321 research outputs found

    Small Unmanned Aerial Vehicles (Micro-UAVs, Drones) in Plant Ecology

    Get PDF
    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology

    Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario

    Get PDF
    A dynamical systems approach to competition of Saffman-Taylor fingers in a channel is developed. This is based on the global study of the phase space structure of the low-dimensional ODE's defined by the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail, and general proofs concerning properties of fixed points and existence of finite-time singularities for broad classes of solutions are given. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. The main conclusion is that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space spanning a sufficiently large set of initial conditions, are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding of them does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is discussed as the key point for a generic Dynamical Solvability Scenario which is proposed for a general context of interfacial pattern selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys. Rev.

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure

    CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations

    Full text link
    The COntractor REnormalization group (CORE) method, a new approach to solving Hamiltonian lattice systems, is presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson real-space renormalization group transformations using cluster expansion and contraction techniques. We illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferromagnetic chain, and the anisotropic Ising chain. Future applications to the Hubbard and t-J models and lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Random Matrices in 2D, Laplacian Growth and Operator Theory

    Full text link
    Since it was first applied to the study of nuclear interactions by Wigner and Dyson, almost 60 years ago, Random Matrix Theory (RMT) has developed into a field of its own within applied mathematics, and is now essential to many parts of theoretical physics, from condensed matter to high energy. The fundamental results obtained so far rely mostly on the theory of random matrices in one dimension (the dimensionality of the spectrum, or equilibrium probability density). In the last few years, this theory has been extended to the case where the spectrum is two-dimensional, or even fractal, with dimensions between 1 and 2. In this article, we review these recent developments and indicate some physical problems where the theory can be applied.Comment: 88 pages, 8 figure

    McCune-Albright syndrome

    Get PDF
    McCune-Albright syndrome (MAS) is classically defined by the clinical triad of fibrous dysplasia of bone (FD), café-au-lait skin spots, and precocious puberty (PP). It is a rare disease with estimated prevalence between 1/100,000 and 1/1,000,000. FD can involve a single or multiple skeletal sites and presents with a limp and/or pain, and, occasionally, a pathologic fracture. Scoliosis is common and may be progressive. In addition to PP (vaginal bleeding or spotting and development of breast tissue in girls, testicular and penile enlargement and precocious sexual behavior in boys), other hyperfunctioning endocrinopathies may be involved including hyperthyroidism, growth hormone excess, Cushing syndrome, and renal phosphate wasting. Café-au-lait spots usually appear in the neonatal period, but it is most often PP or FD that brings the child to medical attention. Renal involvement is seen in approximately 50% of the patients with MAS. The disease results from somatic mutations of the GNAS gene, specifically mutations in the cAMP regulating protein, Gs alpha. The extent of the disease is determined by the proliferation, migration and survival of the cell in which the mutation spontaneously occurs during embryonic development. Diagnosis of MAS is usually established on clinical grounds. Plain radiographs are often sufficient to make the diagnosis of FD and biopsy of FD lesions can confirm the diagnosis. The evaluation of patients with MAS should be guided by knowledge of the spectrum of tissues that may be involved, with specific testing for each. Genetic testing is possible, but is not routinely available. Genetic counseling, however, should be offered. Differential diagnoses include neurofibromatosis, osteofibrous dysplasia, non-ossifying fibromas, idiopathic central precocious puberty, and ovarian neoplasm. Treatment is dictated by the tissues affected, and the extent to which they are affected. Generally, some form of surgical intervention is recommended. Bisphosphonates are frequently used in the treatment of FD. Strengthening exercises are recommended to help maintaining the musculature around the FD bone and minimize the risk for fracture. Treatment of all endocrinopathies is required. Malignancies associated with MAS are distinctly rare occurrences. Malignant transformation of FD lesions occurs in probably less than 1% of the cases of MAS

    Challenges in developing capability measures for children and young people for use in the economic evaluation of health and care interventions

    Get PDF
    • 

    corecore