255 research outputs found

    Cruiser and PhoTable: Exploring Tabletop User Interface Software for Digital Photograph Sharing and Story Capture

    Get PDF
    Digital photography has not only changed the nature of photography and the photographic process, but also the manner in which we share photographs and tell stories about them. Some traditional methods, such as the family photo album or passing around piles of recently developed snapshots, are lost to us without requiring the digital photos to be printed. The current, purely digital, methods of sharing do not provide the same experience as printed photographs, and they do not provide effective face-to-face social interaction around photographs, as experienced during storytelling. Research has found that people are often dissatisfied with sharing photographs in digital form. The recent emergence of the tabletop interface as a viable multi-user direct-touch interactive large horizontal display has provided the hardware that has the potential to improve our collocated activities such as digital photograph sharing. However, while some software to communicate with various tabletop hardware technologies exists, software aspects of tabletop user interfaces are still at an early stage and require careful consideration in order to provide an effective, multi-user immersive interface that arbitrates the social interaction between users, without the necessary computer-human interaction interfering with the social dialogue. This thesis presents PhoTable, a social interface allowing people to effectively share, and tell stories about, recently taken, unsorted digital photographs around an interactive tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to capture the stories told, and associate them as audio metadata to the appropriate photographs. By leveraging the tabletop interface and providing a highly usable and natural interaction we can enable users to become immersed in their social interaction, telling stories about their photographs, and allow the computer interaction to occur as a side-effect of the social interaction. Correlating the computer interaction with the corresponding audio allows PhoTable to annotate an automatically created digital photo album with audible stories, which may then be archived. These stories remain useful for future sharing -- both collocated sharing and remote (e.g. via the Internet) -- and also provide a personal memento both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable photo sharing experience at the tabletop. To provide the necessary software to realise an interface such as PhoTable, this thesis explored the development of Cruiser: an efficient, extensible and reusable software framework for developing tabletop applications. Cruiser contributes a set of programming libraries and the necessary application framework to facilitate the rapid and highly flexible development of new tabletop applications. It uses a plugin architecture that encourages code reuse, stability and easy experimentation, and leverages the dedicated computer graphics hardware and multi-core processors of modern consumer-level systems to provide a responsive and immersive interactive tabletop user interface that is agnostic to the tabletop hardware and operating platform, using efficient, native cross-platform code. Cruiser's flexibility has allowed a variety of novel interactive tabletop applications to be explored by other researchers using the framework, in addition to PhoTable. To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems evaluation. The design rationale is framed within the above scenario and vision which we explore further, and the resulting design is critically analysed based on user studies, heuristic evaluation and a reflection on how it evolved over time. The effectiveness of Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to explore many new tabletop applications, and an analysis of performance and resource usage. Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful usability evaluations of elements of the interface; informal observations of usability when Cruiser was available to the public in several exhibitions and demonstrations; and a final evaluation of PhoTable in use for storytelling, where this had the side effect of creating a digital photo album, consisting of the photographs users interacted with on the table and associated audio annotations which PhoTable automatically extracted from the interaction. We conclude that our approach to design has resulted in an effective framework for creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop interaction as a new way to share digital photographs was realised in PhoTable. It is able to support the envisaged goal of an effective interface for telling stories about one's photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of the stories about individual photographs for future reminiscence and sharing. This work provides foundations for future work in creating new ways to interact at a tabletop and to the ways to capture personal stories around digital photographs for sharing and long-term preservation

    Raunen, Singen, Jubeln: Sinnessoziologische Sondierungen im Fußballstadion

    Get PDF

    Comparative study of TERT promoter mutation status within spatially, temporally and morphologically distinct components of urothelial carcinoma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141213/1/his13318.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141213/2/his13318_am.pd

    Application of immunocytochemistry and BRAF mutational analysis to direct smears of metastatic melanoma

    Full text link
    BACKGROUND: The cytodiagnosis of melanoma in fine‐needle aspiration (FNA) specimens can be challenging, often requiring the use of immunocytochemistry. As constitutively activating mutations in the BRAF oncogene are present in at least 40% of melanomas, the use of FNA material to interrogate the BRAF mutational status is likely to increase. Because cell blocks, traditionally used for these studies, can occasionally exhibit insufficient tumor cellularity, the authors investigated the utility of direct smears for immunocytochemistry and BRAF mutational analysis. METHODS: Immunocytochemistry for S‐100, HMB‐45, and Mart‐1 was prospectively performed on direct smears in 17 FNAs of metastatic melanoma. Next, BRAF sequencing was performed using DNA isolated from archived Diff‐Quik–stained direct smears for 15 cases. In parallel, sequencing was performed using DNA obtained from corresponding cell blocks. RESULTS: S‐100 positivity in the tumor cells was observed in all 17 cases. HMB‐45 and Mart‐1 positivity was noted in 81% and 88% of cases, respectively. All 3 markers were positive in 76% of cases. Next, of the 15 archived melanoma FNAs tested, BRAF mutations were observed in 8 (53%); 5 and 3 melanomas harbored the V600E and V600K mutation, respectively. Corresponding cell blocks were also tested for all 15 cases, yielding concordant BRAF results in 14 (93%); 1 cell block yielded a false‐negative result. CONCLUSIONS: Cytologic direct smears represent a robust and valuable source of cellular material for immunocytochemistry and molecular studies, especially in instances in which inadequate cell block cellularity is anticipated or encountered. Cancer (Cancer Cytopathol) 2012. © 2011 American Cancer Society. This study demonstrates that direct smears represent a robust and valuable source of cellular material for ancillary studies used in the cytologic diagnosis of melanoma. Direct smears can be effectively used for confirmatory immunocytochemical studies and molecular assays designed to interrogate the BRAF mutational status of melanoma, especially in scenarios in which inadequate cell block cellularity is anticipated or encountered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90193/1/20180_ftp.pd

    A computational framework for particle and whole cell tracking applied to a real biological dataset

    Get PDF
    Cell tracking is becoming increasingly important in cell biology as it provides a valuable tool for analysing experimental data and hence furthering our understanding of dynamic cellular phenomena. The advent of high-throughput, high-resolution microscopy and imaging techniques means that a wealth of large data is routinely generated in many laboratories. Due to the sheer magnitude of the data involved manual tracking is often cumbersome and the development of computer algorithms for automated cell tracking is thus highly desirable. In this work, we describe two approaches for automated cell tracking. Firstly, we consider particle tracking. We propose a few segmentation techniques for the detection of cells migrating in a non-uniform background, centroids of the segmented cells are then calculated and linked from frame to frame via a nearest-neighbour approach. Secondly, we consider the problem of whole cell tracking in which one wishes to reconstruct in time whole cell morphologies. Our approach is based on fitting a mathematical model to the experimental imaging data with the goal being that the physics encoded in the model is reflected in the reconstructed data. The resulting mathematical problem involves the optimal control of a phase-field formulation of a geometric evolution law. Efficient approximation of this challenging optimal control problem is achieved via advanced numerical methods for the solution of semilinear parabolic partial differential equations (PDEs) coupled with parallelisation and adaptive resolution techniques. Along with a detailed description of our algorithms, a number of simulation results are reported on. We focus on illustrating the effectivity of our approaches by applying the algorithms to the tracking of migrating cells in a dataset which reflects many of the challenges typically encountered in microscopy data

    In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy

    Get PDF
    Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos
    • 

    corecore