499 research outputs found

    Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection

    Get PDF
    Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system

    Predicting a small molecule-kinase interaction map: A machine learning approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first available dataset of this kind. We extract information about the investigated molecules from various data sources to obtain an informative set of features.</p> <p>Results</p> <p>A Support Vector Machine (SVM) as well as a decision tree algorithm (C5/See5) is used to learn models based on the available features which in turn can be used for the classification of new kinase-inhibitor pair test instances. We evaluate our approach using different feature sets and parameter settings for the employed classifiers. Moreover, the paper introduces a new way of evaluating predictions in such a setting, where different amounts of information about the binding partners can be assumed to be available for training. Results on an external test set are also provided.</p> <p>Conclusions</p> <p>In most of the cases, the presented approach clearly outperforms the baseline methods used for comparison. Experimental results indicate that the applied machine learning methods are able to detect a signal in the data and predict binding affinity to some extent. For SVMs, the binding prediction can be improved significantly by using features that describe the active site of a kinase. For C5, besides diversity in the feature set, alignment scores of conserved regions turned out to be very useful.</p

    IgM memory B cells: a mouse/human paradox

    Get PDF
    Humoral memory is maintained by two types of persistent cells, memory B cells and plasma cells, which have different phenotypes and functions. Long-lived plasma cells can survive for a lifespan within a complex niche in the bone marrow and provide continuous protective serum antibody levels. Memory B cells reside in secondary lymphoid organs, where they can be rapidly mobilized upon a new antigenic encounter. Surface IgG has long been taken as a surrogate marker for memory in the mouse. Recently, however, we have brought evidence for a long-lived IgM memory B cell population in the mouse, while we have also argued that, in humans, these same cells are not classical memory B cells but marginal zone (MZ) B cells which, as opposed to their mouse MZ counterpart, recirculate and carry a mutated B cell receptor. In this review, we will discuss these apparently paradoxical results

    AKT activity orchestrates marginal zone B cell development in mice and humans.

    Get PDF
    The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D &lt;sup&gt;+&lt;/sup&gt; CD27 &lt;sup&gt;+&lt;/sup&gt; B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD &lt;sup&gt;+&lt;/sup&gt; CD27 &lt;sup&gt;-&lt;/sup&gt; and memory IgD &lt;sup&gt;-&lt;/sup&gt; CD27 &lt;sup&gt;+&lt;/sup&gt; B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans

    Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation

    Get PDF
    Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells

    Screening of MAMLD1 Mutations in 70 Children with 46,XY DSD: Identification and Functional Analysis of Two New Mutations

    Get PDF
    More than 50% of children with severe 46,XY disorders of sex development (DSD) do not have a definitive etiological diagnosis. Besides gonadal dysgenesis, defects in androgen biosynthesis, and abnormalities in androgen sensitivity, the Mastermind-like domain containing 1 (MAMLD1) gene, which was identified as critical for the development of male genitalia, may be implicated. The present study investigated whether MAMLD1 is implicated in cases of severe 46,XY DSD and whether routine sequencing of MAMLD1 should be performed in these patients

    Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya

    Get PDF
    Background: Plasmodium falciparum infection leads to alterations in B cell subset distribution. During infancy, development of peripheral B cell subsets is also occurring. However, it is unknown if infants living a malaria endemic region have alterations in B cell subsets that is independent of an age effect. Methods: To evaluate the impact of exposure to P. falciparum on B cell development in infants, flow cytometry was used to analyse the distribution and phenotypic characteristic of B cell subsets in infant cohorts prospectively followed at 12, 18 and 24 months from two geographically proximate regions in western Kenya with divergent malaria exposure i.e. Kisumu (malaria-endemic, n = 24) and Nandi (unstable malaria transmission, n = 21). Results: There was significantly higher frequency and absolute cell numbers of CD19+ B cells in Kisumu relative to Nandi at 12(p = 0.0440), 18(p = 0.0210) and 24 months (p = 0.0493). No differences were observed between the infants from the two sites in frequencies of naïve B cells (IgD+CD27-) or classical memory B cells (IgD-CD27+). However, immature transitional B cells (CD19+CD10+CD34-) were higher in Kisumu relative to Nandi at all three ages. In contrast, the levels of non-class switched memory B cells (CD19+IgD+CD27+) were significantly lower overall in Kisumu relative to Nandi at significantly at 12 (p = 0.0144), 18 (p = 0.0013) and 24 months (p = 0.0129). Conclusions: These data suggest that infants living in malaria endemic regions have altered B cell subset distribution. Further studies are needed to understand the functional significance of these changes and long-term impact on ability of these infants to develop antibody responses to P. falciparum and heterologous infections

    Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in <it>Anopheles gambiae </it>s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of <it>An. gambiae </it>in surrounding breeding sites.</p> <p>Methods</p> <p>The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of <it>An. gambiae</it>. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains.</p> <p>Results</p> <p>There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP) and the Targeted Intermittent Control Program (TICP). By contrast, no chemicals are involved in Biological Program (BP) where farmers use organic and natural fertilizers which include animal excreta.</p> <p>Susceptibility test results confirmed a high resistance to DDT. Mean mortality of <it>An. gambiae </it>collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. <it>An. gambiae </it>populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of <it>An. gambiae </it>from BP areas gave a high level of susceptibility to permethrin with an average mortality of 94%.</p> <p>Molecular analysis identified <it>An. gambiae </it>s.s, and <it>An. arabiensis </it>with a high predominance of <it>An. gambiae s.s </it>(90%). The two molecular forms, M and S, were also determined with a high frequency of the S form (96%).</p> <p>The <it>Kdr </it>gene seemed the main target- site resistance mechanism detected in CCP, TICP, and BP areas at the rates ranging from 32 to 78%. The frequency of <it>ace-1R </it>gene was very low (< 0.1).</p> <p>The presence of inhibiting factors in soil samples under insecticide treatments were found and affected negatively in delaying the development of <it>An. gambiae </it>larval populations.</p> <p>Conclusions</p> <p>This research shows that <it>Kdr </it>has spread widely in <it>An. gambiae</it>, mainly in CCP and TICP areas where pyrethroids are extensively used. To reduce the negative impact of pesticides use in cotton crop protection, the application of BP-like programs, which do not appear to select for vector resistance would be useful. These results could serve as scientific evidence of the spread of resistance due to a massive agricultural use of insecticides and contribute to the management of pesticides usage on cotton crops hence reducing the selection pressure of insecticides on <it>An. gambiae </it>populations.</p

    Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.

    Get PDF
    Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype
    corecore