11 research outputs found

    Green and Choking: Exploring the Dynamics of Seasonal Productivity and Hypoxia in a Great Lakes Area of Concern and Habitat Blueprint Estuary Using Time-Series Measurements

    Get PDF
    Although hypoxia (dissolved oxygen \u3c4 mg L-1) in the bottom waters of lakes, reservoirs, and estuaries may be a natural product of stratification in eutrophic or mesotrophic systems, there is increasing concern because the occurrence of hypoxia is spreading in many areas where hypoxia did not previously exist. Part of this new knowledge can be attributed to time-series data from buoy observatories that monitor systems in good weather and in bad, and allowing insight into the inner workings of a lake where sampling only a few times per year would not. This study made use of a five-year time-series of meteorological and water quality data in order to examine the effect of episodic wind-events on stratification and hypoxia within Muskegon Lake, Michigan, as well as performing bi-weekly lake-wide monitoring to evaluate the effects of stratification, hypoxia, and wind-events on the lake. In the wind-event portion of the study, we found that events where wind speeds were above average for an extended period of time occurred fairly frequently on the lake, but that thermal stratification allowed only the strongest events to significantly mix the water column at the buoy location a few times per year. This provided infrequent relief of hypoxia in the bottom waters. The second portion of the study found extensive effects on the water quality and biology in the bottom of the lake due to hypoxia such as increased phosphorus concentrations, enhanced phycocyanin following a strong windevent, and decreased fish abundance, richness, and size. We also found that hypoxia occurred lake-wide at all four sample locations, but was most stable at the deepest point in the lake that was least influenced by wind-events. It is possible that the combination of hypoxia and strong episodic wind-events leads to entrainment of phosphorus-rich waters to the surface initiating or continuing an algal bloom. Hypoxia and wind-event mediated internal loading of phosphorus could be a positive feedback loop for cyanobacterial blooms and hypoxia in Muskegon Lake

    Year-Round Measures of Planktonic Metabolism Reveal Net Autotrophy in Surface Waters of a Great Lakes Estuary

    Get PDF
    During 2009 and 2010, we quantified monthly changes in plankton metabolism and environmental variables in the surface waters of Muskegon Lake, a Great Lakes estuary connected to Lake Michigan. Muskegon Lake’s mean (±SE) annual gross plankton primary production (GPP) and respiration (R) rates were 46 ± 9 and 23 ± 4 mg C l−1 yr−1, respectively. GPP:R ratios of 0.6 to +4.8 with a yearly mean of 2.0 ± 0.3 indicated that the surface water of Muskegon Lake was net autotrophic during all but the winter months under ice cover, when it was in a near carbon balance to slightly heterotrophic state. Approximately 5% of GPP and 12% of R occurred during the winter months, highlighting winter’s potential role in nutrient regeneration. An overall positive annual net community production (NCP) rate of 28 ± 6 mg C l−1 yr−1 makes Muskegon Lake’s surface waters a net sink for carbon on an annual basis. Annual heterotrophic bacterial production (BP) rates were 5 ± 3 mg C l−1 yr−1, suggesting a substantial fraction of GPP was likely processed through the microbial food web (2 to 76%). A stepwise multiple linear regression model revealed the plausible drivers of GPP (temperature [T], photosynthetically active radiation [PAR], total phosphorus [TP], dissolved oxygen [DO], chlorophyll a [chl a]), NCP (T, PAR, TP), R (T, DO, ammonium [NH3], soluble reactive phosphorous [SRP], dissolved organic carbon [DOC]) and GPP:R (T, PAR, SRP, DOC). Year-round measurements inform us of the strong seasonality in the carbon cycle of temperate lakes

    Seeking Sunlight: Rapid Phototactic Motility of Filamentous Mat-Forming Cyanobacteria Optimize Photosynthesis and Enhance Carbon Burial in Lake Huron’s Submerged Sinkholes

    Get PDF
    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily ofOscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100–10,000 μm long filaments, composed of cells ~10 μm wide and ~3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ~50 μm min-1 or ~15 body lengths min-1 at 10∘C to ~215 μm min-1 or ~70 body lengths min-1 at 35∘C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3–4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring carbon burial

    Microhabitats are associated with diversity-productivity relationships in freshwater bacterial communities

