
Cruiser and PhoTable: Exploring Tabletop
User Interface Software for Digital

Photograph Sharing and Story Capture

Trent Heath Apted

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in the

School of Information Technologies at
The University of Sydney

S
ID

ERE· ME
N

S·EADE
M

·MUTAT
O

Computer Human Adapted Interaction Research Group
School of Information Technologies

Faculty of Engineering and Information Technologies
University of Sydney

Australia
August, 2008



© Copyright by Trent Heath Apted 2008
All Rights Reserved



Dedicated to
all my colleagues, friends and family



Acknowledgements

Foremost, I would like to thank my supervisor, Professor Judy Kay, for all her invaluable
guidance and support. You are a constant source of inspiration and always amaze me with
your ability to deliver more than what anyone could reasonably expect. You are a huge
asset to the university, and to the research community.

Thanks to the Smart Internet Technology Cooperative Research Centre (now re-formed
as the Smart Services CRC), for providing top-up scholarship support for this research.
Thanks also to the Australian Government for providing scholarship support under the
Australian Postgraduate Award (APA).

Thank you to all the participants in my research studies, the School of IT and my
colleagues who have helped me along the way with useful advice and, in particular, Anthony,
Rainer, Glen, James, Greg and Hugh for their willingness to tackle new and interesting
projects built using the Cruiser framework.

Thank you also to my many (anonymous) paper reviewers, and my thesis examiners,
Professor Saul Greenberg, Professor Peter Robinson and Dr Andy Wilson, for their valuable
feedback.

Special thanks go to my partner and best friend, Kim Upton; now my fiancée. You
changed my world, and became the most cherished part of it. You helped me through the
toughest stages of my thesis, and were always there for me. I love you dearly.

iv



Cruiser and PhoTable: Exploring Tabletop User Interface
Software for Digital Photograph Sharing and Story Capture

Trent Heath Apted

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in the

School of Information Technologies at
The University of Sydney

August, 2008



vi



Abstract

Abstract

Digital photography has not only changed the nature of photography and the pho-
tographic process, but also the manner in which we share photographs and tell stories
about them. Some traditional methods, such as the family photo album or passing around
piles of recently developed snapshots, are lost to us without requiring the digital photos
to be printed. The current, purely digital, methods of sharing do not provide the same
experience as printed photographs, and they do not provide effective face-to-face social
interaction around photographs, as experienced during storytelling. Research has found
that people are often dissatisfied with sharing photographs in digital form.

The recent emergence of the tabletop interface as a viable multi-user direct-touch
interactive large horizontal display has provided the hardware that has the potential to
improve our collocated activities such as digital photograph sharing. However, while
some software to communicate with various tabletop hardware technologies exists, software
aspects of tabletop user interfaces are still at an early stage and require careful consideration
in order to provide an effective, multi-user immersive interface that arbitrates the social
interaction between users, without the necessary computer-human interaction interfering
with the social dialogue.

This thesis presents PhoTable, a social interface allowing people to effectively share,
and tell stories about, recently taken, unsorted digital photographs around an interactive
tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to cap-
ture the stories told, and associate them as audio metadata to the appropriate photographs.
By leveraging the tabletop interface and providing a highly usable and natural interaction
we can enable users to become immersed in their social interaction, telling stories about
their photographs, and allow the computer interaction to occur as a side-effect of the
social interaction. Correlating the computer interaction with the corresponding audio
allows PhoTable to annotate an automatically created digital photo album with audible
stories, which may then be archived. These stories remain useful for future sharing – both
collocated sharing and remote (e.g. via the Internet) – and also provide a personal memento
both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable
photo sharing experience at the tabletop.

To provide the necessary software to realise an interface such as PhoTable, this thesis
explored the development of Cruiser : an efficient, extensible and reusable software frame-
work for developing tabletop applications. Cruiser contributes a set of programming
libraries and the necessary application framework to facilitate the rapid and highly flexible
development of new tabletop applications. It uses a plugin architecture that encourages
code reuse, stability and easy experimentation, and leverages the dedicated computer
graphics hardware and multi-core processors of modern consumer-level systems to provide a
responsive and immersive interactive tabletop user interface that is agnostic to the tabletop
hardware and operating platform, using efficient, native cross-platform code. Cruiser’s
flexibility has allowed a variety of novel interactive tabletop applications to be explored by
other researchers using the framework, in addition to PhoTable.

To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems
evaluation. The design rationale is framed within the above scenario and vision which
we explore further, and the resulting design is critically analysed based on user studies,
heuristic evaluation and a reflection on how it evolved over time. The effectiveness of
Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to
explore many new tabletop applications, and an analysis of performance and resource usage.
Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful
usability evaluations of elements of the interface; informal observations of usability when

vii



Abstract

Cruiser was available to the public in several exhibitions and demonstrations; and a final
evaluation of PhoTable in use for storytelling, where this had the side effect of creating a
digital photo album, consisting of the photographs users interacted with on the table and
associated audio annotations which PhoTable automatically extracted from the interaction.

We conclude that our approach to design has resulted in an effective framework for
creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop
interaction as a new way to share digital photographs was realised in PhoTable. It is
able to support the envisaged goal of an effective interface for telling stories about one’s
photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of
the stories about individual photographs for future reminiscence and sharing. This work
provides foundations for future work in creating new ways to interact at a tabletop and to
the ways to capture personal stories around digital photographs for sharing and long-term
preservation.

viii



Preface & Notes Preface & Notes

Preface & Notes

Under University guidelines, the thesis must include a preface and notes, which must
state:

• The sources from which information is derived;

• The amount of work the candidate claims as original;

• Where publications are included, evidence that identifies the work as that of the
candidate;

• The human and ethical approvals obtained; and

• What use has been made of the work of others;

Reading Notes
This thesis includes a Glossary and List of Acronyms in the frontmatter, with forward
references to the page number(s) where the terms are used. Acronyms will always be
expanded at the site of first use. In the electronic version of this thesis, glossary entries and
acronyms appear in the thesis body as clickable links to their definition. In print versions,
defined terms are coloured dark red (or a dark shade of grey).

The backmatter includes an Index that immediately follows the Bibliography. The
Bibliography is listed with backreferences to the page(s) containing a citation of the
publication. When available, Digital Object Identifier (DOI) names are provided for
each publication. Clicking a DOI name in the electronic version should take you to that
document on the Internet, otherwise the identifier can be entered at http://www.doi.org/
to retrieve manually.

Publications during candidature
Trent Apted, Judy Kay, and Aaron Quigley. Tabletop sharing of digital photographs for the
elderly. In Rebecca Grinter, Tom Rodden, and Gary M. Olson, editors, CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 781–790, Montréal, Québec,
Canada, April 22–27 2006a. ACM Press. ISBN 1-59593-178-3. doi: 10.1145/1124772.1124887.

Anthony Collins, Trent Apted, and Judy Kay. Tabletop file system access: Associative and
hierarchical approaches. In Proceedings of the Second Annual IEEE International Workshop on
Horizontal Interactive Human-Computer Systems (TableTop 2007), pages 113–120, Newport, Rhode
Island, USA, October 10–12 2007. IEEE Computer Society. doi: 10.1109/TABLETOP.2007.34.

Trent Apted, Judy Kay, and Mark Assad. Sharing digital media on collaborative tables and
displays. In Kathy Ryall et al., editors, Proceedings of The Spaces In-between: Seamful vs. Seamless
Interactions workshop in conjunction with the Seventh International Conference on Ubiquitous
Computing (UbiComp 2005), Tokyo, Japan, September 11–14 2005a.

Trent Apted and Judy Kay. PhoTable: Enhancing the social interaction around the sharing
of digital photographs. In Siân Lindley, Abigail Durrant, Dave Kirk, and Alex Taylor, editors,
Proceedings of Collocated Social Practices Surrounding Photos workshop in conjunction with
CHI2008 Conference on Human Factors in Computing Systems, Florence, Italy, April 5–10 2008.

Trent Apted. An interface element for a computer interface (Black Hole). Australian Provi-
sional Patent 2007904925, Smart Internet Technology CRC Pty Ltd, Sydney, NSW, Australia,
September 11 2007a. URL http://pericles.ipaustralia.gov.au/ols/searching/patsearch/
search_section.jsp?keyNo=2007904925&sectionCode=DTL.

ix

http://www.doi.org/
http://dx.doi.org/10.1145/1124772.1124887
http://dx.doi.org/10.1109/TABLETOP.2007.34
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904925&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904925&sectionCode=DTL


PUBLICATIONS DURING CANDIDATURE Preface & Notes

Trent Apted. A system and method for manipulating digital images on a computer display (Flip).
Australian Provisional Patent 2007904927, Smart Internet Technology CRC Pty Ltd, Sydney, NSW,
Australia, September 11 2007b. URL http://pericles.ipaustralia.gov.au/ols/searching/
patsearch/search_section.jsp?keyNo=2007904927&sectionCode=DTL.

Trent Apted. Systems and methods for remote file transfer (Remote Images). Australian
Provisional Patent 2007904928, Smart Internet Technology CRC Pty Ltd, Sydney, NSW, Australia,
September 11 2007c. URL http://pericles.ipaustralia.gov.au/ols/searching/patsearch/
search_section.jsp?keyNo=2007904928&sectionCode=DTL.

Trent Apted. A system and method for capturing digital images (Capture Frame). Australian
Provisional Patent 2007904929, Smart Internet Technology CRC Pty Ltd, Sydney, NSW, Aus-
tralia, September 11 2007d. URL http://pericles.ipaustralia.gov.au/ols/searching/
patsearch/search_section.jsp?keyNo=2007904929&sectionCode=DTL.

Trent Apted, Judy Kay, and Aaron Quigley. A study of elder users in a face-to-face collaborative
multi-touch digital photograph sharing scenario. Technical Report 567, School of Information
Technologies, University of Sydney, March 2005b. URL http://www.it.usyd.edu.au/research/
tr/tr567.pdf.

Trent Apted and Judy Kay. Privacy and remote display control on a multi-user pervasive tabletop.
Technical Report 601, School of Information Technologies, University of Sydney, November 2006a.
URL http://www.it.usyd.edu.au/research/tr/tr601.pdf.

Trent Apted, Judy Kay, and Mark Assad. Sharing digital media on collaborative tables and displays.
Technical Report 602, School of Information Technologies, University of Sydney, November 2006b.
URL http://www.it.usyd.edu.au/research/tr/tr602.pdf.

Trent Apted and Judy Kay. Designing a “copy” function for interactive tabletops. Technical
Report 603, School of Information Technologies, University of Sydney, November 2006b. URL
http://www.it.usyd.edu.au/research/tr/tr603.pdf.

Sources & Original Work
Original material of my own from the above publications has been included in this thesis,
with citations to the appropriate publication. Content from these publications produced
by others is clearly marked as contributed work, e.g. in Section 6.2, and included with
their permission.

Other external sources are cited (e.g. as background), with the bibliography appearing
at the end of this thesis. Any copyright materials have been included with permission
and are indicated as such, e.g. in the caption, with the source cited. If the permission is
implicit, a link is provided to the relevant copyright statement reproduced in Appendix D.

Human Ethics
Studies presented in this thesis were conducted under human ethics project number 8898,
approved by The University of Sydney Human Research Ethics Committee on 13th April,
2006. Participant information statements and consent forms are included in Appendix C.

Use of Work by Others
Section 6.2 deals with this specifically as it forms part of the evaluation.

x

http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904927&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904927&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904928&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904928&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904929&sectionCode=DTL
http://pericles.ipaustralia.gov.au/ols/searching/patsearch/search_section.jsp?keyNo=2007904929&sectionCode=DTL
http://www.it.usyd.edu.au/research/tr/tr567.pdf
http://www.it.usyd.edu.au/research/tr/tr567.pdf
http://www.it.usyd.edu.au/research/tr/tr601.pdf
http://www.it.usyd.edu.au/research/tr/tr602.pdf
http://www.it.usyd.edu.au/research/tr/tr603.pdf


Contents

Acknowledgements iv

Short Abstract v

Abstract vii

Preface & Notes ix

Contents xi

List of Figures xvii

List of Tables xix

Glossary xxi

Acronyms xxv

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Naming: Cruiser and PhoTable . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Traditional Photo Sharing . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Sharing Digital Photographs . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Tabletop Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11
2.1 The Interactive Tabletop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 DiamondTouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Other TableTop Hardware Prototypes . . . . . . . . . . . . . . . . . 15
2.1.3 Commercial or Unpublished Hardware . . . . . . . . . . . . . . . . . 17
2.1.4 Section Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Interaction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 TableTop Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Gestural Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Interaction Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Section Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi



CONTENTS CONTENTS

2.3 Frameworks for Interactive Tables . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 DiamondSpin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Microsoft® Surface™ . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Innovis Buffer Framework . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 The T3 Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Other toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Photos and Photo Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 Photo Sharing Applications and Devices . . . . . . . . . . . . . . . . 37
2.4.2 Photo Sharing on the Tabletop . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Audiophotography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Design Overview 41
3.1 UI Design Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Influences for User Interface Design . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Direct-Touch “Keystrokes” . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Key Design Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Rotate & Resize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.6 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.7 Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Further Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Drivers for Framework Design . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Stable code base with easy experimentation . . . . . . . . . . . . . . 51
3.5.3 Visually bare, yet functional and unencumbered core . . . . . . . . . 51
3.5.4 Hardware independent and easily adaptable . . . . . . . . . . . . . . 52
3.5.5 Able to leverage modern hardware (GPU, and multi-core CPU) . . . 53
3.5.6 Run effectively without specialised hardware . . . . . . . . . . . . . 54
3.5.7 Cross platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.8 Flexible, functional and encouraging code reuse . . . . . . . . . . . . 56
3.5.9 Other Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 User View 59
4.1 Interface Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Design Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Interface Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Flicking and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.4 Rotate and Resize (rosize) . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.5 Flip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.6 Dwell Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 High-Level Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Delete (Black Hole) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Framing and Capturing . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



CONTENTS CONTENTS

4.3.3 Bounds Checking and Claiming . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Item Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.5 Explicit Audio Attachment . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.6 Image Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.7 Browsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.8 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.9 Storage Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Extended Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Interactive Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Video Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.3 Remote Images and Image Transferal . . . . . . . . . . . . . . . . . 83
4.4.4 Drawn Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.5 Paper (Anoto) Frame . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Sharing Photographs with PhoTable . . . . . . . . . . . . . . . . . . . . . . 86
4.5.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 Clustering Background . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.4 Clustering in PhoTable . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.5 Browsers Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.6 Clustering in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Storytelling and Album Creation . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6.1 Capturing Audio and Interaction Traces . . . . . . . . . . . . . . . . 91
4.6.2 Digital Photograph Album . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Framework Design 95
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Cruiser Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Resource (top-level) . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Environment (top-level) . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.3 Top-Level Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.4 Core Resource Framework (core/res) . . . . . . . . . . . . . . . . . . 104
5.2.5 Core Environment Support (core/env) . . . . . . . . . . . . . . . . . 113
5.2.6 Core Utilities (core/utl) . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.7 Core Event Framework (core/event) . . . . . . . . . . . . . . . . . . 118
5.2.8 Core Raster Processing (core/ras) . . . . . . . . . . . . . . . . . . . 121
5.2.9 Core Animation Framework (core/ani) . . . . . . . . . . . . . . . . . 122
5.2.10 Core Gesture Framework (core/ges) . . . . . . . . . . . . . . . . . . 125
5.2.11 Other Core Components . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Utility Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.1 Audio Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.2 Thread Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Input Device Framework and Calibration (strokereader) . . . . . . . 130
5.3.4 Calibrator Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.5 Other Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Plugin Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.1 Cross Platform File Search (libfolder) . . . . . . . . . . . . . . . . . 134
5.4.2 Database Access (libdb) . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.3 Video Images (libvideo) . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.4 Plugin utility and program initialisation (plug) . . . . . . . . . . . . 135
5.4.5 Browsing Containers (libbrowser) . . . . . . . . . . . . . . . . . . . . 135
5.4.6 Slider Widget (libslider) . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiii



CONTENTS CONTENTS

5.4.7 main() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5.1 Removable Storage Detection, Media Search (disk) . . . . . . . . . . 137
5.5.2 Exif JPEG Metadata Parsing (exif) . . . . . . . . . . . . . . . . . . 138
5.5.3 Metadata Cache (metadata) . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.4 People Objects (people) . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.5 Audio Dumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.6 Input Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.7 VU (Volume Meter) Widgets (vu_widget) . . . . . . . . . . . . . . . 141
5.5.8 Capture Frame Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5.9 Remote Frame Buffer (rfb) . . . . . . . . . . . . . . . . . . . . . . . 144
5.5.10 End-User Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Feature Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 System Evaluation 149
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Contributed Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Associative File System Search (fsviewer) . . . . . . . . . . . . . . . 152
6.2.2 Blackjack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.3 Map and Photograph Tagging Application . . . . . . . . . . . . . . . 154
6.2.4 Brainstorming Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.5 Context Pie-Menu System (men) . . . . . . . . . . . . . . . . . . . . 158

