We study the issue of the selection of viscous fingering patterns in the
limit of small surface tension. Through detailed simulations of anisotropic
fingering, we demonstrate conclusively that no selection independent of the
small-scale cutoff (macroscopic selection) occurs in this system. Rather, the
small-scale cutoff completely controls the pattern, even on short time scales,
in accord with the theory of microscopic solvability. We demonstrate that
ordered patterns are dynamically selected only for not too small surface
tensions. For extremely small surface tensions, the system exhibits chaotic
behavior and no regular pattern is realized.Comment: 6 pages, 5 figure