101 research outputs found

    Antiferromagnetic resonance in ferroborate NdFe3_3(BO3_3)$_4

    Full text link
    The AFMR spectra of the NdFe3_3(BO3_3)4_4 crystal are measured in a wide range of frequencies and temperatures. It is found that by the type of magnetic anisotropy the compound is an "easy-plane" antiferromagnet with a weak anisotropy in the basal plane. The effective magnetic parameters are determined: anisotropy fields Ha1H_{a1}=1.14 kOe and Ha2H_{a2}=60 kOe and magnetic excitation gaps Δν1\Delta\nu_1=101.9 GHz and Δν2\Delta \nu_2=23.8 GHz. It is shown that commensurate-incommensurate phase transition causes a shift in resonance field and a considerable change in absorption line width. At temperatures below 4.2 K nonlinear regimes of AFMR excitation at low microwave power levels are observed

    Dynamical Architectures Of S-Type Transiting Planets In Binaries. I. Target Selection Using Hipparcos And Gaia Proper Motion Anomalies

    Get PDF
    The effect of stellar multiplicity on planetary architecture and orbital dynamics provides an important context for exoplanet demographics. We present a volume-limited catalog of up to 300 pc of 66 stars hosting planets and planet candidates from Kepler, K2, and TESS with significant Hipparcos-Gaia proper motion anomalies, which indicates the presence of companions. We assess the reliability of each transiting planet candidate using ground-based follow-up observations, and find that the TESS Objects of Interest (TOIs) with significant proper anomalies show nearly four times more false positives due to eclipsing binaries compared to TOIs with marginal proper anomalies. In addition, we find tentative evidence that orbital periods of planets orbiting TOIs with significant proper anomalies are shorter than those orbiting TOIs without significant proper anomalies, consistent with the scenario that stellar companions can truncate planet-forming disks. Furthermore, TOIs with significant proper anomalies exhibit lower Gaia differential velocities in comparison to field stars with significant proper anomalies, suggesting that planets are more likely to form in binary systems with low-mass substellar companions or stellar companions at wider separation. Finally, we characterize the three-dimensional architecture of LTT 1445 ABC using radial velocities, absolute astrometry from Gaia and Hipparcos, and relative astrometry from imaging. Our analysis reveals that LTT 1445 is a nearly flat system, with a mutual inclination of ∼2fdg88 between the orbit of BC around A and that of C around B. This coplanarity may explain why multiple planets around LTT 1445 A survive in the dynamically hostile environments of this system

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    TESS-Keck Survey. V. Twin Sub-Neptunes Transiting The Nearby G Star HD 63935

    Get PDF
    We present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD 63935, a bright (V = 8.6 mag), Sun-like (Teff = 5560 K) star at 49 pc. TESS identified the first planet, HD 63935 b (TOI-509.01), in Sectors 7 and 34. We identified the second signal (HD 63935 c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600 ± 0.007 and 21.40 ± 0.0019 days, radii of 2.99 ± 0.14 and 2.90 ± 0.13 R⊕, and masses of 10.8 ± 1.8 and 11.1 ± 2.4 M⊕. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey\u27s efforts to choose the best targets for James Webb Space Telescope atmospheric follow-up. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6 R⊕ \u3c Rp \u3c 4 R⊕), moderately irradiated (100 F⊕ \u3c Fp \u3c 1000 F⊕) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets

    Carbamide peroxide gel stability under different temperature conditions: is manipulated formulation an option?

    Get PDF
    Nowadays the use of gel containing carbamide peroxide (CP) prepared in Pharmacy is a normal practice in the population. However, the quality of this product is questionable concerning its stability. The aim of this study is was to synthesize and to analyze this drug alone or associated to Carbopol gel through analytical methodology compatible with the routine of the Pharmacies. The reaction between urea and hydrogen peroxide was carried out at different resting times: 24 hours (CP 24 powder) and 48 hours (CP48 powder) after the mixture. Both products were associated with Carbopol 940® gel 1.5% (G) generating G24 and G48 samples. The stability of powders (CP24 e CP48) and the formulations (G24 and G48) were evaluated as a function of time (15, 40 and 45 days) and thermal variation (refrigeration: 8 °C±1; thermal shock 32 °C±1 /8 °C±1; stove: 32 °C±1), using a standard titration method. As a result, only under refrigeration the CP24 and CP48 contents remained stable during the period of 45 days. An interesting finding was that G24 and G48 presented greater stability for at least 45-days under refrigeration and thermal shock conditions, and up to 30 days under stove conditions. The results for the G24 and G48 were slightly higher than those obtained for the control. Therefore, we were able to conclude that association with Carbopol 940® Gel 1.5 % provided greater CP stability and that manipulated formulations containing CP may be viable for use in a period of 45 days under refrigeration conditions. The titration proved to be an effective technique for the analysis of CP with or without Carbopol 940® gel 1.5%.Atualmente, a utilização de gel contendo peróxido de carbamida manipulado em Farmácia é uma prática comum na população. No entanto, a qualidade deste produto é questionada, sobretudo no que se refere à estabilidade deste fármaco. O objetivo deste trabalho consiste na avaliação da viabilidade de sintetizar e analisar quantitativamente este fármaco associado ou não a um gel de Carbopol através de metodologia analítica compatível com a rotina das Farmácias. A reação entre a uréia e o peróxido de hidrogênio foi realizada em tempos diferentes de repouso após a mistura, 24 h para sintetizar o pó PC 24 e 48 h para o pó CP 48. Estes pós foram associados a um gel (G) de Carbopol 940® 1,5 %, originando as amostras G24 e G48. A estabilidade dos pós (PC 24 e PC 48) e das formulações (G 24 e G 48) foi avaliada em função do tempo (15, 40 e 45 dias) e da variação térmica (refrigeração: 8 °C±1; choque térmico: 32 °C±1/8 °C±1 e estufa: 32 °C±1), através da técnica de titulometria. Os resultados indicam que unicamente sob refrigeração o CP24 e o CP 48 mantiveram-se estáveis no período de 45 dias. O G24 e o G48 apresentaram estáveis por pelo menos 45 dias nas condições de refrigeração e choque térmico e por 30 dias na condição estufa. Os resultados obtidos para o G24 e G48 foram ligeiramente superiores aos obtidos para o controle. Além disso, é possível concluir que a associação do PC com o gel de Carbopol 940® 1,5 % promoveu um aumento na estabilidade do PC e que as preparações manipuladas contendo PC são viáveis para uso durante um período de 45 sob refrigeração. A titulometria mostrou-se uma técnica eficaz para a análise do PC associado ou não ao gel de Carbopol 940® 1,5%

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA\u27s Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here we present 20 hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program. These 20 planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9 \u3c G \u3c 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976b, the longest-period planet in our sample (P = 6.6 days), may be on a moderately eccentric orbit (e = 0.18 ± 0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hr orbit with the Rossiter–McLaughlin effect, finding the planet\u27s orbit to be well aligned with the stellar spin axis (∣λ∣ = 4 0 ± 3 5). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work
    corecore