70 research outputs found

    Association of exposure to manganese and iron with relaxation rates R1 and R2*- magnetic resonance imaging results from the WELDOX II study

    Get PDF
    Objective Magnetic resonance imaging is a non-invasive method that allows the indirect quantification of manganese (Mn) and iron (Fe) accumulation in the brain due to their paramagnetic features. The WELDOX II study aimed to explore the influence of airborne and systemic exposure to Mn and Fe on the brain deposition using the relaxation rates R1 and R2* as biomarkers of metal accumulation in regions of interest in 161 men, including active and former welders. Material and methods We obtained data on the relaxation rates R1 and R2* in regions that included structures within the globus pallidus (GP), substantia nigra (SN), and white matter of the frontal lobe (FL) of both hemispheres, as well as Mn in whole blood (MnB), and serum ferritin (SF). The study subjects, all male, included 48 active and 20 former welders, 41 patients with Parkinson's disease (PD), 13 patients with hemochromatosis (HC), and 39 controls. Respirable Mn and Fe were measured during a working shift for welders. Mixed regression models were applied to estimate the effects of MnB and SF on R1 and R2*. Furthermore, we estimated the influence of airborne Mn and Fe on the relaxation rates in active welders. Results MnB and SF were significant predictors of R1 but not of R2* in the GP, and were marginally associated with R1 in the SN (SF) and FL (MnB). Being a welder or suffering from PD or HC elicited no additional group effect on R1 or R2* beyond the effects of MnB and SF. In active welders, shift concentrations of respirable Mn > 100 μg/m3 were associated with stronger R1 signals in the GP. In addition to the effects of MnB and SF, the welding technique had no further influence on R1. Conclusions MnB and SF were significant predictors of R1 but not of R2*, indicative of metal accumulation, especially in the GP. Also, high airborne Mn concentration was associated with higher R1 signals in this brain region. The negative results obtained for being a welder or for the techniques with higher exposure to ultrafine particles when the blood-borne concentration was included into the models indicate that airborne exposure to Mn may act mainly through MnB

    Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study

    Get PDF
    OBJECTIVE: Magnetic resonance spectroscopy (MRS) is a non-invasive method to quantify neurometabolite concentrations in the brain. Within the framework of the WELDOX II study, we investigated the association of exposure to manganese (Mn) and iron (Fe) with γ-aminobutyric acid (GABA) and other neurometabolites in the striatum and thalamus of 154 men. MATERIAL AND METHODS: GABA-edited and short echo-time MRS at 3T was used to assess brain levels of GABA, glutamate, total creatine (tCr) and other neurometabolites. Volumes of interest (VOIs) were placed into the striatum and thalamus of both hemispheres of 47 active welders, 20 former welders, 36 men with Parkinson's disease (PD), 12 men with hemochromatosis (HC), and 39 male controls. Linear mixed models were used to estimate the influence of Mn and Fe exposure on neurometabolites while simultaneously adjusting for cerebrospinal fluid (CSF) content, age and other factors. Exposure to Mn and Fe was assessed by study group, blood concentrations, relaxation rates R1 and R2* in the globus pallidus (GP), and airborne exposure (active welders only). RESULTS: The median shift exposure to respirable Mn and Fe in active welders was 23μg/m3 and 110μg/m3, respectively. Airborne exposure was not associated with any other neurometabolite concentration. Mn in blood and serum ferritin were highest in active and former welders. GABA concentrations were not associated with any measure of exposure to Mn or Fe. In comparison to controls, tCr in these VOIs was lower in welders and patients with PD or HC. Serum concentrations of ferritin and Fe were associated with N-acetylaspartate, but in opposed directions. Higher R1 values in the GP correlated with lower neurometabolite concentrations, in particular tCr (exp(β)=0.87, p<0.01) and choline (exp(β)=0.84, p=0.04). R2* was positively associated with glutamate-glutamine and negatively with myo-inositol. CONCLUSIONS: Our results do not provide evidence that striatal and thalamic GABA differ between Mn-exposed workers, PD or HC patients, and controls. This may be due to the low exposure levels of the Mn-exposed workers and the challenges to detect small changes in GABA. Whereas Mn in blood was not associated with any neurometabolite content in these VOIs, a higher metal accumulation in the GP assessed with R1 correlated with generally lower neurometabolite concentrations

    Potentiation of Epithelial Innate Host Responses by Intercellular Communication

    Get PDF
    The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection

    A 'snip' in time: what is the best age to circumcise?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves.</p> <p>Discussion</p> <p>We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used.</p> <p>Summary</p> <p>Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.</p

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals

    Get PDF
    BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209 449 variants, both common and rare, in 17 341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95 626 individuals from 23 cohorts (comprised 83 884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Low frequency acoustic and dielectric measurements on glasses

    No full text
    The acoustic and dieiectric properties of different glasses at audio frequencies and temperatures below 1 K have been investigated with the vibrating reed and a capacitance bridge technique. We found the temperature dependence of the absorption of vitreous silica (Suprasil W) to agree with the predictions of the tunneling model which is commonly used to explain the low temperature behaviour of amorphous materials. The variation of the sound velocity and of the dielectric constant, however, shows significant deviations from the expected behaviour which cannot be accounted for by a simple modification of the model. Instead, it seems to be necessary to introduce a temperature dependence of some relevant model parameters. Moreover, at very low temperatures (T<O.l K) the sound velocity strongly depends on the excitation levels. The absence of this effect at higher temperatures proves that it can be ascribed to a nonlinear response of tunneling systems. Similar results were found in sound velocity measurements on a cover glass and on a superconducting metallic glass (Pd,-Jr, T, = 2.6 K), which indicates that these features are a general aspect of the dynamics of tunneling states in glasses. In contrast to the insulating glasses we found that in Pd,oZr,, also the internal friction is strain dependent.publishe
    corecore