6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4 Cruiser Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.1 Load Testing Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.2 Rendering Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.3 Memory Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.4 Platform Independence . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4.5 Hardware Independence . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Interface Evaluation 167
7.1 Usability with Elderly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.1.3 Task Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.1.4 Novel Interface Elements . . . . . . . . . . . . . . . . . . . . . . . . 174
7.1.5 Affective Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.6 Reflections on SharePic . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 Interface Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.1 Exhibitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3 PhoTable Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.3.2 Participant Arrangement . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.3 Interface Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3.5 Results (tabletop interface) . . . . . . . . . . . . . . . . . . . . . . . 188
7.3.6 Results (digital photo album) . . . . . . . . . . . . . . . . . . . . . . 191
7.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xiv



CONTENTS CONTENTS

8 Conclusion & Future Work 197

Bibliography 203

Index 219

A Technical Notes 223
A.1 Software Libraries Used by Cruiser . . . . . . . . . . . . . . . . . . . . . . . 223
A.2 Windows DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.3 DiamondTouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.3.1 A two-finger rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.4 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.5 Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.5.1 SMARTBoard-specific device handling code . . . . . . . . . . . . . . 229
A.5.2 Repositioning the viewing camera, triggered by a dwell on the Smart-

Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.5.3 Determining texture offsets of underlying image, when another object

is overlaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.5.4 Converting texture coordinate offset references into commands to

process an image on disk and reload . . . . . . . . . . . . . . . . . . 231
A.5.5 Procedure for deciding whether to initiate a flip . . . . . . . . . . . . 232
A.5.6 Procedures for flipping an object, given the current contact position

on the screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.5.7 Procedure, called each time an object is moved, to check whether it

should be attached to another object . . . . . . . . . . . . . . . . . . 233

B Exposure 235
B.1 Media Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.2 Selected Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
B.3 Notable Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

C Supporting Documents 239
C.1 Information Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
C.2 Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
C.3 Album Questionnaire Responses . . . . . . . . . . . . . . . . . . . . . . . . 242

D Copyright statements 247
D.1 DiamondSpin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.2 ACM Press . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.3 Public Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

xv



CONTENTS CONTENTS

xvi



List of Figures

1 Triangle strip of four triangles . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

1.1 Two people using PhoTable . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The 2nd Generation InteracTable, from [Streitz et al., 2002] . . . . . . . . . 16
2.2 DiamondSpin Software Architecture . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Microsoft® Surface™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 The rotate/resize gesture, showing hotspots . . . . . . . . . . . . . . . . . . 64
4.2 Projected image for 4 users, showing many Cruiser interface components . . 68
4.3 Putting an image into the Black Hole . . . . . . . . . . . . . . . . . . . . . 70
4.4 The Frame, as it copies a photo . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 The Browser Interface (with 9 photo thumbnails) . . . . . . . . . . . . . . . 77
4.6 The Browser Interface with 7 SubBrowsers, as one is dragged off . . . . . . 79
4.7 The initial layout shown to participants in our copy study . . . . . . . . . . 80
4.8 The initial, interactive display of PhoTable . . . . . . . . . . . . . . . . . . 87
4.9 A Browser with 25 clusters from a large collection (285 photos) . . . . . . . 89
4.10 Screenshots of PhoTable’s generated Digital Photo Album, showing consec-

utive photos and their automatically associated stories, in a web browser . . 92

5.1 Cruiser Architecture Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Resources in Cruiser (Simplified Inheritance Hierarchy) . . . . . . . . . . . 99
5.3 Layout class hierarchy (with PositionDependant) . . . . . . . . . . . . . . . 107
5.4 Collaboration diagram for FlowLayout . . . . . . . . . . . . . . . . . . . . . 108
5.5 Rendering a stroke using OpenGL’s triangle strip . . . . . . . . . . . . . . . 109
5.6 Bounder inheritance hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Bounds collaboration diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.8 Flowchart for the Event Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 Overshooting Tweening Functions . . . . . . . . . . . . . . . . . . . . . . . . 122
5.10 Tweening Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.11 Animation class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.12 Collaboration diagram for a Momentum object . . . . . . . . . . . . . . . . 125
5.13 Gesture class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.14 Comparing techniques for Drive Detection on different platforms . . . . . . 139

6.1 Screenshot of the OnTop associative search Cruiser application [Collins et al.,
2007] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 The Blackjack application in use . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Tagging a flipped image with a swipe gesture . . . . . . . . . . . . . . . . . 155

xvii



LIST OF FIGURES LIST OF FIGURES

6.4 Brainstorming application part way though selection and grouping phase . 156
6.5 A Pie Menu Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1 Initial state for Task 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2 A pair of our elderly participants using the interface during Task 2 . . . . . 172
7.3 Task Times for Elderly and Young Participants . . . . . . . . . . . . . . . . 173
7.4 The copy gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5 Cruiser in use, showing 2 static personal spaces – the large triangles close to

each user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.6 Page 1 of the Tutorial Sheet for PhoTable experiments . . . . . . . . . . . . 185
7.7 Page 2 of the Tutorial Sheet for PhoTable experiments . . . . . . . . . . . . 186
7.8 Summary of participant responses about individual album pages . . . . . . 193
7.9 Participants’ assessment of digital photo album overall . . . . . . . . . . . . 194

A.1 An (ambiguous) two-finger rotate gesture. . . . . . . . . . . . . . . . . . . . 226
A.2 Resource and PositionDependant inheritance lattice . . . . . . . . . . . . . 227
A.3 Excerpt of Interaction Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C.1 Page 1 of the Information Sheet for PhoTable experiments . . . . . . . . . . 239
C.2 Page 2 of the Information Sheet for PhoTable experiments . . . . . . . . . . 240
C.3 Consent Form for PhoTable experiments . . . . . . . . . . . . . . . . . . . . 241
C.4 Overall responses, and participant A–B individual album page responses . . 242
C.5 Participant C-E individual photo album page responses . . . . . . . . . . . 243
C.6 Participant F individual photo album page responses . . . . . . . . . . . . . 244
C.7 Aggregates of Likert responses for each participant evaluating their digital

photo album . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

xviii



List of Tables

2.1 Properties of direct input devices (findings of Ha et al. [2006]) . . . . . . . . 20
2.2 Properties of indirect input devices (findings of Ha et al. [2006]) . . . . . . . 21
2.3 Comparison of Tabletop Frameworks . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Summary of Core Functionality in a Cruiser user interface . . . . . . . . . . 45

4.1 Tabletop Interface Heuristics from Scott et al. [2003] . . . . . . . . . . . . . 61
4.2 Design Influences on Core Functionality in Cruiser . . . . . . . . . . . . . . 63

5.1 Submodule summary of Cruiser Core . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Cruiser Utility Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Cruiser Plugin Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Cruiser Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Summary of Contributed Plugins, built using Cruiser . . . . . . . . . . . . . 151

7.1 Young Participant self-assessment of computing confidence and experience . 171
7.2 Elderly Participant self-assessment of computing confidence and experience 172
7.3 Difficulties with Concept Learning (Elderly) . . . . . . . . . . . . . . . . . . 174
7.4 Summary of trace data collected from the interface . . . . . . . . . . . . . . 188
7.5 Participant-rated accuracy of automated audio splitting for digital album . 192

xix



LIST OF TABLES LIST OF TABLES

xx



Glossary

alpha channel (α-channel) A component of a rasterised image representing a level of
transparency – objects behind one with an alpha channel may partially show through.
105, 115, 124, 153

callback A callback is a function generally not known until runtime that is provided (e.g.
via a function pointer) to a library to be called when a set of conditions are met. 56,
68, 134, 135, 139, 141, 153

codec a combination of compressor-decompressor or coder-decoder; an algorithm for
decoding and encoding a stream of data (typically multimedia). 134

commodity hardware Commodity hardware is general-purpose hardware that a typical
consumer would purchase, as opposed to specialised hardware which attracts a price
premium. 33, 48, 160, 163, 200

critical section A portion of code that may only be executed by a single thread at a
time. For example, when manipulating STL collections, threads must take turns
adding elements; and a thread may not add elements while another is iterating over
the collection. xxii, 103

data member In C++ terminology, a variable that forms part of the structure of a class
instance. Also instance variable (Java, Smalltalk), data attribute (Python). 98, 103,
225

derived class In C++ terminology, a class that inherits part of its definition from a parent
class. Also child class in other languages. xxii, xxiii, 56, 104, 135

dynamic linking dynamic linking of library code involves finding the imlementation of
function definitions when a program is loaded, or at run-time, rather than at compile
time. It allows alternative (e.g. newer) versions of linked functions, or additional
functionality to be provided to a program without requiring it to be recompiled. 56

Exif A standard for embedding metadata within image files, usually added by a digital
camera and containing information such as camera model, capture settings, capture
time, and a miniature thumbnail. Note the capitalisation – Exif – is part of the
standard. 2, 28, 39, 105, 106, 134, 138, 147, 163, 224

forward declaration Declaration of a class type only (i.e. that it exists), without provid-
ing details of the class members – data members and member functions. 104

xxi



Glossary Glossary

framebuffer An area of memory where contents to display on a screen are stored. 33,
100, 101, 103, 105, 115, 116, 127, 143, 144, 147

functor Operator overloading in C++ allows the function call operator() to be defined
for class types, so that instances of the class can be called as if they were functions.
Such instances are called functors or function objects. 136

GNU “Gnu’s Not Unix”. The GNU Project is a mass collaboration that has produced a
suite of open-source programs and tools than reproduce much of the functionality
provided by UNIX systems. 163, 164

hook In this thesis, a hook refers to a virtual member function with an empty definition
provided in a parent class, intended for a derived class to provide a definition in order
to perform specialised processing at certain points in execution of code defined in the
parent class (e.g. providing specialised decorations to an image during the drawing
routine defined in the parent). 56, 111, 164

JPEG A raster image format, commonly used for digital photographs. 32, 53, 54, 100,
106, 115, 121, 127, 138–140, 142, 147

member function In C++ terminology, a function that is associated with and called on
an instance of a class (with an implicit this pointer). Also class method (Java,
Smalltalk), method attribute (Python). xxiii, 98, 113, 120, 121, 124, 130, 136

mipmap A set of images with dimensions 2n × 2m, 2n−1 × 2m−1, . . . , 1 × 1 required for
anisotropic texture filtering; i.e. to provide an image that can be rapidly rendered in
a 3D scene on a modern graphics card. 53, 54, 59, 106, 121, 142, 146, 147, 160, 163

mutex An operating-system inter-process communication (IPC) mechanism for controlling
access to a critical section. 103

named socket A location (usually a directory entry in a filesystem) that allows commu-
nication between processes – an IPC mechanism. 147

near-infrared “Near” infrared light is infrared light just outside the range of human
visibility; it is transmitted through glass, for example, unlike far-infrared. 29, 35

object coordinate In OpenGL, on-screen objects are drawn in their own coordinate
systems before being transformed (e.g. translated, rotated and resized) to the appro-
priate world coordinates to appear on screen. These coordinate systems typically
have the origin (0, 0) at the centre of the object and extend up to ±1.0 units in
each direction. Coordinates in these systems are object coordinates. See also screen
coordinate, world coordinate. xxiii, 100, 110, 112

raster A data format where color levels are provided in a two-dimensional array, usually
representing an image. xxii, 105, 115, 121

reference counting A resource-sharing technique whereby a shared object has an associ-
ated reference counter that local objects increment whilst maintaining a reference to
the shared object; when the reference count reaches zero, the shared object deletes
itself. 105

xxii



Glossary Glossary

render loop To maximise responsiveness, 3D applications typically render the display as
often as possible, in a loop. This is the render loop. Between redraws, user input and
other tasks are processed. Cruiser adopts alternative techniques so that concurrent
processing tasks may execute efficiently while retaining responsiveness. 26, 33, 162

screen coordinate A screen coordinate is a pixel coordinate on a rasterised display. The
coordinate system system has an origin (0, 0) at the top-left of a display and extends
in the positive directions only, an amount that depends on the configuration of the
display. Using object and world coordinates overcomes many of the design problems
complications caused by varying display configurations. See also object coordinate,
world coordinate. xxii, xxiii, 33, 100, 110, 112

singleton A programming design pattern whereby only a single instance of a class may
exist at any one time. 103

socket A socket is an operating-system arbitrated mechanism for communicating data
between processes – either on the same computer or over a network. 52

specular reflection In computer graphics, this is a narrow section of near-pefect reflection
of a virtual light source, off a simulated surface. 32

stereoscopic (rendering) Involves rendering a virtual scene twice from two eyes and
sending the result to a graphics card that is able to display the two images separately
– allowing each to reach a separate human eye, thus giving a level of true depth
perception in the virtual scene. 102

syntactic sugar Syntactic sugar is an alternative syntax for performing a programming
task that is usually shorter or neater. For example “x->y()” in C is syntactic sugar
for “(*x).y()”. 118

system memory The general-purpose memory used by applications (i.e. not the texture
memory, located on the graphics card). 82, 83, 129, 142

texture Image data that may rendered (mapped) onto a surface into a 3D environment
(e.g. with OpenGL). 59, 82, 83, 105

triangle strip A series of connected triangles, forming a polygon, that is efficiently
rendered by a graphics card (see Figure 1). 108

virtual function In C++ terminology, a member function that is declared virtual and
whose implementation may be overridden by a derived class based on the run-time
type of the object. Also sometimes method (but not necessarily in the Java sense).
225

widget A graphical user interface element, such as a window, button or text box. 28, 31,
32, 135

world coordinate On-screen objects are positioned within the view frustum using world
coordinates, which OpenGL transforms to screen coordinates to rasterise objects
on a framebuffer. In Cruiser, the world coordinate system’s origin (0, 0, 0) is at the
centre of the screen and it extends ±2.8 in the vertical direction. See also object
coordinate, screen coordinate. xxii, xxiii, 33, 110, 112

YUV A colour space model that represents a colour with a luminance and two chrominance
channels, rather than Red, Green, Blue (RGB). 134

xxiii



Glossary Glossary

z-order The draw order of objects on the display – objects lower in the z-order are drawn
first ensuring that objects higher on this axis will be drawn over them. 102, 112

Public Domain (§D.3)
http://en.wikipedia.org/wiki/Image:Triangle_Strip.png

Figure 1: Triangle strip of four triangles

xxiv

http://en.wikipedia.org/wiki/Image:Triangle_Strip.png


Acronyms

ADPCM Adaptive Differential Pulse Code Modulation 129, 140
API Application Programming Interface 25, 28, 56, 129, 130,

138, 151, 223, 224
BSD Berkley Software Distribution 56

CSCW Computer Supported Cooperative Work 61
CV Computer Vision 29

DAG Directed Acyclic Graph 225
DES Data Encryption Standard 82
DLP Digital Light Processing 29, 30
DOI Digital Object Identifier ix
FIFO First In First Out 134, 224
FTIR Frustrated Total Internal Refelection 16

GOMS Goals, Operators, Methods, and Selection rules 43, 44, 64
GPL GNU Public License 56, 223
GPS Global Positioning System 138
GPU Graphical Processing Unit 53, 54, 102, 162
GUID Globally Unique IDentifier 139
HCI Human-Computer Interaction 61, 180
HID Human Interface Device 51–53, 55, 130, 131,

141, 164
HTML HyperText Markup Language 93, 94, 98

IDE Integrated Development Environment 28
IEEE Institute of Electrical and Electronics Engineers 29, 31, 180

IP Internet Protocol 131, 224
IPC Inter-Process Communication 103, 130
IR Infra-Red 29, 32, 199

ISO International Organization for Standardization 55, 163
JNI Java Native Interface 28
JRE Java Runtime Environment 28, 34
JVM Java Virtual Machine 28
KLM Keystroke-Level Model 43
LGPL Lesser GNU Public License 56, 116, 223
MERL Mitsubishi Electric Research Laboratories 13, 164
MMX Multimedia Extensions 127
OLE Object Linking and Embedding 145
OO Object-Oriented 56, 98, 99, 225

PCA Principal Components Analysis 38
PCM Pulse Code Modulation 129, 225

xxv



Acronyms Acronyms

PDF Portable Document Format 98
PIC Position Independent Code 225
PIM Personal Information Management 153
PNG Portable Network Graphics 105

POSIX Portable Operating System Interface 55, 163, 164, 224
RAII Resource Acquisition Is Initialisation 100, 103, 109
RAM Random Access Memory 30, 162
RBF Radial Basis Function 131, 132
RGB Red, Green, Blue xxiii, 115, 134, 138

RGBA Red, Green, Blue, Alpha 115
RRE Rise and Run-length Encoding 82
SDG Single Display Groupware 13
SDK Software Development Kit 31, 52
SDL Simple Direct-media Layer 103, 120, 130, 131, 141,

163, 223
SEH (Windows) Structured Exception Handling 118, 135

SLOC Source Lines Of Code 97, 98, 138–141, 151,
153, 154, 157

STL Standard Template Library 98, 104, 117, 118
STU Situations, Tasks and Users 150
TCP Transmission Control Protocol 125, 127, 130, 131, 133,

136, 141, 145, 146, 224
UI User Interface 26, 36, 37, 158

USB Universal Serial Bus 52, 77, 137, 139, 141,
164

VNC Virtual Network Computing 49, 82, 83, 85, 126, 144,
145, 147

VU Volume Unit 76
WIMP Windows, Icons, Menus, Pointer 3, 34, 43, 135
WPF Windows Presentation Foundation 31, 32

XAML Extensible Application Markup Language 31, 32
XML Extensible Markup Language 31, 133

xxvi



Chapter 1
Introduction

1.1 Thesis Statement

This thesis broadly has two main goals:

1. Create an extensible framework for the rapid and flexible development of immersive
tabletop applications; and

2. Create a tabletop application for the natural sharing of authentic digital photographs,
with associated tools to automatically generate a digital photograph album, annotated
with audio versions of the stories told, as a side-effect of the photo sharing session.

