87 research outputs found

    Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

    Get PDF
    The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means

    Selection of the first 99m^{99m} Tc-Labelled somatostatin receptor subtype 2 antagonist for clinical translation : preclinical assessment of two optimized candidates

    Get PDF
    Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project “TECANT” two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist

    Transparency meets management: A monitoring and evaluating tool for governmental projects

    Get PDF
    The Brazilian government is maintaining several digital inclusion projects, providing computers and Internet connection to developing regions around the country. However, these projects can only succeed if they are constantly assessed; namely, the projects infrastructure deployment must be closely monitored and evaluated. In this paper, we introduce a system called SIMMC, which is currently monitoring and evaluating more than 4,500 computing devices from Brazilian digital inclusion projects. This system is innovative because, in addition to being used by the government for managing and expanding its projects, the collected data is also publicly available on a web page, allowing the citizens to follow the projects' deployment. We describe the SIMMC architecture, reporting some techniques used to optimize its data analysis processes, and describe how the information acquired and presented by the system has been used to enable public administration overhaul and improve efficiency on the project management, as well as its strategic use for security, theft, and defrauding

    Dihydrolipoic Acid Induces Cytotoxicity in Mouse Blastocysts through Apoptosis Processes

    Get PDF
    α-Lipoic acid (LA) is a thiol with antioxidant properties that protects against oxidative stress-induced apoptosis. LA is absorbed from the diet, taken up by cells and tissues, and subsequently reduced to dihydrolipoic acid (DHLA). In view of the recent application of DHLA as a hydrophilic nanomaterial preparation, determination of its biosafety profile is essential. In the current study, we examined the cytotoxic effects of DHLA on mouse embryos at the blastocyst stage, subsequent embryonic attachment and outgrowth in vitro, in vivo implantation by embryo transfer, and early embryonic development in an animal model. Blastocysts treated with 50 μM DHLA exhibited significantly increased apoptosis and a corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with DHLA were lower than that of their control counterparts. Moreover, in vitro treatment with 50 μM DHLA was associated with increased resorption of post-implantation embryos and decreased fetal weight. Data obtained using an in vivo mouse model further disclosed that consumption of drinking water containing 100 μM DHLA led to decreased early embryo development, specifically, inhibition of development to the blastocyst stage. However, it appears that concentrations of DHLA lower than 50 μM do not exert a hazardous effect on embryonic development. Our results collectively indicate that in vitro and in vivo exposure to concentrations of DHLA higher than 50 μM DHLA induces apoptosis and retards early pre- and post-implantation development, and support the potential of DHLA to induce embryonic cytotoxicity

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    TAF-Verifikation

    No full text
    TIB: RN 270 (205)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Isotope effects upon translational diffusion as a probe for translation-rotation coupling in molecular liquids

    No full text
    corecore