected to contain that subbarrel pattern.
doi:10.1371/journal.pcbi.1000537.g003

Pattern Formation in Whisker Barrels

PLoS Computational Biology | www.ploscompbiol.org 5 October 2009 | Volume 5 | Issue 10 | e1000537



nonlinear patterns that emerge from the homogeneous state are also

universal [13]. Aside from the shapes of the patterns, how can we

test the idea that spontaneous pattern formation underlies the

subbarrel structures? As noted above, the size of the domain is a

key determinant. In Figure 3A, the zeros of the derivatives of the

Bessel functions corresponding to our four pattern classes

determine the minimal barrel sizes needed for the patterns, and

thus we can deduce a size principle from them. The coffeebean

pattern is the simplest and should occur in the smaller barrels,

whereas the bullseye is the most complex and should occur only in

the largest barrels. The mercedes and the baseball will be in

intermediately sized barrels. Finally, very small barrels should have

minimal structure and an almost uniform pattern, i.e., no sub-

barrels. From Figure 3A, we make the following size prediction:

CBvMEvBBvBE. The areas of 113 barrels were measured

(see Methods). We find that barrels containing a bullseye pattern

are the largest (133,282 mm2), and barrels containing coffeebeans

are smallest (93,361 mm2); those containing mercedes

(127,328 mm2) and baseballs (110,428 mm2) are intermediate in

area. The theory reverses the baseballs and the mercedes patterns.

We note that the mercedes pattern is distinctive and easy to

identify, whereas the baseball pattern can be confused with the

coffeebean, because both have two main lobes, the baseball being

slightly curved. Thus, it is possible that some coffeebeans were

misclassified as baseballs, and this would tend to lower the mean

area for baseball-containing barrels. Moreover, baseball-contain-

ing and mercedes-containing barrels are virtually equivalent in

size. In Figure 3C, areal measurements are transformed to

estimates of radius and plotted with respect to values predicted

from the model; values have been scaled so that the largest

simulated barrel (BE) has a radius of 200 mm, equivalent to the

average value for real barrels containing the BE pattern. Note that,

as predicted, patterns are not observed in mouse barrels

(40,496 mm2) nor are they evident in similarly small barrels in

rats corresponding to the small peri-oral sinus hairs (Land and

Erickson, 2005). Regression analysis of the five pairs of real and

theoretical radius means indicated good, trend-level correspon-

dence (p = 0.08); results were more robust when values for BB and

ME were reversed in order (p = .05).

Figure 4 shows a complete sequence of patterns formed as the

radius increases from small to large values. Beneath each figure,

we show an ordered pair (m,l) corresponding to the Bessel

function of order m and the lth zero of the derivative. We have also

labeled the patterns corresponding to the Land and Erickson

classification. Pattern (0,0) would correspond to a mouse barrel.

The pattern (1,1) would likely be degenerate case; it would appear

as a half-barrel inasmuch as the other half is devoid of axon

terminals or perhaps as an unpatterned barrel with a small local

region of axon terminals. There are other patterns that we have

not found in the sub-barrel structures, for example, the (2,2)

pattern is rather striking. There is no reason why this pattern

should not appear as a sub-barrel pattern; so far, we have not

found an example in our database of images.

Throughout this discussion, we used no-flux boundary conditions

to obtain the patterns. A similar sequence occurs with fixed

boundary conditions. In fact, it follows from the general theory of

second order linear differential equations [14], chapter 9, that there

will be a sequence of solutions that have an increasing number of

extrema as the domain size increases. Thus, there is nothing special

about our choice of conditions at the edge of the barrel.

Numerical simulations
The above analysis suggests the types of patterns that are

possible for the full non-linear system for parameters near the loss

of stability of the constant state. In this section, we numerically

solve equations (1) and (2) on a fixed radius disk and vary the

values of chemotaxis and diffusion. Figure 5A shows representative

solutions to the full nonlinear problem when the initial data is

chosen to be a small random perturbation around the homoge-

neous steady state. Clearly, the nonlinear patterns are quite similar

to those predicted from the linear analysis. Figure 5B fixes the ratio

Dc=Dn~0:3 and varies Dn~x from a large value (corresponding

to the smallest barrels) to a small value (corresponding to the

largest barrels). Numbers next to the patterns indicate a relative

size of the barrel. The resulting nonlinear patterns include all four

of the reported classes of patterns including at least two patterns

that could be considered bullseyes (labeled 5.213 and 7.538). The

mercedes (2.988), and baseball (3.536) patterns are adjacent which

is consistent with the linear prediction shown in figure 3C. The

mercedes has three-fold symmetry and for larger domains, the

model shows patterns that have five- and six-fold symmetry (4.564

and 5.590 respectively). These latter patterns were not depicted in

the linear analysis as they correspond to Bessel functions of order 5

and 6 respectively. Figures 5A,B thus show that the nonlinear

solutions are consistent with an ordering of coffeebean smallest

and bullseye largest, with mercedes and baseball in-between.