    No full text
    Eukaryotic communities commonly display a positive relationship between biodiversity and ecosystem function (BEF) but the results have been mixed when assessed in bacterial communities. Habitat heterogeneity, a factor in eukaryotic BEFs, may explain these variable observations but it has not been thoroughly evaluated in bacterial communities. Here, we examined the impact of habitat on the relationship between diversity assessed based on the (phylogenetic) Hill diversity metrics and heterotrophic productivity. We sampled co-occurring free-living (more homogenous) and particle-associated (more heterogeneous) bacterial habitats in a freshwater, estuarine lake over three seasons: spring, summer and fall. There was a strong, positive, linear relationship between particle-associated bacterial richness and heterotrophic productivity that strengthened when considering dominant taxa. There were no observable BEF trends in free-living bacterial communities for any diversity metric. Biodiversity, richness and Inverse Simpson's index, were the best predictors of particle-associated production whereas pH was the best predictor of free-living production. Our findings show that heterotrophic productivity is positively correlated with the effective number of taxa and that BEF relationships are associated with microhabitats. These results add to the understanding of the highly distinct contributions to diversity and functioning contributed by bacteria in free-living and particle-associated habitats

    Systematically Variable Planktonic Carbon Metabolism Along a Land-To-Lake Gradient in a Great Lakes Coastal Zone

    Get PDF
    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 µg C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles

    Chronicles of hypoxia: Time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake – A Great Lakes estuary

    Get PDF
    We chronicled the seasonally recurring hypolimnetic hypoxia in Muskegon Lake – a Great Lakes estuary over 3 years, and examined its causes and consequences. Muskegon Lake is a mesotrophic drowned river mouth that drains Michigan\u27s 2nd largest watershed into Lake Michigan. A buoy observatory tracked ecosystem changes in the Muskegon Lake Area of Concern (AOC), gathering vital time-series data on the lake\u27s water quality from early summer through late fall from 2011 to 2013 (www.gvsu.edu/buoy). Observatory-based measurements of dissolved oxygen (DO) tracked the gradual development, intensification and breakdown of hypoxia (mild hypoxia b4 mg DO/L, and severe hypoxia b2 mg DO/L) below the ~6 m thermocline in the lake, occurring in synchrony with changes in temperature and phytoplankton biomass in the water column during July–October. Time-series data suggest that proximal causes of the observed seasonal hypolimnetic DO dynamics are stratified summer water-column, reduced wind-driven mixing, longer summer residence time, episodic intrusions of cold DO-rich nearshore Lake Michigan water, nutrient run off from watershed, and phytoplankton blooms. Additional basin-wide water-column profiling (2011–2012) and ship-based seasonal surveys (2003–2013) confirmed that bottom water hypoxia is an annually recurring lake-wide condition. Volumetric hypolimnetic oxygen demand was high (0.07–0.15 mg DO/Liter/day) and comparable to other temperate eutrophic lakes. Over 3 years of intense monitoring, ~9–24% of Muskegon Lake\u27s volume experienced hypoxia for ~29–85 days/year – with the potential for hypolimnetic habitat degradation and sediment phosphorus release leading to further eutrophication. Thus, time-series observatories can provide penetrating insights into the inner workings of ecosystems and their external drivers

    Recurringly Hypoxic: Bottom Water Oxygen Depletion Is Linked to Temperature and Precipitation in a Great Lakes Estuary

    No full text
    Hypolimnetic hypoxia is expanding globally due to anthropogenic eutrophication and climate warming. Muskegon Lake, a Great Lakes estuary, experiences annually recurring hypoxia, impairing ecological, social, and economic benefits. Using high-frequency, time-series Muskegon Lake Observatory (MLO) data, we quantified the dynamics of hypoxia and developed a hypoxia severity index to estimate the spatiotemporal extent of hypoxia during 2011–2021. We also analyzed United States Geological Survey’s temperature and discharge data on the Muskegon River to explain the annual variability in the hypoxia severity index. Severe hypoxia occurred in warmer years with greater stratification, fewer wind mixing events, warmer winter river temperatures, and less winter and spring precipitation, as in 2012 and 2021. Conversely, milder hypoxia was prevalent in colder years with a later stratification onset, more mixing events, colder river temperatures, and more winter and spring precipitation, as in 2015 and 2019. Thus, knowledge of environmental conditions prior to the onset of stratification may be useful for predicting the potential severity of hypoxia for any year. While consistent multi-year trends in hypoxia were not discernible, our findings suggest that temperature and precipitation are major drivers of hypoxia and that as surface waters warm, it will lead to the further deoxygenation of Earth’s inland waters
    corecore