Here authentic means users’ own digital photographs in their authentic, “raw” form: unla-
belled and unsorted, such as could be retrieved directly from a digital camera. Potentially,
this could be hundreds of images in a single folder. These aspects are particular challenges
for the design and implementation of an interface that allows such photographs to be
shared effectively. It is also particularly important if we are to take advantage of the
emotional attachment users have with their own photographs, when telling stories about
their photographs.

Sharing digital photographs is a good choice of task, as it leverages many of the
advantages the tabletop interface can provide to enhance collaborative and social interaction.
The task is also particularly well motivated by the changes digital photography has wrought
in the social interaction around our photos, and the dissatisfaction with the state of the
art in tools to effectively share our photos in digital form.

These two goals work together. Clearly an effective tabletop application framework will
assist the development of our photo sharing application. However, we also use this second
goal to initially drive the design of the framework, such that it has a focus on a user need,
rather than be driven by a particular piece of tabletop hardware. An additional focus on
flexibility and extensibility of the framework has meant that a number of other tabletop
applications have been developed in parallel, that are not related to photo sharing (see
§6.3).

1.1.1 Naming: Cruiser and PhoTable

To distinguish aspects of this thesis which address each of these goals, a naming convention
is used. This will be used throughout the thesis.

Cruiser is the framework and maps to the first goal. It encapsulates the underlying
libraries and interaction objects that have been used in the development of a number of
tabletop applications.

1



1.1. Thesis Statement CHAPTER 1. INTRODUCTION

PhoTable is the name of the photo sharing application and maps to the second goal.
This application is given a particular focus in this thesis and has been the primary motivator
behind my research. PhoTable has the potential to directly benefit a large number of
people, which makes for a compelling personal motivation. For example, it has a real
application in people’s own homes, as a candidate for the “coffee table of the future”.

PhoTable encapsulates some interaction objects specialised for the sharing of digital
photographs; various algorithms for the processing, organisation, presentation and ma-
nipulation of photographs; and techniques for capturing stories told around photographs,
correlating them to the interaction at the tabletop and processing these into an audio-
augmented digital photograph album that may be saved and subsequently viewed in a web
browser.

A third system, SharePic, is the precursor to Cruiser and PhoTable. It is discussed
primarily in Section 7.1. SharePic had a particular focus on usability and learnability while
manipulating images on a tabletop interface, with elderly users as a test population. It
was extensively refactored to become Cruiser (see §3.5) and thus influenced much of the
design of basic interface elements available.

1.1.2 Scenario

To give the goals further context, PhoTable was motivated by the following scenario:

Consider the situation of someone returning from a holiday, having taken a
large number (hundreds) of digital photographs. At this point, the photographs
are unsorted and unlabelled – identifiable by a serial number and a possibly
inaccurate1 timestamp obtainable from the Exif2 data . The photos are all in a
single folder, and potentially still on the digital camera itself3.
Using the collection of photos we wish to enable the user to accomplish two
things. First, a social interaction with one or more friends where the photo-
grapher shares the digital photographs and relates stories about them in a
natural manner (such as in Figure 1.1). Second, and purely as a side-effect of
this social interaction, we wish to construct an automatically generated digital
photo album of the trip.

For the social interaction we draw on the traditional ways people share and tell stories
around photographs – photo albums and loose prints – but we keep the photographs
in digital form, and provide access to the entire collection of recently taken, unsorted
photographs. Multiple users should be able to view the photographs and even pass them
around. We also build on a traditional setting for photo sharing – a coffee table – and
make it interactive, to support manipulation of digital photographs.

The digital album we create should be accessible off the table, as a series of web pages
that may be shared remotely, and able to be preserved for future sharing. The album shall
include, as well as the photos themselves, audio “captions” (the stories captured during the
sharing session) and trails through the photographs – album “pages” with logical sequences
through the most interesting photographs, as well as links to related photographs. Such
audio captions – captured, segmented and attached to the correct photograph with no

1Anecdotally, the author consistently forgets to adjust the timezone on his digital camera when travelling
abroad.

2[Technical Standardization Committee on AV & IT Storage Systems and Equipment, 2002]
3Research into how people manage their digital photographs after capture but prior to sharing [Kirk

et al., 2006] found that “trips” are also a typical storage behaviour. That is, users were observed to create
date-stamped folders full of unlabelled images – one folder for each trip. Thus, this approach may also be
used to share users’ existing archived photo collections, and not just recently taken photos still on a digital
camera.

2



CHAPTER 1. INTRODUCTION 1.2. Research Problem

extra work by the user – can serve as a reminder for the photographer of the content of
the photo, as well as form part of a “re-sharable” photo album for others to enjoy.

PhoTable allows people to focus on the social interaction, whilst enabling the capture
of information required to automatically construct the digital photo album. This takes
into account interaction data, such as when a particular photograph is selected and by
whom; the sequence of selections and the size users make the photographs; and any explicit
relationships that users create via attachment. Users may also create new images via a
cropping/collage tool. The actions are correlated against the captured audio stream in
order to segment and associate audio clips with the correct photograph.

1.2 Research Problem

Digital photography has changed the nature of photography and the photographic process.
Rather than a shoe-box full of hundreds of physical photos, we are moving to a world of
large hard disks filled with tens of thousands of photographs. While this transition creates
many possibilities in terms of editing, publishing and printing [Howard, 2003, Frohlich
et al., 2002], it also introduces challenges in terms of searching [Markkula and Sormunen,
2000], categorisation [Bauer et al., 2004], presentation, viewing and sharing photographs
[Howard, 2003]. While current digital photography applications offer many features, they
are designed for use on traditional desktop machines (Windows, Icons, Menus, Pointer
(WIMP)) and primarily focused on single users editing, publishing or printing photos.

The need for more suitable ways to share digital photographs is well documented
[Crabtree et al., 2004, Frohlich et al., 2002, Rodden and Wood, 2003]. For example, the
family photo album remains a common item in households today, and continues to be used
for social interaction as digital images do not provide the same emotional satisfaction as
photo albums [Jin et al., 2004]. Yet, photo albums have limitations: they are not easily
searched or sorted; they are time-consuming to create (a task typically left for a sole
person [ibid.]); and they cannot be shared remotely – users must be collocated. Photo
albums are also fixed – it is difficult for one to enlarge or copy an image for further sharing
opportunities.

Digital photographs can, of course, be printed. Another typical photo sharing scenario
involves passing a pile of holiday pictures around a coffee table with friends, having recently
received them back from the developer. However, printing adds cost and a time lag. In
many cases our digital photographs are never printed. Non-printing means that traditional
methods of sharing photographs are not available, whereas printing fails to leverage all the
benefits of the digital technologies, such as enhanced browsing (e.g. zoom), rapid searching,
sorting and economy of storage.

However, emerging interfaces such as the tabletop interface in Figure 1.1 afford not only
ways to support traditional techniques of sharing photographs such as photo albums and
“coffee table” sharing, but also offer new ways of sharing and annotating our photographs
in a social manner; leveraging digital technology. For example, novel searching techniques
are available (e.g. Morris et al. [2006a]), and we can also explore digital audio (e.g. Morris
et al. [2004a]).

To date, little research has investigated social behaviour around digital photograph
sharing and tabletop interfaces, particularly with users’ own digital photographs. The
tabletop interface is still new, and it is challenging to build an infrastructure robust and
efficient enough to support real photo collections, while making it natural enough to
encourage storytelling. This thesis addresses the problem of how to enable people to
share their digital photographs in a collocated social setting more effectively. Second,
it addresses how software design for the tabletop interface can be used to facilitate this
sharing experience. It also considers how we may capture the stories told around the

3



1.2. Research Problem CHAPTER 1. INTRODUCTION

Figure 1.1: Two people using PhoTable

photographs, using them to annotate an automatically constructed digital photograph
album as a side-effect of a natural social photo sharing session.

1.2.1 Traditional Photo Sharing

One inspiration for this thesis is the Japanese pastime of miyagebanashi ( 4).
There is no direct translation to English, but it roughly translates as “tale of one’s travels”
– it is the stories that one collects whilst travelling. However, there is further meaning.
Miyagebanashi is derived from omiyage ( 5), meaning souvenir ; a gift that you
give another upon your return from travelling. Thus miyagebanashi is considered a gift in
Japan and is meant to be shared.

However, except amongst close relationships, Japanese etiquette discourages opening
wrapped gifts in front of the giver. Dropping the prefix o- from omiyage is telling, in that
some of the formality associated with gift giving is not accorded to miyagebanashi – it is a
social experience. Indeed, some stretch of logic is required to unwrap a story. This also
means that the souvenirs given as gifts are rarely used as props to assist in any storytelling,
but not so of photos.

Miyagebanashi occurs in cultures other than Japan; we just do not have a word for
it. Anecdotally, my own experiences have involved passing around a stack of developed
photographs, taken by a friend recently returned from holidays. Questions were often
asked, and the more interesting photographs were punctuated with a story.

4Or in Kanji.
5Or in Kanji.

4



CHAPTER 1. INTRODUCTION 1.2. Research Problem

Increasingly, these sharing experiences are becoming digital. But, personally, I have
not been completely pleased with the transition, and this displeasure is another part of my
motivation behind pursing photo sharing in this thesis.

In my own experience, digital variants of miyagebanashi come in many forms. One –
email with photo attachments – reduces the storytelling aspect down to a caption associated
with the photo, or drops the commentary altogether. Another involves passing the digital
camera itself around a coffee table, with photos being viewed on the small, digital camera
screen; pointing out details is clumsy at best. Using a data projector or television set is also
an option, but these require preparation, distance recipients from the photographs, reduce
the propensity to make eye contact and can discourage story recipients from interjecting
(e.g. with questions), due to the more formal nature.

Most commonly, however, my friends and family have shared their photographs on
a computer screen. A laptop can be relocated to a table so that people may sit, but
sometimes the photo sharing involves moving to another room and standing, with everyone
facing the screen. Stories are told by the storyteller whilst gesturing at the computer
screen, but a desire to make eye contact often means the storyteller turns to look over their
shoulder. This eye contact is important in storytelling amongst small groups as it conveys
a measure of how interesting the story might be, and whether the storyteller should move
on or elaborate the story further. But on a computer, when the story evokes a desire to
find a particular photograph, finding it takes time and disrupts the original story, making
it difficult to resume. In summary, storytelling with digital photographs on a traditional
computer is clumsy.

All of these digital sharing techniques suffer from a disconnectedness from the physical
photograph, a lack of social spontaneity, and an inability to effectively attain eye contact,
such as is easy when being seated across from one another. They also offer varying support
for multiple people in the audience, who are to receive the stories. Some techniques either
require preparation of the photos beforehand, such as creating a slideshow; or do not offer
an efficient way to find a particular photograph about which you wish to speak.

Progress is being made. Social networking sites such as Facebook allow comments to be
made on uploaded photographs, and these comments can evolve into an asynchronous tale
about it. I have also had reports of people using remote desktop and videoconferencing
applications to relate stories about on-screen photographs remotely (also, e.g. Sumi et al.
[2008]). These advances could only have come with the digital photography revolution.
However, they do not help improve the collocated photo sharing experience.

My personal experiences aside, formal studies have also reflected upon the increasing
dissatisfaction with sharing photographs in digital form. The need for more appropriate
ways to share our digital photographs is well documented [Crabtree et al., 2004, Frohlich
et al., 2002, Rodden and Wood, 2003, Jin et al., 2004].

1.2.2 Sharing Digital Photographs

Crabtree, Rodden, and Mariani [2004] observed that existing ethnographic research about
“photo-talk” – the conversation and storytelling that occurs around photographs – “has
identified an aversion amongst many users towards engaging in collaborative sharing [of
photos] through the use of existing digital technologies.” Instead, many tend to print
them off when they want to share in a collocated manner. For example, one study of
11 families using both digital and conventional photography [Frohlich et al., 2002] found
90% of conversation around photographs occurred with loose prints or photo albums.
Crabtree’s own non-digital ethnographic study draws attention to the importance of
“situated arrangements of collaboration and interactional gestures to the achievement of
photograph sharing” and suggest that new interfaces need to support this as well as the
“production of accounts” (i.e. the telling of stories).

5



1.2. Research Problem CHAPTER 1. INTRODUCTION

The process of storytelling at a tabletop has several key elements:

Presentation: presenting the collection of photos at the table in a form so that a storyteller
will be able to find those needed for their story;

Selection: providing interaction elements that enable a storyteller to select the particular
photos they need for a story;

Storytelling: providing interaction elements that make it natural for a storyteller to talk
about a set of selected photographs to the listener(s) at the table.

This sequence matches elements identified by Crabtree et al. [2004], who also identify the
increasing possibility of a disconnection between digital photographs and the everyday
practises through which photographs are shared.

In my work, digital photographs will be the focal point for the user interaction. That
is, photographs appearing on the table will drive the actions of the users and motivate the
use of the tabletop interface, in ways not possible with traditional displays, by providing
natural methods of manipulating the images, similar to interactions in the physical world.
As a multi-user activity, the tabletop interface offers potential for improved photo sharing
experiences.

1.2.3 Tabletop Interfaces

A tabletop interface is an interactive horizontal display. This thesis specifically looks at
tabletop interfaces with support for multiple collocated users, and without keyboards or
mice present. Keyboards and mice would detract from the level of immersion, creating
a barrier to natural photo sharing, and are clumsy to use in multi-user environments.
Moreover, they do not fit well with the normal tables used for meals and social interactions
(e.g. the coffee table).

Hardware support for the tabletop interface is now available, although the extent to
which multiple touches and multiple users are supported varies. However, what is clear
is that the interface is attractive both in research communities and commercially, with
announcements of tabletop interface technology from Microsoft, Phillips, HP, Mitsubishi
Electric, Hitachi and Smart Technologies, as well as various prototypes amongst researchers.
As the tabletop emerges as a viable interface for home and office environments, research is
needed to examine the requirements in software aspects of the user interface in order to
support effective interaction with multiple users on a horizontal, collaborative surface.

New tabletop hardware platforms continue to appear, but hardware is not a focus of
this thesis. Further, while the hardware arena is changing fast, much is still to be achieved.
Thus, hardware independence is a particular goal of this thesis.

When considering software aspects of the tabletop interface, much of the research from
traditional vertical or single-user interfaces do not apply to the tabletop interface. For
example, tabletop interfaces should support multiple users at different orientations and
direct interactions. While the TabletPC has motivated some research of interfaces for
the use of direct input devices (i.e. the stylus), support for multiple users has not been
a requirement. With multiple users around a tabletop comes problems of orientation,
legibility and input coordination. Furthermore, in this thesis a goal is to remove the
keyboard and mouse altogether for an immersive, natural storytelling experience. This
creates additional challenges in providing flexible user input.