Realistic barrel shapes
For mathematical simplicity, we have treated the barrels as

disks, but real barrels have less regular shapes. A natural question

is whether the qualitative shapes of the patterns are robust to

irregularities in the actual barrel domains. In order to examine

this, we chose a specific barrel with a very clear mercedes pattern

(see figure 6A) and traced its perimeter as a series of line segments.

We exported the coordinates of the perimeter to MATLAB and

used the PDEToolBox to numerically compute the eigenvalues

and eigenfunctions of the Laplacian on this irregular domain.

Figure 6B shows two eigenfunctions along with their correspond-

ing eigenvalues chosen to have the structure of a mercedes pattern.

The disk has rotational symmetry, so that the two corresponding

eigenfunctions are just rotations of each other and have identical

eigenvalues. In the irregular domain shown here, the ‘‘rotated’’

pattern has a slightly different eigenvalue. Nevertheless, the two

eigenvalues are quite close, so we expect that the patterns that

arise will be a combination of the two patterns. Indeed, when we

we add the two eigenfunctions together we get the full pattern

shown in figure 6C which matches the experimental pattern quite

well.

Discussion

Here we demonstrate that appropriate and complex anatomical

patterns can be understood in the context of general pattern

forming mechanisms in a circular domain. Emergence of spatial

patterning is common in development, and a number of such

processes have been modeled as dynamical systems. In a classic

paper on morphogenesis, Turing [15] showed that diffusive

interactions between chemical reagents are sufficient to produce

spatial patterns. Such models have been used to explain a host of

biological patterns, including markings on seashells and animal

skins [1,4]. Patterns similar to ocular dominance stripes in visual

cortex can emerge from a relatively homogeneous substrate when

its spatially unstructured state is induced to become unstable

[6,16]. In such models, the key component required for pattern

formation is a mechanism similar to lateral inhibition, that is, local

interactions which facilitate growth/activity and distant interac-

tions which suppress it [17]. Here, we produced sub-barrel

patterns using a simple model for growth, pruning, and
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rearrangement of thalamocortical axons. These interactions were

sufficient to generate the required lateral inhibitory interactions.

As illustrated in Figure 2, such interactions can produce multiple

structured regions whose number and shape are in turn

determined by the geometry and size of the domain. Small

domains, like mouse barrels, yield a single, nearly homogeneously

organized structure whereas larger domains, similar to rat barrels

corresponding to the most densely innervated and largest facial

whiskers, can support complex patterns.

Figures 3A,4 and 5 suggest that there could be a number of

other subbarrel patterns, inasmuch as the four patterns described

here by no means exhaust all possibilities. For example, the model

shows a pattern (0,2) in Figure 4 for the zero-order Bessel function

in which there is a single dark center with a lighter surround. This

and some other patterns predicted by the theory have not been

observed in rat or mouse barrels; this may reflect additional,

specific biological constraints not captured by our simple model. In

this regard, it is interesting to speculate that more complex

patterns, e.g., four- or five-lobed ones (e.g. in figure 5), might be

visible in species such as the rabbit, capybara and brush-tailed

possum that have barrels even larger than those in rats [7,18].

There are many possible mechanisms for pattern formation.

The present model is based on chemotaxis and diffusion, though

other processes, employing chemorepulsion and/or additionally

involving activity-dependent competition for resources, are also

plausible. Here we use growing thalamocortical axons as the

fundamental, interacting elements, as virtually all empirical studies

support a central role of these afferent fibers in establishing the

basic pattern of barrels within the face area of the primary

somatosensory cortex (e.g.[19,20]). Subbarrel patterns also appear

to be organized with respect to growing thalamocortical axons,

with the patterns developing gradually and becoming recognizable

in the second week of postnatal life, after the initial in-growth of

the axons and the emergence of the larger barrel structure [11].

During this time, thalamocortical axon arbors become more

geometrically complex, progressing from a relatively simple and

Figure 4. Sequence of possible patterns assuming no-flux boundary conditions and size of the barrel as a parameter. Dark regions
correspond to highest density of thalamocortical axons. White areas correspond to density less than background. Blue labels are the named patterns
seen in the data. All barrels are drawn at the same diameter. Numbers in parentheses, (m,l), denote the order of the Bessel function, m, and its zero, l;
see figure 3A.
doi:10.1371/journal.pcbi.1000537.g004
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Figure 5. Numerical solutions to the full nonlinear equations. f (n)~5n2=(1zn2) and Dn~x. A) Numerically computed representations of the
4 standard patterns. Ai) Dn~200,Dc~35; Aii) Dn~100,Dc~18; Aiii) Dn~60,Dc~14; A4) Dn~8,Dc~2. B) Sequence of patterns with Dc~0:3Dn as
Dn decreases. Numbers next to patterns are 25=

ffiffiffiffiffiffi
Dn

p
and correspond to a dimensionless size. (Dc~150,90,70,50,30,23,20,11:).

