92 research outputs found

    Delayed inhibition of an anticipatory action during motion extrapolation

    Get PDF
    Background: Continuous visual information is important for movement initiation in a variety of motor tasks. However, even in the absence of visual information people are able to initiate their responses by using motion extrapolation processes. Initiation of actions based on these cognitive processes, however, can demand more attentional resources than that required in situations in which visual information is uninterrupted. In the experiment reported we sought to determine whether the absence of visual information would affect the latency to inhibit an anticipatory action. Methods: The participants performed an anticipatory timing task where they were instructed to move in synchrony with the arrival of a moving object at a determined contact point. On 50% of the trials, a stop sign appeared on the screen and it served as a signal for the participants to halt their movements. They performed the anticipatory task under two different viewing conditions: Full-View (uninterrupted) and Occluded-View (occlusion of the last 500 ms prior to the arrival at the contact point). Results: The results indicated that the absence of visual information prolonged the latency to suppress the anticipatory movement. Conclusion: We suggest that the absence of visual information requires additional cortical processing that creates competing demand for neural resources. Reduced neural resources potentially causes increased reaction time to the inhibitory input or increased time estimation variability, which in combination would account for prolonged latency

    Morphometric properties of alternate bars and water discharge: A laboratory investigation

    Get PDF
    The formation of alternate bars in straightened river reaches represents a fundamental process of river morphodynamics that has received great attention in the last decades. It is well-established that migrating alternate bars arise from an autogenic instability mechanism occurring when the channel width-to-depth ratio is sufficiently large. While several empirical and theoretical relations are available for predicting how bar height and length depend on the key dimensionless parameters, there is a lack of direct, quantitative information about the dependence of bar properties on flow discharge. We performed a series of experiments in a long, mobile-bed flume with fixed and straight banks at different discharges. The self-formed bed topography was surveyed, different metrics were analyzed to obtain quantitative information about bar height and shape, and results were interpreted in the light of existing theoretical models. The analysis reveals that the shape of alternate bars highly depends on their formative discharge, with remarkable variations in the harmonic composition and a strong decreasing trend of the skewness of the bed elevation. Similarly, the height of alternate bars clearly decreases with the water discharge, in quantitative agreement with theoretical predictions. However, the disappearance of bars when discharge exceeds a critical threshold is not as sharp as expected due to the formation of so-called "diagonal bars". This work provides basic information for modeling and interpreting short-term morphological variations during individual flood events and long-term trajectories due to alterations of the hydrological regime

    Physical modelling of the combined effect of vegetation and wood on river morphology

    Get PDF
    The work described in this publication was supported by the European Union Seventh Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV, Contract no. 261520 (HyIV-HULL-01). The experiments have been performed thanks to the invaluable support of the Geography, Environment and Earth Sciences Department — University of Hull, in particular Stuart McLelland, Brendan Murphy, Rob Thomas, and Lucy Clarke. Diego Ravazzolo produced the wood dowels and helped in the executions of the experiments, along with Nana Osei and Sandra Zanella. The paper has benefitted from comments and suggestions by three anonymous referees

    Analysis of reach-scale elevation distribution in braided rivers: Definition of a new morphologic indicator and estimation of mean quantities

    Get PDF
    This work has been carried out within the SMART Joint Doctorate (Science forthe MAnagement of Rivers and theirTidal systems) funded with the support of the Erasmus Mundus programme of the European Union. Data of the Rees River were derived as part of UKNatural Environment Research Council grant (NE/G005427/1) awarded to PI Brasington, along with further support from the NERC Geophysical Equipmen tFacility (Loan 892) and Leverhulme Trust IAF2014-03

    Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow

    Get PDF
    Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested

    Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TMTSF)_2X organic superconductors

    Full text link
    An exhaustive investigation of metallic electronic transport and superconductivity of organic superconductors (TMTSF)_2PF_6 and (TMTSF)_2ClO_4 in the Pressure-Temperature phase diagram between T=0 and 20 K and a theoretical description based on the weak coupling renormalization group method are reported. The analysis of the data reveals a high temperature domain (T\approx 20 K) in which a regular T^2 electron-electron Umklapp scattering obeys a Kadowaki-Woods law and a low temperature regime (T< 8 K) where the resistivity is dominated by a linear-in temperature component. In both compounds a correlated behavior exists between the linear transport and the extra nuclear spin-lattice relaxation due to antiferromagnetic fluctuations. In addition, a tight connection is clearly established between linear transport and T_c. We propose a theoretical description of the anomalous resistivity based on a weak coupling renormalization group determination of electron-electron scattering rate. A linear resistivity is found and its origin lies in antiferromagnetic correlations sustained by Cooper pairing via constructive interference. The decay of the linear resistivity term under pressure is correlated with the strength of antiferromagnetic spin correlations and T_c, along with an unusual build-up of the Fermi liquid scattering. The results capture the key features of the low temperature electrical transport in the Bechgaard salts

    Seven decades of hydrogeomorphological changes in a near‐natural (Sense River) and a hydropower‐regulated (Sarine River) pre‐Alpine river floodplain in Western Switzerland

    Get PDF
    This is the peer reviewed version which has been published in final form at https://doi.org/10.1002/esp.5017 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Hydropower alteration of the natural flow and sediment regime can severely degrade hydromorphology, thereby threatening biodiversity and overall ecosystem processes of rivers and their floodplains. Using sequences of aerial images, we quantified seven decades (1938/1942–2013) of spatiotemporal changes in channel and floodplain morphology, as well as changes in the physical habitats, of three floodplain river reaches of the Swiss pre‐Alps, two hydropower‐regulated and one near‐natural. In the Sarine River floodplain, within the first decades of hydropower impairment, the magnitude and frequency of flood events (Q2, Q10, Q30) decreased substantially. As a result, the area of pioneer floodplain habitats that depend on flood activity and sediment dynamic, such as bare sediments, decreased dramatically by approximately 95%. However, by 2013 vegetated areas had generally increased in comparison to the pre‐regulation period in 1943, indicating general vegetative colonization. Between 1943 and 2013, the active channel underwent essential narrowing (up to 62% width reduction in the residual flow reach) and habitat turnover rates were very low (5% of the total floodplain area changed habitat type five to six times). In contrast, from the 1950s onwards, the near‐natural floodplain of the Sense River experienced recurrent narrowing and widening, and frequent changes between bare and vegetated areas, reflecting the shifting habitat mosaic concept typical for natural floodplains. In the three reaches investigated, we found that the active floodplain width and erosion of vegetated areas were primarily controlled by medium to large floods (Q10, Q30), which combined with reduced time intervals between ordinary floods ≄ Q2 most likely mobilized streambed sediments and limited the ability of vegetation to establish itself on bare gravel bars within the parafluvial zone. These findings can contribute to restoration action plans such as controlled flooding and sediment replenishments in the Sarine and other floodplain rivers of the Alps
    • 

    corecore