Recent research in tabletop interfaces has identified many challenges. Usability and,
especially, learnability, are critical and are important to validate usefulness of new interfaces.
Further techniques in software aspects of the interface, and systematic user studies are
required if we want these interfaces to be accessible for a wide range of the population in a
variety of situations.

6



CHAPTER 1. INTRODUCTION 1.3. Requirements

1.3 Requirements

To satisfy the goals outlined in the thesis statement, and support our usage scenario, a
number of requirements have been identified.

Natural interaction at a table

This is required so that one user may tell stories about their photographs while interacting
socially with another user, without being encumbered or distracted by the need to also
interact with the computer. A natural interaction means firstly that the users are comfort-
able telling stories; they can quickly learn to use the interface and focus on storytelling.
However, this is also a requirement for the effective segmentation of photo-talk into stories.
We want to reduce the dialogue “overhead” that is not related to storytelling, so that we
may construct the best audio clips to become part of the digital photograph album.

A natural interface is one that is learnable, non-intrusive (i.e. immersive or pervasive),
highly usable, and also functional. We also evaluate it in terms of gestalt: can users
effectively tell stories about their photographs, and can we capture stories, using them to
annotate the correct photograph.

Software infrastructure

We must have the software to support the interaction with digital photographs. However,
when our research began, there was no viable software infrastructure that could support
the natural sharing of many, high-quality digital photographs on an interactive tabletop.
In particular, we did not want to use interface elements associated with traditional, single-
user vertical displays as this would detract from the naturalness of the interaction. By
building a software framework that effectively supports natural tabletop interaction (around
photographs or other digital media), we also have the opportunity to explore a range of
other applications.

Flexible prototyping

A significant limiting factor in the ability to reuse any software infrastructure is its flexibility.
That is, its capacity to support experimentation, and the rapid exploration of new interface
prototypes and wholly new applications. To support this we require a framework – a
reusable, semi-complete application that can be used to produce custom applications [Fayad
and Schmidt, 1997]. To retain flexibility the system must also be cross platform, in terms
of the computer hardware, input devices and operating system. The framework approach
combined with a plugin architecture maximises flexibility by encouraging code reuse while
encapsulating experimental parts, as well as platform- or hardware-specific components
into loadable plugins.

PhoTable functionality

Once we have our flexible software framework providing natural interaction at a tabletop,
we are free to explore and experiment with the functionality we need to realise PhoTable.
There is overlap between functionality required for PhoTable, and functionality that can
be made available for reuse in the Cruiser framework. The combination requires support
for recording and manipulating audio, manipulating photographs and other images6,
techniques to present large collections of unsorted photographs to the user that enable

6This includes manipulation by users at the interface, as well as loading, management of metadata and
other image manipulation tasks hidden from the user.

7



1.4. Contributions CHAPTER 1. INTRODUCTION

Figure 1.2: Thesis Outline

effective storytelling, and a range of supporting tasks such as deletion, cropping, grouping,
copying and providing appropriate feedback.

1.4 Contributions
The main contribution of this thesis is the development of a software framework providing
applications with ways to interact naturally at a table. PhoTable is a key motivation
for this, and is used as the initial benchmark for performance and as an acceptance test.
However, using a structured approach to design of both the user-view aspects of the
interface, and the developer-view of the software, we aim for generality and flexibility in
the interaction and in the framework.

The design approach combines user needs and software design with each informing
the other. User needs drive the search for creative solutions to technical problems of
software. And, as new software is built, user studies inform the understanding of the
software functionality and drives design. This interplay is shown in Figure 1.2; showing
the thesis outline, which maps to the contributions.

In summary, the contributions of this thesis are:

• A powerful software framework (Cruiser) for exploring natural tabletop interaction,
including:

– an approach to interface design driven by interaction guidelines (Ch. 3),
– design and implementation of user interaction primitives and higher level inter-

face components (Ch. 4),
– design of the Cruiser framework and plugin architecture (Ch. 5);

• Realisation of the framework (Ch. 5);

• The PhoTable application for sharing digital photographs, including:

8



CHAPTER 1. INTRODUCTION 1.4. Contributions

– design and implementation of interface elements suited to browsing and sharing
unsorted collections of photos (§4.5),

– tools and the supporting framework with which to automatically construct a
digital photo album from a photo sharing session (§4.6);

• A multi-faceted evaluation, comprising:

– systems evaluation based on:
∗ scenarios of use, with a vision of what could be (§1.2),
∗ design rationale (§3.5), and
∗ design critique, with case studies (Ch. 4) and reflections (Ch. 7),

– critical analysis of the effectiveness of the Cruiser framework (Ch. 6) based on
its:

∗ expressiveness towards the realisation of PhoTable (§4.5),
∗ use by others to implement new tabletop applications (§6.2), and
∗ performance both in terms of rendering speed and resource usage (§6.4),

– usability evaluation of Cruiser interface components (§7.1),
– extensive use for exhibitions and demonstrations (§7.2),
– studies of people using PhoTable (§7.3); and

• A literature survey of the state-of-the-art in tabletop hardware, tabletop interaction
techniques, tabletop software frameworks, and digital photograph sharing (Ch. 2).

9



1.4. Contributions CHAPTER 1. INTRODUCTION

10



Chapter 2
Background

Since this thesis aims to create a software framework that can support creation of tabletop
applications, such as PhoTable, this background chapter needs to provide an overview of
tabletop hardware. This is what has recently made interfaces such as Cruiser and PhoTable
possible, and defines the constraints within which the Cruiser framework must operate.
Some tabletop hardware has been designed to support particular styles of interaction, but
there has also been initial work on interaction techniques relevant to tabletop interfaces in
general. Clearly the hardware is no use if we cannot interact with it, so the hardware is
followed by a review of current tabletop interaction techniques.

The chapter continues with an overview of current software frameworks for tabletop
interfaces. These are relevant to Cruiser as they represent other approaches to supporting
the creation of tabletop applications and interaction primitives. They also inform our
design and constitute the current state of the art.

The remainder of the chapter gives relevant background for the design of the PhoTable
application, covering digital photography and photo sharing practises; and then audio-
photography, background to a particularly novel feature of PhoTable – the serendipitous
capture of stories told about photographs in order to automatically create an augmented
digital photograph album. These both are needed to set the foundations for designing the
PhoTable application.

Cruiser provides a versatile framework for the rapid development of new tabletop
applications, which significantly broadens the scope of research relevant to this thesis.
Main aspects to address are the tabletop interface, tabletop application frameworks, and
interfaces for sharing digital photographs. Some of the background links with subtle
design decisions relevant to the development of Cruiser, or to specific tabletop applications
discussed later in this thesis, which the Cruiser framework has enabled. Links to these
sections in future chapters are provided in the relevant background sections.

First, it is important to give the background some focus:

Rationale

Because of the novelty of the tabletop interface, and ongoing research to create more
effective tabletop devices, there is a large body of work focused around particular hardware
prototypes. While novel hardware is an essential requirement for natural interaction of
this type, for this work it is undesirable for any particular form of tabletop hardware to
drive the application development and evaluations. This may result in an application that
is tightly bound to a particular piece of hardware. Rather, this thesis starts with a focus
on user needs, assuming the hardware is developed.

11



2.1. The Interactive Tabletop CHAPTER 2. BACKGROUND

One key issue, is that there are design constraints that follow from the nature of a
tabletop interface. These are critical for this thesis. Also, the existing hardware defines
some constraints on what is currently possible and this, too, is important to consider. My
work focuses on the software aspects of design – ensuring the user interaction with objects
depicted on screen is natural, learnable and usable. This includes both the way objects
are depicted and how they respond to and behave on user input. Key drivers for design
are to ensure suitable quality of the image (within the current and projected limits of the
hardware), learnability, affordances, feedback and flexibility.

The need and design focus of this thesis is to enhance the sharing of digital photographs
at a tabletop. A side effect that the PhoTable user interface also supports is the capture
of social interaction between collaborating users so that it can be archived and shared
asynchronously, remotely and repeatedly. Such sharing was traditionally achieved by the
photo album or scrap book, and the interaction was rarely captured. However, digital
photographs are rarely put in this form, either because of added expense, inconvenience or
lack of time; in part due to the vast numbers of digital photographs we take, compared to
photographs on film. And yet, by leveraging computation opportunities arising from the
digital, we are given a powerful tool to automate capture of the social interaction around
digital photographs.

This research aims to make the task of making an audio-augmented digital photo album
not only possible, but also enjoyable. Rather than a single person putting together an
album, the process becomes a group activity with audio captions generated implicitly
from natural and often spontaneous storytelling. Based on the related work to follow,
this is a novel use of the tabletop interface, and the focus on design makes it particularly
compelling and applicable to future research for the tabletop interface and the sharing of
digital photographs.

2.1 The Interactive Tabletop

The tabletop interface was first suggested by Newman and Wellner [1992] for use by an
individual. However, tabletops have great potential for supporting formal and informal
collaboration, the sharing of digital media, communication, games, learning and reminis-
cence. We are just beginning to explore the interaction possibilities offered by the tabletop
interface, including the provision of some interactions that are not well supported by tradi-
tional desktop computer displays. A table involves a social dimension and an environment
where users may interact with each other, and with a computer, in an informal, face-to-face
setting. Interaction on a tabletop shares some similarities with touch-screen user interfaces
(e.g. early work by Minsky [1984]), but the social dimension, and multi-user interaction
makes tabletops unique.

With groups of people collaborating, it becomes cumbersome to provide multiple
keyboards and mice. While this may work on a vertical, wall-sized display [Izadi et al.,
2003], on a tabletop there is simply insufficient space and passing a single input device is
impractical, it interrupts the flow of collaboration, and ultimately results in productivity
loss [Kraut, 2003]. To avoid this, PhoTable has the goal of operating without keyboards
and mice, to provide a pervasive computing environment, where the users may not realise
they are using a computer in the traditional sense at all. An interactive tabletop is well
suited to this, although some tangential research does involve augmenting the interactive
tabletop with traditional input devices such as keyboard and mouse (e.g. Perron and
Laborie [2006]).

The need for technology to support natural tabletop interaction for multiple users
has prompted researchers to approach the hardware problem from a number of direc-
tions. One of these directions addresses the problem of determining where each user is

12



CHAPTER 2. BACKGROUND 2.1. The Interactive Tabletop

acting on the display. Devices such as the DiamondTouch [Dietz and Leigh, 2001] and
SmartSkin [Rekimoto, 2002] use capacitive coupling with the human body to detect and
distinguish multiple touches. Computer vision techniques are used in other work, such
as the EnhancedDesk [Nakanishi et al., 2002], the Visual Touchpad [Malik and Laszlo,
2004] and others, such as [Song and Takatsuka, 2005], with partial success. More recently,
techniques such as Frustrated Total Internal Reflection (FTIR) [Han, 2005, Smith et al.,
2007] and reflection of infrared light [Matsushita et al., 2004, Microsoft Corporation, 2007]
are showing promise, and will be discussed later in this chapter.

There is also the possibility of adapting mature, typically stylus-based technologies such
as SMARTBoards [Martin, 1995], Hitachi StarBoard [Hitachi Ltd., 2008], Mimio [Virtual
Ink Inc., 2005] or eBeam [Luidia, Inc., 2004], traditionally for vertical presentation displays
(e.g. whiteboards), in order to support multiple users on a large, horizontal surface. Recent
developments have also allowed the Anoto pattern [Guimbretière, 2003], usually reserved for
capturing writing on paper printed with a special dot pattern, to be used in a “streaming
paper” mode to act as an input device for a rear-projection tabletop (e.g. Leithinger and
Haller [2007]). While collaborative touch technology and computer vision techniques are
still at an early stage, it is attractive to explore these, stylus-based alternatives to touch,
especially as a pen is particularly natural for some interactions.

These hardware technologies define the interaction environment that is currently
supported for tabletop interaction and establish some constraints on tabletop interaction
and software design. They will be discussed briefly in this section. Furthermore, tabletop
research thus far has been strongly driven by hardware. The Mitsubishi DiamondTouch
[Dietz and Leigh, 2001] has been particularly influential in motivating interesting tabletop
research. First, I will present relevant background from research using DiamondTouch,
followed by a brief overview of other tabletop devices used in the field.

2.1.1 DiamondTouch

DiamondTouch is a touch input device developed by Mitsubishi Electric Research Laborat-
ories (MERL) and is an example of Single Display Groupware (SDG) [Stewart et al., 1999],
a term used to describe most current tabletop interfaces. It was developed by Dietz and
Leigh [2001] as a prototype, and is now available for purchase. However, at this stage units
are hand fabricated and costly (over US$10 000).

DiamondTouch supports arbitrary parts of the body being used to interact with
the display. In practise, two hands, fingers, thumbs or palms are typically all that are
used. When users touch the DiamondTouch, weak electric signals for the row(s) and
column(s) with which they make contact are transmitted through each of their bodies to
grounding pads upon which they sit. In this way, DiamondTouch supports multiple users
unambiguously. That is, it can identify which user’s hands are touching the surface, as
well as where they touch.

DiamondTouch is particularly noteworthy because of its support for multiple touches,
as well as being able to distinguish the user to which the touch belongs. It is also one of
the most mature tabletop hardware platforms, and has been used for a number of tabletop
studies. This subsection will also discuss some of these studies, as they are useful to inform
the design of PhoTable.

Group Size and Table Size

One potentially important property of a table is its size: it may be that this affects the
quality and effectiveness of interaction. This has been explored in one study by Ryall,
Forlines, Shen, and Morris [2004] who explored the effects of group size and table size with
interactions on the DiamondTouch and a version of the Poetry Table application. This

13



2.1. The Interactive Tabletop CHAPTER 2. BACKGROUND

displays a number of words, each in a box, arranged in circles around the table and allows
the construction of a poem, by dragging words into a container; aligning the words. A
total of 45 participants aged 18 to 25 were recruited from universities and organised into
groups of two, three and four.

After being given instructions and allowed to experiment with the interface until they
were comfortable, participants were asked to collaboratively “build the printed poem as
quickly and accurately as you can”. They found that table size (either 80cm or 107cm
across the diagonal) had no statistically significant effect on the task, but groups with more
people were able to construct the poem more quickly. However, they did discover that
users felt that the larger table was better for the task. These observations may be relevant
when sharing photographs, but our sharing task is typically driven by the storyteller and
these results may not be applicable as there is no time pressure in our task. This study
also focused on a single task, and the findings may not generalise to other tasks, bigger
differences in table size, and other factors.

Object Ownership

Because DiamondTouch is able to reliably identify the user to whom a touch belongs, it is
an attractive interface to explore techniques that involve enforcing ownership of virtual
objects.

In the investigation of techniques for transferring ownership of items projected on the
tabletop surface, Ringel, Ryall, Shen, Forlines, and Vernier [2004] conducted an evaluation
with DiamondTouch. They found that their “Relocate” sharing technique was both more
efficient and less error prone, as well as preferred, over their “Resize”, “Reorient” and
“Release” techniques.

The relocate technique is similar to the basic technique for sharing private objects in
Cruiser; using personal spaces and leveraging DiamondTouch to enforce permissions in one
study [Apted et al., 2006]. In the more recent PhoTable experiments, private spaces were
not explored. However, with DiamondTouch hardware, the Cruiser framework would, for
example, be able to let only the owner of a photograph extract it from a browsing object,
in order to share it. This suggests a fifth technique to consider. That is, allowing only the
owner access to interface objects that create sharable objects.

Interaction with Other Devices

Often there is a desire to move data onto or off the tabletop interface, as a tabletop’s
immersive nature is not suited to some interactions (e.g. those requiring a keyboard).
Alternatively, there may be a desire for media created on the tabletop to be presented or
shared on other devices.

MultiSpace [Everitt, Shen, Ryall, and Forlines, 2006] aims to explore the role of the
interactive tabletop for the coordination of electronic media in multi-device environments.
Using the table as a central hub of a meeting room, electronic documents can be distributed
among meeting participants at a tabletop as well as on wall displays via an application built
with DiamondSpin (§2.3.1). Media is transported using object Containers and DocuBits; a
portion of captured screen area and associated editable text.

Cruiser does include some methods for interaction with other devices beyond merely
providing input. However, it is not a focus of the framework, which first aims to provide
immersive interaction on a single device. Importing media from digital cameras and other
removable storage, and export of on-screen objects to a wall display (§4.4.3) is currently
supported. However, the protocol used is not yet formalised.

14



CHAPTER 2. BACKGROUND 2.1. The Interactive Tabletop

Other DiamondTouch work continues the effort to coalesce work on multi-surface,
multi-device visualisation groupware into a framework called DiamondSpace1 [Shen, 2006].

