484 research outputs found

    The Transnational Wandering Jew and the Medieval English Nation

    Get PDF

    Mormon Female Gothic: Blood, Birth, and the Twilight Saga

    Get PDF

    IBC - ION BEAM CENTER

    Get PDF
    In the Ion Beam Center (IBC), various set-ups ā€“ electrostatic accelerators, ion implanters, plasma-based ion implantation equipment, low-energy ion tools, an ion microscope etc. ā€“ are combined into a unique facility for research and applications using ion beams. Almost all ions from stable chemical nuclides are available in the ion energy range from 10 eV to about 60 MeV. In addition to broad beams, also focused (down to 1 nm) and highly-charged (charge state up to 45+) ion beams, or ions extracted from a plasma can be provided. In total, the IBC operates more than 30 dedicated tools or beamline end-stations. The specific expertise of IBC is the modification and analysis of solids by energetic ions aimed to develop novel materials for information technology, electronics or energy systems. In addition, ion beam analysis techniques became of increasing importance for interdisciplinary fields like geochemistry, climate or environmental research and resources technology. Special add-on services offered ensure a successful realization of user experiments. Based on a long-term expertise, specific equipment and common commercial procedures, the IBC is strongly active in the use of ion beam techniques for industrial applications aimed to initiate valuable product innovation

    Macromolecular Structure Databases: Past Progress and Future Challenges

    Get PDF

    Nanopharmaceuticals (part 1): products on the market

    Get PDF

    Re-engineering the mitochondrial genomes in mammalian cells

    Get PDF
    Mitochondria are subcellular organelles composed of two discrete membranes in the cytoplasm of eukaryotic cells. They have long been recognized as the generators of energy for the cell and also have been known to associate with several metabolic pathways that are crucial for cellular function. Mitochondria have their own genome, mitochondrial DNA (mtDNA), that is completely separated and independent from the much larger nuclear genome, and even have their own system for making proteins from the genes in this mtDNA genome. The human mtDNA is a small (~16.5 kb) circular DNA and defects in this genome can cause a wide range of inherited human diseases. Despite of the significant advances in discovering the mtDNA defects, however, there are currently no effective therapies for these clinically devastating diseases due to the lack of technology for introducing specific modifications into the mitochondrial genomes and for generating accurate mtDNA disease models. The ability to engineer the mitochondrial genomes would provide a powerful tool to create mutants with which many crucial experiments can be performed in the basic mammalian mitochondrial genetic studies as well as in the treatment of human mtDNA diseases. In this review we summarize the current approaches associated with the correction of mtDNA mutations in cells and describe our own efforts for introducing engineered mtDNA constructs into the mitochondria of living cells through bacterial conjugation

    Triphenylarsonium-functionalised gold nanoparticles: potential nanocarriers for intracellular therapeutics.

    Get PDF
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.Two new triphenylarsonium alkylthiolate precursors, a thiosulfate zwitterion and a thioacetate salt, have been structurally characterised and their cytotoxicity evaluated against PC3 cells. The arsonium compounds have been used to prepare gold nanoparticles decorated with triphenylarsonium groups.Sheffield Hallam University and Indian Institute of Science (NL)

    Development of a heme protein structureā€“electrochemical function database

    Get PDF
    Proteins containing heme, iron(protoporphyrin IX) and its variants, continue to be one of the most-studied classes of biomolecules due to their diverse range of biological functions. The literature is abundant with reports of structural and functional characterization of individual heme proteins which demonstrate that heme protein reduction potential values, Em, span the range from ā€“550 mV to +450 mV versus SHE. In order to unite these data for the purposes of global analysis, a new web-based resource of heme protein structureā€“function relationships is presented: the Heme Protein Database (HPD). This database is the first of its kind to combine heme protein structural classifications including protein fold, heme type and heme axial ligands, with heme protein reduction potential values in a web-searchable format. The HPD is located at http://heme.chem.columbia.edu/heme.php. The data illustrate that heme protein Em values are modulated over a 300 mV range by the type of global protein fold, a 600 mV range by the type of porphyrin and an 800 mV range by the axial ligands. Thus, the 1 V range observed in heme protein reduction potential values in biological systems arises from subtle combinations of these various factors
    • ā€¦
    corecore