doi:10.1371/journal.pcbi.1000537.g005

Figure 6. Irregular barrel with a mercedes pattern. (A) Image of the actual barrel showing the piecewise linear approximation of the boundary
(red). (B) Two eigenfunctions with nearby eigenvalues. (C) Superposition of two patterns in (B).
doi:10.1371/journal.pcbi.1000537.g006
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sparse branching to a dense mesh work of overlapping branches

[21]. Thus, at the time sub-barrels begin to emerge, axon density

may have attained a level that permits the types of near-distance

interactions that form the basis of the model presented here.

The mechanism(s) by which thalamocortical axons interact with

each other and with the cortical neurons themselves are largely

unknown, and our model makes no explicit assumption – or

prediction – regarding the detailed processes underlying subbarrel

formation. Indeed, our model employs only two key variables –

thalamocortical axon density and chemoattractant concentration,

though numerous morphogenetic factors involving the growth and

elaboration of axons, dendrites and synapses are almost certainly

involved in establishing the organization of cell bodies and

neuropil within each barrel. A number of molecules thought to be

important for barrel formation are themselves regulated by

neuronal activity, though at present the role of activity in the

formation of barrels or subbarrels remains unclear [22]. In this

regard, it is important to note that formation of barrels relies on

whisker-specific cues, whereas subbarrel patterns must develop

from cues common to the same whisker. Thus barrel and

subbarrel development may depend on different mechanisms. It

is nonetheless interesting that polygon-shaped structures remark-

ably similar in shape and overall spatial arrangement to barrels

can be generated by competitive interactions among outwardly

directed forces emanating from center points contained within

neighboring Dirichlet domains [23]. Taken together with the

present results, the findings suggest that, though the detailed

biological mechanisms underlying barrel formation are likely to be

varied and complex, the basic structure of the barrels and of the

patterns within them may be understood in terms of some

relatively simple dynamic processes.

One question we have not addressed in this paper is why there

are sub-barrel structures at all. The null hypothesis is that they arise

simply as a consequence of the mechanisms for axon targeting;

that is, they are epiphenomena of the growth process. They may

nonetheless provide a functional role. As the size of the barrel

becomes larger, it may be necessary to develop multiple local

circuits. [24] have found local angular tuning domains in rat

barrels. Sub-barrels may facilitate the creation of these local

circuits.

Materials and Methods

For the biological portion of this study we reanalyzed 113 rat

barrels whose subbarrel patterns were described previously (Land

and Erickson, 2005). These specimens were derived from layer 4

of the somatosensory cortex in young rats ranging in age from

postnatal day 10 (P-10) through P-16. Cortices were prepared as

tangential, in vitro slices. Slices were prepared by standard

methods. Live slices subsequently were fixed in 4% paraformal-

dehyde, sectioned at 80 mm and stained histochemically for

cytochrome oxidase (CO) (Land and Simons, 1985). Each of the

barrels chosen for the current analyses contained one of four basic

subbarrel arrangements that are recognized based upon the

pattern of CO-dark and CO-light zones. We acquired images of

CO-stained barrels with a SPOT RT digital camera (Diagnostic

Instruments, Sterling Heights, MI) using a Kodak 47B Wratten

filter and imported them into Photoshop (Adobe Systems

Incorporated, San Jose, CA). To further enhance the contrast

between CO-dark and CO-light regions, the original RGB color

images first were converted to grayscale. We then applied the

Equalize command, which finds the brightest and darkest values in

the composite image and remaps them so that the brightest value

is depicted as white and the darkest value as black. Resulting

equalized images were analyzed using Scion Image (Scion

Corporation, Frederick, MD). We used the Freehand Selection

tool to outline the perimeter of CO-stained barrels and then

exported the area data into a spreadsheet (Excel, Microsoft

Corporation, Redmond, WA) We organized the data into groups

of barrels that exhibited a particular subbarrel pattern (i.e., cb, me,

etc.) and determined the mean and standard deviation of barrel

areas associated with each pattern.

The nonlinear partial differential equations models were solved

on a 50|50 grid whose active elements were restricted to a circle

of radius 25. For simplicity, we used Euler’s method with a time

step of 0.001. The eigenfunctions of the irregular domain were

found using the PDE ToolBox from MATLAB (Protocol S1).

Supporting Information

Protocol S1 Matlab code to obtain eigenfunctions for a realistic

barrel shape.

Found at: doi:10.1371/journal.pcbi.1000537.s001 (1 KB ZIP)
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