Searching and Tagging

Morris, Paepcke, and Winograd [2006a] present TeamSearch, a way of specifying metadata
tags in a search using fixed, discrete search terms and “query tokens”. Participants form
search criteria by individually moving their tokens onto the search terms. Results are
shown in front of each user – either collectively, with all users’ terms satisfied in all results
displayed; or in parallel, with each user being presented search results from only the terms
they had specified.

Related to this is TeamTag [Morris et al., 2006b], which uses a modified interface
targeted at supporting collaboration among bio-diversity researchers. The tags that may
be chosen are assigned to photographs by touching the textual tag after first selecting the
photograph. Tagging could be performed concurrently by all participants. Performance
with a shared source for tags was compared with a variation where each participant had
their own source of tags.

Searching and tagging are applications that were considered when developing Cruiser,
and novel approaches using Cruiser were explored in two Honours’ projects (see §6.2).
When considering the PhoTable application, such tasks are clearly relevant for managing
personal collections of digital photographs. However, PhoTable uses a more subtle approach
to search and assigning metadata (§4.5) and does not profess to be an application to manage
photo collections (see also §2.4.1 Photo Sharing Applications).

Other DiamondTouch Applications

Ryall, Morris, Everitt, Forlines, and Shen [2006] summarise their informal observations
of tabletop use, by users visiting their lab on a wide range of applications. Applications
include LobbyTable, a set of games running on a coffee table in the lobby of MERL; and;
DTLens, a 2D map browsing application, with lenses showing overlaid metadata [Forlines
and Shen, 2005]. They present an extensive set of observations to complement published
controlled user studies.

2.1.2 Other TableTop Hardware Prototypes

DiamondTouch is just one instance of tabletop hardware, but it has motivated significant
exploration of non-hardware aspects of the tabletop interface. It is important to consider
alternative hardware in designing a framework for general-purpose tabletop interaction.
This subsection gives a brief review of other tabletop hardware prototypes that have been
presented in research. The goal here is not to be exhaustive, but to indicate the range and
scope of the published work.

SmartSkin SmartSkin [Rekimoto, 2002] is similar to DiamondTouch in its use of capacit-
ive coupling. However, receptors are arranged in a grid, rather than a lattice – an 8×9 grid
of 72, 100mm square sensors are used in one implementation of SmartSkin, as opposed to
160 + 96 (256), 5mm-wide strips in DiamondTouch. SmartSkin uses bicubic interpolation
of sensor values to effectively increase its resolution, and then image processing techniques
to identify points of contact. SmartSkin is also able to detect proximity, leading to a
number of interesting hardware applications [Rekimoto et al., 2003]. However, SmartSkin
is currently unable to identify to which user a point of contact belongs, making tracking of
multiple users problematic and limiting some interaction possibilities.

1Also http://www.merl.com/projects/dspace/, verified 2008-01-28.

15

http://www.merl.com/projects/dspace/


2.1. The Interactive Tabletop CHAPTER 2. BACKGROUND

Figure 2.1: The 2nd Generation InteracTable, from [Streitz et al., 2002]

Visual Touchpad The Visual Touchpad [Malik and Laszlo, 2004] explores multi-touch
gestural interaction and one application developed for it handles picture manipulation.
Interestingly, translation and rotation can be accomplished with a single finger and in
the same movement by rotating the finger itself. This is achieved solely through image
processing – the Touchpad itself is just a piece of paper. However, in the reported
implementation, this means an image cannot also be projected onto the surface, so the
interaction is indirect, making use of a vertical display. Also, multiple users are not
supported.

FTIR Displays Han [2005] uses a technique called Frustrated Total Internal Refelec-
tion (FTIR), which is force-sensitive, and provides high resolution and scalability. One
implementation uses a drafting table style measuring 36 x 27 inches with rear projection
and has a sensing resolution of better than 0.1 inches at 50Hz. Stroke event information
is sent to applications using the OSC protocol over UDP. Current publications have only
discussed the hardware. A number of demonstrator applications have been developed, but
not released publicly. More information is available2.

Lumisight The Lumisight table [Matsushita, Iida, Ohguro, Shirai, Kakehi, and
Namemura, 2004] is a rear-projection tabletop featuring four LCD projectors and a special
tabletop surface, which transmits light from each projector only in a specified direction.
Thus four users may sit at the table and each may see a different image rear-projected onto
the table. It is not a touch interface – currently users must use traditional input devices
– keyboards, mice and sometimes joysticks. Lumisight is a heavyweight solution to the
problem of providing private information on the tabletop display.

Work using Lumisight has analysed the behaviour of users and how the group experience
changed when using the shared tabletop rather than four traditional upright displays. In the
context of a “catch the fugitive” collaborative maze game, Matsuda et al. [2006] found that
“membership closeness enhances the performance advantage of the Lumisight table” (i.e.
people familiar with each other interact more efficiently). This is an interesting observation,
that should be considered when formulating user studies, for tabletop interfaces.

InteracTable Part of the i-LAND project [Streitz et al., 1999] from the Ambiente Lab at
the Fraunhofer ISPI, the InteracTable is intended as a commercially viable interaction device
for face-to-face collaboration in a work environment [Streitz, Tandler, Müller-Tomfelde,
and Konomi, 2001]. The 2nd Generation InteracTable [Streitz et al., 2002] is shown in
Figure 2.1.

2http://mrl.nyu.edu/~jhan/ftirtouch/ verified 2008-07-24.

16

http://mrl.nyu.edu/~jhan/ftirtouch/


CHAPTER 2. BACKGROUND 2.1. The Interactive Tabletop

Streitz et al. [1999] coin the term Roomware®, defined as the result of integrating
information and communication technology in room elements such as doors walls and
furniture. Along with their InteracTable®, they also present the DynaWall®, CommChair®

and ConnecTable®; supported by their software BEACH, a cooperative hypermedia envir-
onment; MagNets, a creativity tool built upon BEACH and; PalmBench, an application
for a PDA, allowing information to be “intuitively beamed” to the DynaWall [Streitz et al.,
2002]. The BEACH framework is discussed further under in Section 2.3.5.

u-Texture The u-Texture is a self-organisable touch-sensitive panel, which can be con-
nected to other u-Texture panels by “non-expert” users to create smart surroundings. Each
panel changes its own behaviour, based on its location, inclination and the location of
surrounding panels. One mode provided is the CollaborationTable, initiated when panels
are connected horizontally (e.g. in a square). Users can then share media items from their
own panel with neighbouring panels, by dragging the items to the edge of their screen.

Distributed Tabletops

Another important area of tabletop research investigates the support they may provide for
distributed collaboration.

The goal of the AugmenTable is “to take advantage of designers’ working habits in
horizontal surfaces to facilitate the transition between the tangible intermediary objects
and the existing digital environments of the company” [Perron and Laborie, 2006]. The
design team was split between Stanford in the USA and Tolouse in France and so the
platform has also been designed to support geographically distributed design activities.
The AugmenTable is not an input device – wireless keyboards and mice are used, as well
as an eBeam wireless stylus, to interact with it. The Stanford AugmenTable has two sets
of keyboards and mice at opposite sides of the table, but the software support for this
hardware is not discussed. Distributed applications are still being designed – Perron and
Laborie [2006] present some foreseen interaction possibilities.

ViCAT is a research project at the National ICT Australia whose aim is to allow
“intense” collaboration between multiple users at geographically distributed sites [Chen
et al., 2006]. The intention is to give the impression of having all the users gathered
around a single table. The current focus is on videoconferencing and collaborative control
of traditional input methods (i.e. keyboard and mouse), and has grown into the Braccetto
project.

2.1.3 Commercial or Unpublished Hardware

DViT [Martin, 1995, SMART Technologies Inc., 2003] uses four infra-red cameras to
determine the location of contact with a large, vertical screen. This means touches are
only identifiable as “nth most recent touch”, and typically up two two points are supported.
This can make collaboration on the same screen difficult – a break of continual contact
or multiple touches close together are unable to be tracked correctly. Coloured pens are
provided, but again the association is temporal – the next colour will be that associated
with the bay from which a pen was most recently removed.

So far, commercial applications for the DViT have focused only on adding single-point
touch to existing applications on a traditional Windows desktop. SMART have not yet
released an application that harnesses the multi-point possibilities of their hardware. In
addition, the hardware is currently only marketed as a vertical display. However, there is
speculation [Morris, 2006] that they are working on hardware and a set of applications
purely for an interactive tabletop.

17



2.1. The Interactive Tabletop CHAPTER 2. BACKGROUND

However, SMART’s DViT technology has been used in a number of research applications.
Interface Currents [Hinrichs, Carpendale, and Scott, 2005b] and related work using the
Innovis display framework (see §2.3.3), for example, use DViT and leverage its ability to
track two simultaneous touches.

Other commercial hardware is also in development. HP’s “Misto” Coffee Table [HP
Labs, 2006] appears to have a particular focus on photo collection browsing, but little is
known of it apart from the press release. Phillips’ Entertaible [Phillips Electronics, 2006]
has a focus on tabletop recreational gaming in the home.

Microsoft Surface is noteworthy and makes its most significant contributions as a
proprietary software framework, so will be discussed with other Frameworks for Interactive
Tables in Subsection 2.3.2 on page 29.

2.1.4 Section Summary

The properties of the hardware will clearly affect how we design our software to interact
with it. This is important for the design of the Cruiser framework, particularly because
at this stage of development we do not want to commit to one specific type of hardware.
Factors to consider include:

• whether interaction is constrained to purely single- or multi-touch;

• whether touch points may reliably be identified as particular fingers, users, or hand/
object shapes;

• whether interaction may be via a tool (e.g. a stylus);

• whether physical “clutter” on the table leaves interaction unaffected (e.g. if it prevents,
or creates spurious input);

• whether the display may be occluded or have shadows cast upon it (e.g. when
projected from above, meaning that a user leaning forward may occlude the display);

• whether the display works in various (or adverse) lighting conditions;

• the ability to interface with other artifacts (e.g. paper, laptop computers);

• screen privacy (i.e. allowing parts of the display to only be seen by a particular user);

• the optimal display size and resolution (dot pitch);

• a large field of view, and orientation independence (i.e. unaffected by viewing angle,
or perhaps deliberately tailoring the view for specific angles);

• whether it is robust, with regard to the potential for breakage, spillage, and use as a
normal table (for reading, placing objects upon, etc.);

• the responsiveness (interaction lag);

• setup and calibration requirements;

• whether there is parallax error for touch (e.g. when rear-projected).

From these, one could derive the properties that the ideal tabletop hardware might have.
But with current technologies, the properties are not mutually exclusive. For example,
overhead-projected displays allow the surface to have arbitrary robustness and good field
of view, but create shadows, require calibration and do not work well in brightly-lit
environments; rear-projected or embedded displays can be covered in thick glass or acrylic

18



CHAPTER 2. BACKGROUND 2.2. Interaction Techniques

for robustness but this causes parallax error and can limit viewing angles (e.g. due to
reflection or the screen technology). This list is not exhaustive – the hardware technologies
are moving quickly, and more properties will emerge; perhaps some that currently exist
primarily in peoples’ imagination (e.g. interactive volumetric displays).

While hardware is not the focus of this research, Cruiser has been designed for platform
independence (§1.2.3). Yet, to be able to achieve a workable design, it is essential to
design software aspects of tabletop systems with a grasp of the capabilities of the tabletop
hardware. The Cruiser system has been tested on DiamondTouch, Mimio, SmartBoard
and the Braccetto table made by JumboVision, as well as traditional mouse, for which
aspects of the application hold promise for those not using an interactive tabletop interface.

2.2 Interaction Techniques
This section covers interaction techniques and observed behaviours that are decoupled
from a particular piece of hardware or software. This research is important because it
takes the focus away from an implementation in order to highlight human behaviour,
potential pragmatic problems in tabletop interface design, and more generalised interaction
techniques for collocated tabletop collaboration.

All research mentioned so far has involved some novel hardware prototype and the
applications researchers have built around it. In what follows, researchers have taken a step
back to consider the core problems involved and present findings that could be relevant to
any tabletop, gestural or collaborative interface.

2.2.1 TableTop Interaction

Given the novelty of tabletop interfaces, there has been little work with a focus on design
for tabletop interfaces. There has been some foundation work such as Scott [2005] who
studied users performing collaborative tasks and managing images at a tabletop towards the
design of personal spaces and storage bins. Scott, Grant, and Mandryk [2003] established
a set of guidelines, which suggest that technology must support:

1. natural interpersonal interaction,

2. transitions between activities,

3. transitions between personal and group work,

4. transitions between tabletop collaboration and external work,

5. the use of physical objects,

6. accessing shared physical and digital objects,

7. flexible user arrangements, and

8. simultaneous user interactions.

They also survey the extent to which hardware research at the time provided support for
these guidelines. Hardware has since changed, and an updated version of guidelines may
be better suited to help evaluate current tabletop interfaces (see §4.1.1).

Nacenta, Aliakseyeu, Subramanian, and Gutwin [2005] examine “Reaching techniques”
for tabletop displays. That is, techniques for transferring (with a stylus) an object from
the screen of a TabletPC, onto a specific location in a tabletop environment on which the
TabletPC is placed. They compare six techniques and find the best performer to be a “Radar”
technique, where a reduced representation (map) of the surrounding environment appears

19



2.2. Interaction Techniques CHAPTER 2. BACKGROUND

Direct Input Devices

Advantages Disadvantages

support natural, fluid gestures user may become tired

support coordination through greater aware-
ness of intention and action

items on far side of table are difficult to reach

allow for noticeable gestures noticeable gestures may be distracting

input device may obscure display

users may physically collide in workspace

• device may be seen as “invasive” into partner’s territory on display. This may improve
coordination, or may unnecessarily restrict activity in some regions of the display.

Table 2.1: Properties of direct input devices (findings of Ha et al. [2006])

when the object is touched, into which the pen is moved to indicate the desired position.
The other techniques examined, in decreasing order of performance, are: Pick&Drop,
Pantograph, Sling Shot, CoGestures and Press&Flick.

Ha, Inkpen, Mandryk, and Whalen [2006] explored how pairs of users interact when
seated face-to-face at an interactive table. They conducted three studies: on input devices
and collaboration, on awareness of intention, and on awareness of action. The studies
compared how users behaved when using a mouse vs when using a stylus (a Polhemus
Fastrak stylus). A summary of their findings is in Table 2.1.

Drawing on ideas and observations from tested tabletop interaction techniques are
valuable when informing the design of new systems. In particular, they can help avoid
repeating mistakes, and assist in choosing techniques that are well suited to the interaction
task. This is particularly important for tabletop interfaces whilst the toolkit support is
still in its infancy.

Coordination Policies

Coordination policies – whether they be informal (tacit), formal, or enforced by the interface
– allow multi-user interaction to proceed smoothly. Morris, Ryall, Shen, Forlines, and Vernier
[2004b] investigate coordination policies and scenarios for collaborative touch interfaces
in order to overcome a tendency for users to ignore social protocols in studies using
DiamondTouch. The work presents a number of global and whole-element coordination
policies and scenarios, which they categorise into proactive, mixed-initiative and reactive
initiation types. However, exploration of the necessary toolkit-level support is left for
future work.

In the design of PhoTable, we have mostly relied on social protocol for co-ordinating
between storyteller and listener. Clearly, the impact of ignoring social protocols is highly
dependent on the task. For photo sharing, we anticipate the storyteller will take a dominant
role, but also would not want an enforced policy to disrupt the naturalness of the interaction.
However, the Cruiser framework does incorporate a variety of mechanisms that can be
used to enforce coordination policies in the software, such as concepts of object ownership
and restricting access to parts of the display (see §5.2.5).

20



CHAPTER 2. BACKGROUND 2.2. Interaction Techniques

Indirect Input Devices

Advantages Disadvantages

allow items on far side of table to be easily
accessed

reduce the amount and range of gestures

do not require much physical effort to use multiple cursors may be distracting or con-
fusing

may be more familiar to users subtle gestures may go unnoticed

small pointer does not obscure elements on
display

lesser support for awareness of intention and
action may impede coordination and collab-
oration

• space must be left on tabletop to accommodate device (close to user)

• user more likely to cross territorial boundaries with indirect device than direct device

Table 2.2: Properties of indirect input devices (findings of Ha et al. [2006])

2.2.2 Gestural Interaction

Early work by Minsky [1984] introduced the concept of gestures for single-user touch screen
interfaces. This work developed a screen environment and gesture system called ButtonBox
that recognised selection, move and path gestures for manipulating virtual buttons. There
were also visual components, such as the copy button, which could be moved to overlap
any other button then tapped to produce a copy of the overlapped button, and a knife to
remove components. These elements are functionally similar to the Frame and Black Hole
in Cruiser although are semantically different.

