141 research outputs found

    Direct qqqqqq Force In High Momentum Limit of QCD For Proton Physics

    Full text link
    An explicit construction of the proton wave function is outlined in the high momentum limit of QCD dominated by a direct qqqqqq force, one generated by hooking the ends of a gggggg vertex to 3 distinct qˉgq{\bar q}gq vertices, thus making up a YY-shaped diagram (see fig.1). The high degree of S3S_3 symmetry thus involved ensures that the qqqqqq wave function is a mixture of 56,0+56, 0^+ and 20,1+20,1^+ components, rather than the traditional 56,0+56, 0^+ and 70,0+70, 0^+ type. Some results of this paradigm shift are offered.Comment: 6 pages, Presented at 4th International Symposium on Symmetries in Subatomic Physics at NTU, Taipei, 200

    MarKov-Yukawa Transversality On Covariant Null Plane: Pion Form Factor, Gauge Invariance And Lorentz Completion

    Full text link
    The Markov-Yukawa Transversality Principle (MYTP) on a 2-body Bethe-Salpeter kernel is formulated on a covariant Null Plane (NP) to reconstruct the 4D BS wave function for 2 fermion quarks in terms of 3D entities that satisfy a 3D BSE. This result is the null-plane counterpart of a 3D-4D interconnection for the 2-body BS wave functions found earlier by imposing MYTP covariantly in the instantaneous rest frame (termed CIA) of the composite. This formulation yields a 3D BSE which is formally identical to its Covariant Instantaneity form, thus fully preserving its spectral results, while ensuring full covariance. More importantly, the reconstructed 4D vertex functions in the covariant null-plane ensure that 4D quark-loops are now free from ill-defined time-like momentum integrations (which had plagued the earlier CIA vertex functions), while a simple prescription of `Lorentz completion' in the new description yields a manifestly Lorentz-invariant result.This is illustrated for the pion and kaon form factors with full QED gauge-invariance, showing a k2k^{-2} behaviour at large k2k^2, and `correct' slopes at small k2k^2. This method is compared with the Kadychevsky-Karmanov light-front formalism.Comment: 17 pages, Late

    Center of mass integral in canonical general relativity

    Full text link
    For a two-surface B tending to an infinite--radius round sphere at spatial infinity, we consider the Brown--York boundary integral H_B belonging to the energy sector of the gravitational Hamiltonian. Assuming that the lapse function behaves as N \sim 1 in the limit, we find agreement between H_B and the total Arnowitt--Deser--Misner energy, an agreement first noted by Braden, Brown, Whiting, and York. However, we argue that the Arnowitt--Deser--Misner mass--aspect differs from a gauge invariant mass--aspect by a pure divergence on the unit sphere. We also examine the boundary integral H_B corresponding to the Hamiltonian generator of an asymptotic boost, in which case the lapse N \sim x^k grows like one of the asymptotically Cartesian coordinate functions. Such an integral defines the kth component of the center of mass for a Cauchy surface \Sigma bounded by B. In the large--radius limit, we find agreement between H_B and an integral introduced by Beig and O'Murchadha. Although both H_B and the Beig--O'Murchadha integral are naively divergent, they are in fact finite modulo the Hamiltonian constraint. Furthermore, we examine the relationship between H_B and a certain two--surface integral linear in the spacetime Riemann curvature tensor. Similar integrals featuring the curvature appear in works by Ashtekar and Hansen, Penrose, Goldberg, and Hayward. Within the canonical 3+1 formalism, we define gravitational energy and center--of--mass as certain moments of Riemann curvature.Comment: 52 pages, revtex4, uses amsmath and amssym

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    πΞ\pi\Xi phase shifts and CP Violation in ΩπΞ{\Omega\to\pi\Xi} Decay

    Full text link
    In the study of CP violation signals in {\O}\to\pi\Xi nonleptonic decays, the strong JJ=3/2 PP and DD phase shifts for the πΞ\pi\Xi final-state interactions are needed. These phases are calculated using an effective Lagrangian model, including Ξ\Xi, Ξ\Xi^*(1530), ρ\rho and the σ\sigma-term, in the intermediate states. The σ\sigma-term is calculated in terms of the scalar form factor of the baryon.Comment: 6 pages, 2 figure

    Coherent information analysis of quantum channels in simple quantum systems

    Full text link
    The coherent information concept is used to analyze a variety of simple quantum systems. Coherent information was calculated for the information decay in a two-level atom in the presence of an external resonant field, for the information exchange between two coupled two-level atoms, and for the information transfer from a two-level atom to another atom and to a photon field. The coherent information is shown to be equal to zero for all full-measurement procedures, but it completely retains its original value for quantum duplication. Transmission of information from one open subsystem to another one in the entire closed system is analyzed to learn quantum information about the forbidden atomic transition via a dipole active transition of the same atom. It is argued that coherent information can be used effectively to quantify the information channels in physical systems where quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed; to be published in Phys. Rev. A, September 200

    A Dynamical Principle For 3D-4D Interlinkage In Salpeter-like Equations

    Get PDF
    The half-century old Markov-Yukawa Transversality Principle (MYTPMYTP) which provides a theoretical rationale for the covariant instantaneous approximation (CIACIA) that underlies all Salpeter-like equations, is generalized to a covariant null-plane ansatz (CNPACNPA). A common characteristic of both formulations is an exact 3D-4D interlinkage of BS amplitudes which facilitates a two-tier description: the 3D form for spectroscopy, and the 4D form for transition amplitudes as 4D loop integrals. Some basic applications of MYTPMYTP on the covariant null plane (quark mass function, vacuum condensates, and decay constants) are given on the lines of earlier applications to these processes under CIACIA. PACS: 03.65.-w ; 03.65.Co ; 11.10.Qr ; 11.10.St Keywords: Markov-Yukawa Transversality Principle (MYTPMYTP); Salpeter-like eqs; Cov Instantaneity Ansatz (CIACIA); Cov Null-Plane Ansatz (CNPACNPA); 3D-4D interlinkage; Vertex function; 4D loopsComment: LaTeX file, 25 pages, to be published in Nuclear Phys.

    Energy and decay width of the pi-K atom

    Get PDF
    The energy and decay width of the pi-K atom are evaluated in the framework of the quasipotential-constraint theory approach. The main electromagnetic and isospin symmetry breaking corrections to the lowest-order formulas for the energy shift from the Coulomb binding energy and for the decay width are calculated. They are estimated to be of the order of a few per cent. We display formulas to extract the strong interaction S-wave pi-K scattering lengths from future experimental data concerning the pi-K atom.Comment: 37 pages, 5 figures, uses Axodra

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N(1535)N^{*}(1535), these are: N(1440),N(1520),N(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N(1710)N^{*}(1710). The amplitudes for the π\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×101GeV1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×101GeV1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N(1535)γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×103GeV1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×103GeV1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.

    Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis

    Full text link
    The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
    corecore