This gestural interaction work predated recent advances in computer graphics hardware
[Meinds and Barenbrug, 2002], digital photography [Rodden and Wood, 2003] and multi-
user touch technologies (e.g. Dietz and Leigh [2001]). The advent of such technologies has
given rise to an opportunity for multi-user gestural interfaces using digital photography
for high-resolution photo-sharing activities, which is a focus of this thesis. Without these
advances, there would either be insufficient computing power for interactive photograph
manipulation, lack of interest in digital photography, or lack of a multi-user computing
interface with which to facilitate social interaction around the photographs. Yet, using
gestures for interaction is not new.

The term gesture has been interpreted by researchers to mean different things. In
Minsky’s work, both the single-touch manipulations of on-screen objects, and the actions
of the knife and copy buttons upon other objects were gestures. The latter, tool-based
interaction is an interesting approach to the incorporation of gestures in interactive systems,
and is a particular inspiration for some of the techniques used in Cruiser. This also raises
the issue of metaphor for leveraging users’ tacit knowledge to assist usability and, in
particular, learnability. However, only some research interprets gesture in this fashion.

In other contexts, a gesture can involve the drawing of a glyph using a stylus, or a
sequence of touches incorporating parts of (or whole) hands, and multiple touches. These
interpretations will be discussed in the following subsections. Elsewhere in this thesis, a
gesture simply refers to any kind of structured user input; directly or via a virtual tool in
the interface.

21



2.2. Interaction Techniques CHAPTER 2. BACKGROUND

2.2.2.1 Pen (Trace) Gestures

For pervasive computing interfaces and, in particular, collaborative tabletop interfaces
it becomes undesirable and impractical to supply each user with a keyboard and mouse
[Kraut, 2003]. However, it is still necessary sometimes to execute a command which, on
a regular display, would traditionally be done by a typed statement, key combination
or menu selection. Traditional menus suffer from poor readability, inaccurate selection,
orientation problems and significant occlusion of the menu items from users hands when
used on interactive tabletop interfaces. Work such as DiamondSpin [Shen et al., 2004] used
a radial menu system for executing a larger set of non-implicit commands. An alternative,
is to issue commands by drawing a glyph on the interface using a pen or fingertip. This is
sometimes called a pen gesture or trace.

Mohamed, Haag, Peltason, Dal-Ri, and Ottmann [2006] introduce the idea of disoriented
pen gestures – an extension from earlier works in pen gesture technology for conventional
screen environments. They test their techniques for gesture recognition in a tabletop Ink
Environment in the context of a turn-based board game – Monopoly. Their system can
determine the direction (i.e. North, South, East or West) and hence the player, and thus
determine if a command is made out of turn, for a set of asymmetric gestures. In particular,
they discuss the demand rent gesture (an “N”), which must be performed out-of-turn. The
system is able to classify approximately 98% correctly. However, toolkit-level support is
not discussed.

In his PhD thesis, Long [2001] explores techniques for rapidly learning and recognising
oriented pen-based gestures using a feature-based algorithm. His system, called Quill,
is intended as a design tool for rapidly prototyping a recognisable gesture language for
pen interfaces, such as for the TabletPC. However, orientation-independence was not
considered. This, combined with a Java implementation, was poorly suited to incorporation
into Cruiser.

More recently, Wobbrock, Wilson, and Li [2007] presented the “$1 recognizer” which
appears to solve many of the problems faced in incorporating a recogniser for commands
on an interactive tabletop. Implemented in approximately 100 lines of pseudocode, in
its evaluation it was able to match the correct gesture amongst 16 possibilities with over
99% accuracy. It is also orientation independent; important for a multi-user tabletop.
Determining also the particular angle of the gesture (in order to determine the user
performing it) is not discussed in their work, but it is clear from the elegant pseudocode
implementation that this could also be reported by the recogniser. Although clearly the
gestures must also be designed for this, as any with rotational symmetry will limit the
range of angles that can be reported.

However, $1 is foremost a recognition algorithm and does not provide ways to design
and evaluate gestures. iGesture [Signer et al., 2007] is another Java application that, like
Quill, supports gesture designers in creating new gestures. It incorporates a number of
recognition algorithms, and provides tools focusing on extensibility and cross-application
reusability. It is released under an open source license and actively developed3.

Incorporation of a gesture command system was one of the goals considered for Cruiser.
Much of the infrastructure required is already in place and well tested. This is actualised
in the form of the Gesture (§5.2.10), Command (§5.2.5) and Writing4 (§5.2.4) components
of the framework. However, the implementation of the recogniser itself was put off. Now,
the recently published $1 recogniser makes it straightforward to implement a command
gesture recogniser as a plugin.

3http://www.igesture.org verified 2008-05-04.
4The Writing Resource is what gives feedback for the in-progress gesture using OpenGL primitives.

22

http://www.igesture.org


CHAPTER 2. BACKGROUND 2.2. Interaction Techniques

2.2.2.2 Multi-Touch Gestures

Wu and Balakrishnan [2003] also consider gestural inputs. The work explores a grammar
of twelve, multi-finger and whole hand gestures in RoomPlanner , a collaborative furniture
layout application. They present qualitative feedback from five users who each participated
in a one-hour trial while collaborating with one of the authors. The feedback suggested
that learning the gestures did not take much time. Issues of occlusion when selecting menu
items, and some some limitations of the hardware (DiamondTouch) were noted.

Wu, Shen, Ryall, Forlines, and Balakrishnan [2006] add a stylus to the DiamondTouch,
which effectively presents itself as an additional user to the hardware. They evaluate a
system that uses two-handed and whole hand gestures for moving images, annotation,
erase (wipe), cut/copy and paste, “piling” and “spreading” photographs. Participants from
outside the lab were given an interactive tutorial demonstration and asked to rank the
difficulty of the in-house gestures and state their agreement with a collection of statements
using a Likert scale. The study noted issues of granularity of direct-touch systems, with
some users having difficulty with pixel-accurate selection. Also highlighted, was the
importance of visual feedback throughout a gesture interaction.

Piper, O’Brien, Morris, and Winograd [2006] have also investigated the application of
cooperative gestures and uses of the tabletop in collaborative educational software. This
work focuses on building a shared interface to help develop effective social skills (called
SIDES) for children with special needs. The interface for DiamondTouch is a four-player
game where each user takes turns to place directional tiles to create a single, agreed upon
path for a frog to collect insects, gaining points. The game was engaging, and the study
identified many benefits of tabletop hardware (particularly when it can identify which
user is interacting). It also highlighted significant challenges for designing an interface
to encourage social interaction, but this was exacerbated by the target population of the
study.

Multi-touch is so far only available in some hardware, and introduces complications
in making the interaction robust. These problems of robustness go mostly unreported by
researchers, but are gradually being solved. Manipulation of photographs on a version
of the Microsoft Surface, for example, was not robust when using a single touch point –
the system has to distinguish a “fat finger” from two adjacent fingers, which would rotate
and resize, rather than move. Multiple users further complicate robustness issues, such
as when two users touch the same photo to move it. Systems without user identification
(DiamondTouch being the only exception) can only interpret this as a rotate/resize gesture.

However, my own experiences with the multi-touch features introduced in Apple
products have been more favourable. The iPhone, iPod Touch, MacBook Air and 2008
models of the MacBook Pro feature these multi-touch capabilities. I have yet to “fool”
the device into thinking my two fingers were one. Unfortunately, the algorithms that
accomplish this are likely to remain proprietary and, to date, Apple have not provided
third-party application developers API-level access to these features, as used by their own
applications such as iPhoto.

The precursor to Cruiser was targeted specifically for DiamondTouch hardware, and
the multi-touch aspects of the Cruiser framework have retained support for this. However,
even with user identification, we quickly ran into robustness problems with multi-touch
gestures (see [Apted et al., 2006], §7.1.6.2 and §A.3.1). These problems, and the limited
available hardware support for multi touch have resulted in Cruiser and PhoTable primarily
being used only with single-touch features enabled.

2.2.3 Interaction Design

Hancock, Vernier, Wigdor, Carpendale, and Shen [2006] present a means to compare and

23



2.2. Interaction Techniques CHAPTER 2. BACKGROUND

contrast rotation and translation mechanisms, and survey existing techniques. Independent
(translation/rotation), automatic rotation (continuous or discrete; i.e. oriented towards
edge of a round table, or the edges of a rectangular table), integral (i.e. based on a physical
model) and two-point (i.e. using two points of contact) are the techniques examined.
Comparison metrics are presented in terms of degrees of freedom (for completeness and
consistency). The required infrastructure to support the range of mechanisms, and user
evaluation [Forlines et al., 2005] is yet to be reported.

Cruiser uses a technique that combines rotation and resizing, rather than translation
(§4.2.4). This technique is well-suited to manipulating photographs, as the aspect ratio
generally does not change, and was found to work well in early usability studies (§7.1).
However, Cruiser includes a flexible Gesture framework (§5.2.10) that would readily support
alternative interaction techniques that could be enabled via a plugin.

Terrenghi, Kirk, Sellen, and Izadi [2007] compare affordances for manipulating digital
vs physical items on interactive surfaces. Twelve participants provided 80 of their own,
most recent digital photographs which were divided into two groups – a set of printed,
physical photographs, and a set to be accessed digitally on an interactive tabletop. The
first stage involved constructing a 25-piece puzzle – both a physical and a digital puzzle for
each participant. In the second stage, participants were asked to sort their photographs
into 3 groups – a set to discard, a set to keep but not share with others, and a set to keep
and share.

Participants took longer to solve the digital puzzle, but the task duration of the sorting
tasks was not significantly different. One interesting observation was the prevalence of
bi-manual interaction in the physical tasks where, for digital tasks, one-handed interaction
was more prevalent, with participants observed to use their non-dominant hand to support
the weight of the body over the table. Some of the qualitative observations included a
tendency for participants to lean closer to the table surface to focus on a single item, while
in the physical task the photo itself was brought closer. This highlights the importance of
being able to enlarge images easily, and perhaps even as an action separate from rotation
and translation.

Studies such as these are informative if we are to base our own digital interactions
on metaphors from the physical world. In Cruiser this is a particular goal, but digital
interaction is different; it offers new ways to interact not possible in the physical space,
such as the ability to easily copy. Aside from mimicking physical interactions, we can
also leverage tacit knowledge from the physical world to assist learnability and reduce the
cognitive gap: for example, by designing behaviours of digital tools based on a physical
counterpart (i.e. metaphor).

2.2.4 Section Summary

Because tabletop interaction is still in its infancy, it is not possible to assert a particular
technique as the “best” way to interact – more studies are needed. It is possible that
the predominant techniques in future will merely be the set with the most exposure to
the public. Touch techniques from Apple products are already gaining a foothold for
small, single-user touch surfaces. However, they are yet to be applied to large, direct
manipulation surfaces, or multi-user devices such as interactive tabletops. A different set
of interaction techniques may be more suited to these interfaces. Software patents may
cause a further complication to the standardisation of interaction techniques and gestures,
as Apple have filed for a number of multi-touch patents [Gardiner, 2008]. Finally, the
interaction techniques must clearly be supported by whatever tabletop hardware is being
used.

For all these reasons, Cruiser does not commit to a particular set of interaction
techniques. Rather, it aims to provide a framework for application designers to hook-in

24



CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

their own techniques using the gesture framework. The factory design pattern initiates a
gesture (plugins may specify a new default gesture factory), and new gestures evolve; based
on the current gesture, triggers from user input, as well as the object itself that might be
manipulated. Thus, it is straightforward to allow alternative interactions, based on the
object being touched. A default set of interaction techniques is provided, and these are
used for interaction with the PhoTable application. See Subsection 5.2.10 for details.

2.3 Frameworks for Interactive Tables

Regardless of the hardware chosen, there is a need to explore software possibilities to
support application development with natural interaction techniques. However, tabletop
interfaces represent a new means of interaction, and tabletop interface design poses some
challenging constraints. For example, without a keyboard or mouse, there is a sparse set
of interaction operations, typically just touch, dwell and drag (and in multi-touch some
additional combinations). We also want a focus on ease of learning, particularly because
tabletops are often public devices where there is little opportunity for a training period.
This may make complex gestures undesirable, because they need to be learnt and practised
before they can be used effectively.

Tabletops also offer new possibilities for interaction, escaping the dominant styles
of conventional computer interfaces. These are important differences compared with
conventional computers. Yet, it is challenging to escape the established paradigm of those
interfaces, and see beyond them to find new ways to interact more effectively with tabletops.
There is also a potential barrier from users whose established mental model is significantly
defined by desktop experience.

This section gives background on software systems that provide support for application
designers for developing tabletop systems. Some work has approached the task with a
focus on a particular piece of hardware or new technology; some have a set of design goals;
and others have an application or user need as a focus. The PhoTable application was the
initial focus for this thesis, but side projects (§6.3) led to a more generic framework being
developed in Cruiser. What is significant for PhoTable is that no existing framework came
close to satisfying our needs when work began, thus leading to the development of the
Cruiser framework. In its current state, Cruiser provides a stable yet flexible and extensible
framework with many features (see Chapter 5) that has allowed PhoTable, and a number
of other tabletop applications, to be realised.

Terminology: Framework vs Toolkit

This thesis makes a distinction between the terms framework and toolkit. A toolkit is
typically a software library that provides a set of tools for software writers that are exposed
through an Application Programming Interface (API). How to leverage the toolkit to make
an application is left to the programmer.

A framework (or software framework) provides more. It is a reusable, “semi-complete”
application that can be used to produce custom applications [Fayad and Schmidt, 1997].
That is, a reusable design for a software system of which software libraries form a part.
However, a framework also provides the glue – the application and operating infrastructure
that use these libraries to provide an immediate level of functionality.

Under Fayad and Schmidt’s [1997] classifications, Cruiser is a system infrastructure
framework; designed specifically to simplify the development of portable and efficient
tabletop applications. The cruiser core (§5.2) is its primary toolkit, but it also provides a
set of, non-essential libraries providing additional, reusable functionality (§5.3), as well as
utilising external and open source libraries. To use the framework, application developers

25



2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

write a plugin that inserts new functionality (such as a new on-screen object, like a video)
into the application. Cruiser also provides the glue that starts the application, finds and
configures plugins that application developers have provided, initiates the render loop,
draws the screen and processes user input.

The Cruiser framework is discussed in Chapter 5; this section discusses related research
that aims to assist programmers to develop applications for tabletop interfaces. It begins
with the rationale for comparing frameworks and toolkits.

Rationale

For an application designer, choosing and committing to an application framework is a
significant step in the development process – there can be many factors to consider. Some
factors are born out of pragmatics, such as the input hardware, programming language,
license of use and operating platform that the framework may operate with. Other factors
will concern performance, such as whether accelerated graphics (i.e. leveraging a modern
graphics card) and concurrency are supported; and whether overheads from the earlier
choices of programming language and operating platform are minimised.

Comparing the features provided by a framework is more difficult. At a basic level,
features that are provided should have a facility that allows them to be reused to minimise
code duplication. Where specific features are not provided, the framework should be easily
extensible to allow new features to be incorporated. Furthermore, these facilities should be
provided such that the features are maintainable, and suitably encapsulated from the core
parts of the framework. When comparing frameworks, features can be easily enumerated,
but measuring reusability, extensibility and maintainability is more difficult to assess.

This section is a summary of currently available application frameworks and toolkits
for tabletop interaction. Whilst early work [Minsky, 1984] introduced the concept of a
gesture for manipulating virtual objects, a software framework for developing applications
was not considered. More recently, Shen et al. [2001, 2003b] investigated layout techniques
for multi-user browsing of photo libraries on a circular tabletop in their Personal Digital
Historian (PDH). This pioneering work on collaborative tabletop interfaces motivated
the need for a more flexible framework for the development of tabletop applications, and
subsequently grew into their DiamondSpin toolkit.

2.3.1 DiamondSpin

DiamondSpin [Shen, Vernier, Forlines, and Ringel, 2004] is a Java framework for Dia-
mondTouch [Dietz and Leigh, 2001]. Being developed with DiamondTouch in mind has
resulted in a well-developed model of concurrent multi-user, multi-touch interaction, and
binding it to Java has made it straightforward to port existing concepts of windowing
interfaces from vertical displays to the tabletop, by leveraging Java’s Swing API.

In designing DiamondSpin, the following functionality requirements were considered
fundamental for tabletop user interfaces [Shen et al., 2004]:

• Visual document management,

• Document control and interaction,

• Manipulation,

• Rotational User Interface (UI),

• Digital tabletop layout, and

• Multi-user support.

26



CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

Figure 2.2: DiamondSpin Software Architecture
from http: // diamondspin. free. fr/ , verified 2008-01-31, copyright §D.1

Here, a document is typically any persistent on-screen object such as a loaded image or a
region of text. Cruiser, too, considers these requirements in its design (§3.5), but has a
special focus on providing reusable functionality for the application programmer, as well as
addressing functionality from the user view of the interface.

The DiamondSpin architecture is shown in Figure 2.2, the key functionality is provided
by the following Java classes:

DSApplication Program entry point and initialisation.

DSTabletopPane Providing translation (and rotation) of on-screen objects using
Cartesian coordinates to and from polar coordinates. Includes background image
and facility to rotate the entire environment.

DSMenuBar Provides menu functionality akin to traditional menu bars, but allows
multiple (per-user) menu bars, along the edge of the interface, and these may be
moved around.

DSPopupMenu A circular pop-up context menu (pie menu), activated with a double-tap.

DSFrame A holder for Java Swing windowing components (text boxes, buttons, etc.),
with additional control points for zoom, rotate, resize and peel. These manipulations
are activated via an underlain square in each corner of the frame.

DSStroke Provides free-hand drawn objects, using the finger as a brush.

DSAnnotationPanel A component that may be overlaid on a DSFrame to support
annotation with DSStrokes.

DSImage An image object, loaded from disk, supporting transparency.

27

http://diamondspin.free.fr/


2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

One key aspect of the framework is its set of techniques for automatically orienting
virtual objects according to their location on the table. For example, objects may orient
automatically to point outward, along radial lines; or the table may be divided into halves,
or quadrants, so that objects align themselves orthographically with an edge.

A strength of DiamondSpin is its ability to utilise existing widgets from the Java Swing
API. Thus interface objects for buttons, text boxes, tabbed panes, scroll bars, etc. are
already written. However, there is some argument as to whether these, legacy interface
objects (see §6.1) are appropriate for tabletop interfaces [Shen et al., 2007]. Furthermore,
these interface widgets operate only under a Java Virtual Machine (JVM) and are unsuited
for efficient rendering in a graphics-accelerated environment, such as OpenGL.

A number of other applications have been developed, including “Table for N” for
collaborative document manipulation, an “opportunistic browsing coffee table”, a “Collage
Builder” and the “Poetry Table”. The applications built are an indication of the effectiveness
of the toolkit.

UbiTable

Shen, Everitt, and Ryall [2003a] used DiamondTouch and DiamondSpin to encourage
impromptu collaboration and sharing of active workspaces across wirelessly connected
laptops in the development of the UbiTable project. Everitt, Forlines, Ryall, and Shen
[2004] studied 14 participants (in pairs) using the UbiTable application with two laptops
and a DiamondTouch. After a tutorial, participants were each asked to transfer an image
of a molecule from their laptop to the DiamondTouch, draw a tally of the atoms from both
molecules and then save the tally and their partner’s molecule onto their own laptop, by
dragging the images to their side of the table. The authors observed that fingertip direct
manipulation shows good potential for easy learnability, but that object ownership was
sometimes unclear. The work also found that users were uncomfortable with their partner
being able to move documents into their personal space and thus onto their own laptop.

Summary

DiamondSpin’s reliance on DiamondTouch and Java ultimately limits its usefulness. Plugins
– loadable code that can be detected at runtime – are essential for additions to a framework
to be reused across applications, for encapsulation, and for enhanced maintainability. Java’s
support for this has been poor until recent contributions by the open source community
and the Java Plug-in Framework Project (JPF)5, which grew out of plugin requirements for
the Eclipse Integrated Development Environment (IDE), and reached production quality
in 2007; well after the release of DiamondSpin.

It is often beneficial to integrate existing libraries outside the scope of the Java Runtime
Environment (JRE), but Java makes it difficult to leverage existing utilities in the open
source community. For example, reading Exif data from photographs can be accomplished
using the libexif library6, implemented in C. Using libexif from C or C++ is straightforward.
However, incorporating non-Java code into Java applications is fraught with maintainability
problems, as not only does the C library code need to be compiled on each targeted platform,
but also C wrapper code must be provided, maintained and compiled; and Java Native
Interface (JNI) bindings (additional Java code) must be provided to access the library
through the wrapper in Java. Such tasks can be made slightly easier using tools such as
SWIG, the Simplified Wrapper and Interface Generator7, but this only solves one direction
– calling C/C++ from Java. Calling Java code from non-Java applications has additional

5http://jpf.sourceforge.net/
6http://libexif.sourceforge.net/
7http://www.swig.org/

28

http://jpf.sourceforge.net/
http://libexif.sourceforge.net/
http://www.swig.org/


CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

complications, ultimately resulting in an undesirable platform-lock-in to the Java Virtual
Machine.

While planned8, DiamondSpin is also currently unable to leverage the accelerated
graphics capabilities of a dedicated graphics card. For tasks as graphically intensive as high-
resolution photo sharing, in a multi-user, multi-orientation environment, the performance
loss from not using accelerated graphics is significant. For example, it is enough to make
the software unusable for large photograph collections.

2.3.2 Microsoft® Surface™

Microsoft Surface is unique amongst other branded tabletop hardware such as MERL’s
DiamondTouch [Dietz and Leigh, 2001], Phillips’ Entertaible [Phillips Electronics, 2006],
HP’s Misto Coffeetable [HP Labs, 2006], and InteracTables [Streitz et al., 2001, Tandler
et al., 2001]: Microsoft has recognised the importance of the software aspects of the
interface and, through their demonstrator applications, have been able to generate large
amounts of interest in tabletop computing (or surface computing). This is despite hardware
aspects of their interface consisting primarily of mature technologies.

2.3.2.1 Sources

No research papers describing Surface have been published. The information presented
here was obtained through Microsoft press releases, online reviews for Popular Mechanics
magazine, a presentation given and my own observations of the device at the Institute
of Electrical and Electronics Engineers (IEEE) Tabletop conference [2007], and other
Internet video and resources9. Some more, authoritative information was obtained from
the Microsoft Surface press-kit and the “Virtual Pressroom”10.

2.3.2.2 Surface Hardware

The Surface hardware is a 30-inch display in a table 22 inches high, 21 inches deep and 42
inches wide. The tabletop is acrylic and the interior frame is powder-coated steel. In the
current implementation, the display must be rear-projected onto a diffuser beneath the
acrylic – a 1024× 768 Digital Light Processing (DLP) data projector is housed in the table.
Infra-Red (IR) light is also projected upwards. Four IR cameras with a net resolution of
1280× 860 detect near-infrared light reflected off objects on or near the acrylic surface.

Work towards Surface began in October 2001, when the Microsoft hardware team was
asked to develop a computer interface that was “more approachable”. In 2003 the first
proof-of-concept prototype, called “T1” and built using an Ikea table, was presented to
Bill Gates, and the current design was finalised in 2005. In March 2007 the public got a
preview of the project, dubbed Milan, when Popular Mechanics covered research by one of
the principal researchers [Wilson, 2007], and in mid-2007 official press releases were made
by Microsoft.

Surface is a Computer Vision (CV)-based system. Cameras detect anything reflective
(fingers and objects) placed on the table and all reflected light is processed by the object
recogniser. The object recogniser is able to recognise fingers and some other shapes. Objects
may be tagged with a dot pattern consisting of IR-reflective dots on a black background,
specially arranged to operate similar to a two-dimensional barcode. The arrangement of
dots is non-symmetrical in order to infer orientation of the object. The finger recogniser is

8See http://diamondspin.free.fr, verified 2008-05-03.
9http://www.popularmechanics.com/technology/industry/4217348.html

http://www.popularmechanics.com/blogs/technology_news/4213259.html
http://www.microsoft.com/surface/ (http://www.surface.com)
10http://www.microsoft.com/presspass/presskits/surfacecomputing/

29

http://diamondspin.free.fr
http://www.popularmechanics.com/technology/industry/4217348.html
http://www.popularmechanics.com/blogs/technology_news/4213259.html
http://www.microsoft.com/surface/
http://www.surface.com
http://www.microsoft.com/presspass/presskits/surfacecomputing/


2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

A diffuser is placed beneath the acrylic tabletop surface, and multiple infrared cameras detect
reflections, from an 850 nm light source aimed from below, at at net resolution of 1280× 860 pixels.
A computer with a Core 2 Duo processor, 2GB Random Access Memory (RAM) and 256MB
graphics running Vista processes input and generates the 1024× 768 DLP -projected display.

Figure 2.3: Microsoft® Surface™

a special case of the object recogniser. In most cases, the orientation of the fingers or hand
can also be determined.

2.3.2.3 Prototype Applications

To showcase the capabilities and potential uses of Surface, Microsoft have developed a
number of applications that have been presented at a variety of trade shows and demo
sites. Here, they are summarised briefly to give an overview of Microsoft’s vision for their
product:

Photo Lounge Intended for a coffee shop, restaurant, hotel. Users open a stack of photos
by selecting it. Photos can be flipped over by touching a marked, bottom corner of the
photo once. The back may be written on with a finger and sent to a pre-configured
email address as an E-Card.

Dining Allows ordering of meals and drinks from a displayed menu.

Music Allows ordering of music from an online music store – albums are displayed in a
grid and they may be flipped over to see the track listing.

Paint A multi-touch painting application. Tagged physical objects may also be used to
act as “stamps”.

Video Puzzle Pieces of square glass or acrylic are placed on the table, each showing a
section of video. Rearranging the glass moves that piece of video around the table to
connect to the larger video.

Water Displays an image of rocks, with simulated, interactive water over the top.

Retail Involves the T-Mobile “stick together” application for comparing models of mobile
phone, and making a purchase including phone plan and extras such as ring tones.

30



CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

Maps Map navigation and route planning; includes cellphone coverage.

Jigsaw Photos are cut into number of rectangular sections. When all are laid out correctly,
they snap together.

Snowboard An application for personalising and purchasing a snowboard. A card with
an optical tag may be taken from a wall display of products. Placing it on the table
presents various customisation options.

Wine menu browser An application for selecting a wine that includes wine ratings, and
menus to provide more information such as photographs from the winery, comple-
mentary food dishes and a Virtual Earth map of the winery region. Upon selection, a
virtual coaster is provided as a site for a wine glass with an optical tag to be placed,
by the server.

Firefly A game that utilises multi-touch by allowing up to four simultaneous players to
herd tiny “insects” into glass jars. The winner is the first player to collect three
insects (glowing dots called fireflies). Preventing other players is part of the game,
and can be accomplished by physically blocking a player’s hands, or tapping the
insects, in order to destroy them.

Casino Developed with Harrah’s of Las Vegas, Casino is not an application for gambling,
but rather a hospitality application, with a map of the hotel and casino, marked with
attractions for which more information can be displayed. Placing an identifying card
on the table also lets users reserve tickets for shows at the casino.

As these applications are not available to the public, it is difficult to conduct a rigorous
review. At the time of the initial announcement, Surface partners included Harrah’s
Entertainment (a Vegas casino giant), IGT (International Game Technology), the Starwood
Hotels and Resorts conglomerate (who own Sheraton, Westin and W Hotels, among others),
and T-Mobile (a US cellphone provider). From this sample, it is likely that gambling
applications may be developed, if not done so already, and not revealed publicly.

The applications seen are still mostly in the form of demonstrators. Microsoft have
hundreds of developers working on Surface11, and hopefully we can look forward to seeing
refined versions of these applications when Surface becomes publicly available. However,
many research problems still remain.

2.3.2.4 The Surface SDK

The Surface Software Development Kit (SDK) has not yet been released. It was announced
that the SDK would be released to Surface partners in early 2008, and versions were
released to AT&T stores in April, although Surface is not expected to be available to
consumers until 2011 [Fortt, 2008]. However, a presentation at the second annual IEEE
Tabletop Conference [2007] discussed some of the features we may expect in the toolkit.

Software interface elements are described in Extensible Application Markup Language
(XAML) (pronounced zammel). This is a proprietary Extensible Markup Language (XML)-
based language created by Microsoft used to declare and initialise structured values and
objects, such as interface widgets (or controls in Microsoft’s terminology). XAML is
an intrinsic part of the Microsoft .NET Framework 3.0 (formerly WinFX) and is used
extensively in its graphical subsystem Windows Presentation Foundation (WPF) (formerly
Avalon).

For Surface, new widgets have been added to the WPF, usually by pre-pending “Surface”
to the control type name (e.g. Button becomes SurfaceButton). These widgets look and

11Personal communications [Tab, 2007].

31



2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

operate similarly to their non-Surface counterparts, but can potentially accept multiple,
simultaneous inputs from the Surface finger and object recogniser and may have interaction
possibilities more suited to touch, rather than mouse cursor input. For example, scrollbars
offer larger, finger-sized buttons, as well as gestures on the scrolled area for scrolling. No
special changes occur automatically to support multiple users or orientation independence
(e.g. text is displayed as normal, and multiple users must be further designed for). However,
new to .NET Framework 3.0 and WPF, is support for orienting objects, or groups of
objects, non-orthogonally in the user interface.

Wholly new interface widgets have also been created for Surface. One example is the
ScatterView, a screen element for displaying photographs. A photo source is configured in
XAML, such as the path of a directory, and all image files (e.g. JPEG files) in that directory
are loaded into the ScatterView; positioned and oriented randomly. The photographs
may be manipulated. Touching a photo causes it to be selected and animations occur –
increasing its size slightly and causing a specular reflection highlight to pass over the photo.
When selected, the photo can be moved. Multi-finger gestures can be used to rotate and
resize the objects. Most actions are given momentum – objects continue to rotate or move
for a short duration after being released.

2.3.2.5 Limitations

Infrared detection techniques have known problems with high levels of ambient light,
particularly direct or indirect sunlight. Notwithstanding this, rear projected displays
work best in darkly-lit environments in any case. There is no clear path to replacing the
rear-projector with an embedded LCD/plasma screen, due to the current IR detection
technique. However, a prototype adaptation of a laptop display panel has been published
[Hodges et al., 2007]. This work has the potential to serve as a physically thin table
display using an LCD screen rather than rear-projection. However, resolution of the input
detection in this prototype is currently poor.

Detecting when a finger or object actually makes contact with the surface is unreliable.
Because IR light is reflected off objects and fingers as they approach the table surface, it
is hard to distinguish when contact with the surface is actually made. This negatively
affects the intuitive “touch-to-click” operation of the interface and algorithms to ameliorate
the effects of an accidental activation during a “hover” also work to cause some actual
finger taps to be ignored. These issues have been observed in some of the publicly available
videos showcasing Surface.

While multiple people can interact, it is not truly multi-user, as with technologies such
as DiamondTouch [Dietz and Leigh, 2001]. Users are not uniquely identified. For example,
in multi-user Paint, this means that only one colour may be active at one time – it is
not possible for each user to paint with a different colour. In the future, tracking the
orientation of fingertips may have the potential to support some level of user identification
where users are seated at opposite sides of the table. However, finger orientation, too, can
only be determined unreliably. Further, properly resolving issues of multi-user interaction
is a problem that goes deeper that just the type of hardware.

Physical clutter on the table may create spurious input as there is no distinction
between objects for interaction (such as fingers) and other physical objects left on the table.
However, software techniques have the potential to compensate for this clutter.

Tracking frequency of computer vision techniques often involve a noticeable lag. That
is, the delay between a physical action occurring and the result appearing on the interface
is quite perceivable; typically > 50ms. This is due to the image processing that must be
performed on each image captured by the camera or cameras (in Surface there are four),
in order to detect touch points. Under load (e.g. multiple points) the lag may increase.

32



CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

For Surface, interface response figures are unlikely to be released. However, this is an area
that is likely to improve with specialised algorithms and increased computing power.

2.3.3 Innovis Buffer Framework

The Buffer Framework from the Innovis group at the University of Calgary [Isenberg, Miede,
and Carpendale, 2006, Miede, 2006] is geared towards handling efficient display of many
interactive objects on a high-resolution tabletop. Much of the research contribution is the
evolution of the buffer concept (e.g. the framebuffers) to efficiently perform transformations
on objects and to interact with them. However, the Buffer Framework is not by itself
an application [Miede, 2006, §4.2.3], and the application writer must write their own
application glue and manage their own render loop. These properties would fit the toolkit
category, using the terminology of this thesis.

One use of buffers is to perform the picking problem, where a user’s selection (in
2-dimensional screen coordinates) must be mapped to an object in the “virtual world” that
is shown on the display (and the relevant 3-dimensional world coordinates). In Cruiser
we use a hybrid picking technique to solve the picking problem. Initial object selection is
performed with OpenGL’s name stack, as it gives great flexibility to provide details about
specific parts of objects that were selected. For example, a plugin that provides a slider
(§5.4.6) can be informed whether the slider button or the sliding track was selected. Most
OpenGL implementations provide hardware-accelerated picking using the name stack, but
it can sometimes be slower than simply rendering the screen, so we use the name stack
only for the initial selection. When objects are moved, the backbuffer picking technique is
used to determine attachment (§4.3.4). This technique is similar to the buffer technique
used in the Buffer Framework.

However, buffers are not only used to solve the picking problem in the Innovis Buffer
Framework. Multiple buffer layers allow object transformations such as size and colour
to be applied, based on the object location. This is a novel and efficient technique for
applying new transformations on objects as their location is changed in the display.

In particular, buffer techniques allow many dependent objects to have their transform-
ations updated in constant time, simply by changing the region of the buffer in which
these objects reside. The techniques have been able to provide significant improvements to
rendering speed for a number of Innovis projects at resolutions up to 2560× 2048.

Interface currents [Hinrichs, Carpendale, and Scott, 2005b,c, 2006] is one of the projects
within the Innovis group using the Buffer Framework. This project uses flexible storage
containers to provide an area that automatically moves items around the interface. Items
are placed into or out of the flow by dragging them, and the movement of the current
can be adjusted to speed up or slow down all objects in the current. Making areas of the
current thicker, will cause items moving through the thick portion to increase in size.

One interesting aspect of the framework is its use the Rotate and Translate (RNT)
interaction technique [Kruger et al., 2005] for manipulating digital objects. This combines
object rotation with translation. Cruiser combines rotation with a resize operation so
that objects are quickly zoomable, one of our early design goals (§4.2.4). Other work
combines move, rotate and resize by using two contact points for the interaction. To date,
no published study has yet compared the techniques. It is possible they are each suited to
different tasks.

Comparing to Cruiser

Cruiser uses commodity hardware that can maximally support a resolution of 1526× 1024.
For inheriting object transformations for dependent objects, Cruiser uses a transformation
cache for each parent, which detects changes on the parent and propagates them to children

33



2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

by capturing the OpenGL model-view matrix at the time the parent is drawn, and feeding
the transformations to the children.

Performance has not been an issue for any of our current applications. One test showed
that performance may become an issue once 1000 or more complex objects (with a texture,
text and other decorations) are present and visible on the screen at once (see §6.4). It is
possible that future applications, or use of Cruiser on higher-resolution displays may benefit
from buffer techniques, but this is not a current goal of this thesis or related projects.

2.3.4 The T3 Toolkit

Tuddenham and Robinson [2007] first establish a set of design goals to motivate their
toolkit, called T3 :

1. provide abstractions to support interaction functionality core to tabletops (such as
to position and orient digital artifacts, concurrent use, and direct interaction with
hands or stylus),

2. allow creation of higher-resolutions tabletops using multiple projectors in a tiled
array,

3. allow geographically separate tabletops to connect and share a workspace, and

4. allow rapid tabletop application development by reusing existing interface components.

The first goal also applies to Cruiser, and forms a central feature of the framework (§5.6).
Goal 2 is specific to the research novel to T3, where 6 data projectors are combined for
their tabletop display. Cruiser has some alternative techniques (resize and capture+zoom),
where interface objects themselves allow higher-resolution versions of photographs to be
retrieved for display (§5.5.8). Goal 3 has been considered in Cruiser, and some networking
concepts such as the inclusion of a remote desktop and a remote instance handle on objects
in included, but it is not relevant for collocated photo sharing.

Goal 4 goes against some of our goals – for an immersive photo sharing experience we
do not want PhoTable to look like a conventional WIMP computing interface. Rather, we
explicitly want new interface components in Cruiser tightly bound to physical metaphors
to support social aspects of human-human interaction and photo sharing (rather than a
focus on the computer interaction suggested by legacy interfaces). There is also continuing
debate (e.g. Shen et al. [2007]) as to whether traditional interface components are suited
for use on tabletops at all. For Cruiser, they would be difficult to render efficiently within
the framework that also renders large numbers of high-resolution photographs at arbitrary
size and orientation.

T3 is implemented in Java. Similar to DiamondSpin, it allows transformations to be
applied to Java Swing interface elements available in the JRE, thus automatically gaining
building blocks for WIMP applications. However, the cross-platform support of Java is
currently not leveraged as it depends on external libraries maintained only for Windows.

Parts of T3 were inspired by a previous project – the Escritoire [Ashdown and Robinson,
2005]. This is a single-user display that uses two projectors – one closer to the table that
provides a high-granularity fovea that can be interacted with a similarly high-precision
digitising pen and tablet. The use of multiple displays in both projects led to the exploration
of client-server approaches for managing the display – the server maintains the state of
items in the environment, and clients request updates to the subsections of the environment
that they need to render.

34



CHAPTER 2. BACKGROUND 2.3. Frameworks for Interactive Tables

2.3.5 Other toolkits

A number of other systems have been developed as toolkits for tabletops, but do not really
generalise into a repurposable framework for application development on the tabletop. In
many cases, the toolkit facilities are geared towards the user, rather than the application
developer. They are summarised here, as their ideas and components have influenced
plugin development in Cruiser. They also represent systems that have a potential to be
supported by the Cruiser framework.

SDG Toolkit The SDG toolkit [Tse and Greenberg, 2004] was not initially a tabletop
toolkit, but a toolkit for developing Single Display Groupware [Stewart et al., 1999], which
manages multiple users, each with input devices. It has been extended to support the
DiamondTouch hardware and a demonstrator application called SquiggleDraw [Diaz-Marino
et al., 2003] was created. SquiggleDraw, allows two users to collaboratively draw simple
pictures on the surface of the DiamondTouch. Notably, line width is controlled by a
multi-finger gesture invoked concurrently with the drawing of lines, where the length of
a line between two fingers determines the thickness of line drawn perpendicular to the
midpoint of the line between the fingers.

BEACH BEACH is a framework that forms part of the iRoom interactive Roomware
[Streitz et al., 1999, 2001]. One part consists of an underlying framework for accessing a
shared information space between the devices around the room (called COAST), in order to
create a logically homogeneous space. This includes a capability to form a tiled wall-sized
display.

HabilisDrawDT Butler and St. Amant [2004] developed this single user, bi-manual
tool-based drawing application. The work augments their interface with virtual tools such
as pens, inkwells, a ruler, a trash can and a tape dispenser to allow a user to create a
picture in a tool-driven environment.

Físchlár-DT Smeaton et al. [2006] implement this Físchlár system for the DiamondTouch.
A Físchlár system is a tool for that can analyse, index and provide searching and browsing
on video archives. Físchlár-DT uses DiamondSpin and its polar coordinate system for
collaborative video editing activities for interactive experiments as part of TRECVid – an
annual benchmarking activity.

Dynamo Multi-user non-touch collaborative workspaces such as Dynamo [Izadi et al.,
2003] also provide novel ways of sharing and exchange of media. However, in this paradigm
users interact indirectly with the (vertical) surface using mice and keyboards.

EnhancedDesk [Koike et al., 2001, 2003] combine an infrared camera and a pan-tilt
camera with a template-matching technique to perform real-time tracking of a user’s hand
and fingers over the surface of the EnhancedDesk. An LCD projector projects information
that can be directly manipulated with a user’s forefinger and real-world fiducial markers
can be detected near the fingertip. The work also evaluates a proposed method for tracking
trajectories of multiple fingertips using only the infra-red camera.

Other research also uses computer vision techniques from full colour (rather than
near-infrared) video [Song and Takatsuka, 2005, Chen et al., 2006, Malik and Laszlo, 2004].
However, these techniques currently appear to have been encumbered by high processing
overhead, poor precision and lack of multi-user support.

35



2.3. Frameworks for Interactive Tables CHAPTER 2. BACKGROUND

Diamond-
Spin

T3 SDGTool-
kit

Innovis
Display
Frame-
work

Surface Cruiser

Language Java Java MSVC++ MSC++ XAML
.NET
C++

ISO C++

Platform JVM JVM Windows Windows Windows
Vista

Linux,
Windows,

OSX

Accelerated
Graphics

in
progress
(JOGL)

y n y
(OpenGL)

2D:y,
3D:?

y

Reuse Java
Swing UI

y y N/A N/A N/A N/A

Plugin
Architecture

n n n n n y

Input Diamond-
Touch
only

* (Anoto
Stream-

ing
Pen)

Mouse,
Keyboard

DViT Surface Mimio
Styluses,
Diamond-

Touch,
others

Table 2.3: Comparison of Tabletop Frameworks

2.3.5.1 Toolkits for Processing Input

A number of toolkits have recently been released for generating input for multi-touch tables,
including Touchlib12 [Bauer, 2007], reacTIVision13 [Kaltenbrunner and Bencina, 2007],
and TouchKit14. The focus of these toolkits is in computer vision, for the recognition of
multi-touch inputs and object recognition from video processing, rather than providing
a framework for developing a tabletop application. They could be a valuable tool in
introducing support for new types of multi-touch hardware to the Cruiser framework.

2.3.6 Summary

Until Cruiser, there has not really been any tabletop system framework, in the formal sense
defined by Fayad and Schmidt [1997]. The various toolkits presented here have gone some
ways to provide reusable components for development of tabletop applications, but none
have been formalised in a true framework. This means much of the burden of application
development burden remains with the user of the framework. By comparison, Cruiser
allows new functionality to be self contained as a plugin.

Soon, partners with Microsoft can expect the release of the Surface SDK – a framework
for developing applications for Surface. However, this works against one of the main goals
of system infrastructure frameworks; namely portability. Furthermore, part of Microsoft’s
approach to development of their framework is to borrow heavily from the .NET 3.0
framework, which has not been developed with tabletop interfaces as a focus. This may
negate the “green field” opportunity we have as UI designers to design new UI elements
and interactions for this very new kind of interface; the tabletop. However, it is promising

12http://nuigroup.com/touchlib/ verified 2008-05-04
13http://reactable.iua.upf.edu/?software verified 2008-05-04
14http://nortd.com/touchkit/ verified 2008-05-04

36

http://nuigroup.com/touchlib/
http://reactable.iua.upf.edu/?software
http://nortd.com/touchkit/


CHAPTER 2. BACKGROUND 2.4. Photos and Photo Sharing

that the Surface applications publicised to date do constitute a divergence from traditional
UI design.

2.4 Photos and Photo Sharing

While tabletop interfaces represent a new means of interaction with special constraints,
they also have particular advantages over conventional systems in their support for a range
of social interactions. In this thesis we explore one of these: storytelling and the sharing of
experiences, based upon collections of digital photographs, such as those from a holiday.

The tabletop interface is intended to facilitate normal social interaction at a table,
and has support for physical gesturing, deictic referencing [Gutwin and Greenberg, 1999]
and coordination activities (see e.g. Scott et al. [2003]). These features make tabletop
interfaces particularly appropriate for activities involving collaborative interaction (as, for
example, in Morris et al. [2006a], Shen [2006], Rogers et al. [2004], Matsushita et al. [2004])
and storytelling, such as in the Personal Digital Historian (PDH) [Shen et al., 2003b,
Moghaddam et al., 2004].

The advent of digital photography, and the changes it has wrought to our photo sharing
habits has created the need for more appropriate ways to share our digital photographs.
This is a core motivation for my research, as discussed in the Introduction (§1.2.2). In this
section I will provide further background on past and present photo sharing habits.

2.4.1 Photo Sharing Applications and Devices

StoryTrack

Balabanović et al. [2000, 2005] developed a non-tabletop device called StoryTrack for
collocated storytelling around photographs. A portable device similar to a palmtop
computer allows the explicit creation of stories for photographs, taken from a linear photo
browsing “track” along the top of the display. In their study, they observed participants
talking a great deal about the photographs, but explicit recording meant that many of
these conversations were not recorded. Whether this was because users forgot or did not
intend these stories to be captured is not discussed.

They also observed participants moving between photo-driven and story-driven methods
of sharing; so we must support this if we are to design an interface for sharing digital
photographs. The handheld StoryTrack device [Balabanović et al., 2000] orders photographs
chronologically and grouped in batches (such as a roll of film). PhoTable also uses a
chronological ordering, but groups are formed automatically using a temporal clustering
algorithm that instead focuses on grouping into events. Expanding the interface to a tabletop
interaction style provided by Cruiser would also allow users to touch and manipulate their
photographs directly – thus improving the social interaction – and also providing greater
flexibility in software aspects of the interface.

GIA

Jin, Choi, Chung, Myung, Lee, Kim, and Woo [2004] developed GIA, a gesture-based
interactive photo album. The interface was developed to be natural, and navigation involves
turning virtual pages of a photo album, using a touch screen. This is a very direct approach
to bringing back some of the traditional interactions with physical photo albums, that
are being lost with the progression towards photos purely in digital form. Their findings
indicate that this type of interaction is easily learnable and also provides more emotional
satisfaction than the typical methods we use to share our digital photographs, such as on a
computer screen.

37



2.4. Photos and Photo Sharing CHAPTER 2. BACKGROUND

pHotOluck

Nishimoto et al. [2006] propose pHotOluck a novel table-ware system for the sharing of
digital photographs around a dinner table at meal time. They use computer vision to
detect and identify white ceramic plates with colour-coded dots, and project photographs
onto their surface to stimulate conversation. Photos can be changed by flipping the dish
over and placed onto other, larger, shared plates by placing the smaller plate into the larger
one. The system is designed to vitalise conversations at the dinner table – it is “not so
good as a photoviewer”.

Time Quilt

Time Quilt [Huynh, Drucker, Baudisch, and Wong, 2005] investigates sophisticated nav-
igation and browsing for reducing constraints inherent in the sharing of photographs in
purely digital form compared with printed photographs.

MediaBrowser

MediaBrowser [Drucker et al., 2004] is a research effort from Microsoft to bring single-user
photograph browsing to the consumer. It uses recent advances in graphics hardware (and
its adoption in home computers) to support powerful browsing and searching of photograph
collections on a traditional desktop computer and computer monitor.

Other Applications

Photo sharing tools such as PhotoArcs [Ames and Manguy, 2006] are designed to support
remote users on a traditional computer, an important distinguishing feature of tabletop
interaction follows from the nature of the ways that people normally interact with each
other at a table.

Other consumer-level applications such as Picasa allow sharing of photographs via email
or by posting to an Internet blog. Combined with VoIP software such as Skype, simple
photo viewing applications can be used to share digital photographs remotely; relating
a story over a voice channel to other parties. My work considers the enhanced social
experience involved when sharing photographs in a face-to-face setting, at a tabletop.

2.4.2 Photo Sharing on the Tabletop

Prior to DiamondTouch, but also at MERL, work by Vernier et al. [2002] used a circular
tabletop display and Mimio digitising styluses for asynchronous multi-user interaction.
This work investigated document orientation and size for multi-user browsing of digital
images and presented the use of a central fish-eye deformation described as a “black hole
effect”, along with centric and magnetised orientation strategies to facilitate document
exchange. This grew into one of the first applications exploring photo sharing with groups
around an interactive tabletop, called PDH:

PDH

Follow-on work on the Personal Digital Historian (PDH) project [Shen et al., 2001]
considered visualisation and layout optimisation using Principal Components Analysis
(PCA) [Moghaddam et al., 2002]. Categorised layout views of image-based group histories
based on personalised and Who, What, Where, When techniques [Shen et al., 2002], and
story sharing [Shen et al., 2003b] have also been explored. Moghaddam et al. [2004] present
a user preference study with 6 naïve users to demonstrate superior performance of their
“α-estimation” PCA layout technique over one with random weightings.

38



CHAPTER 2. BACKGROUND 2.4. Photos and Photo Sharing

Shen et al. [2002] conducted an in-house user study using PDH with seven pairs of
employees. The participants were first given a 20-minute tutorial by the experimenter
and, after 30-50 minutes of exploration, given 10 minutes to construct a short story about
a member of the lab. The participants were asked to rate their agreement with each of
19 statements on a 7-point Likert scale and to list their three best and worst aspects of
the interface. This research reports that participants were observed to enjoy themselves
and five of the seven pairs were able to present their story in the time allotted. The work
found that selecting and moving images was easy, after users accepted that they could not
manipulate images simultaneously, but participants were sometimes confused about why
the interface was “doing certain things”.

Photohelix

Hilliges, Baur, and Butz [2007] add a tangible object to their interactive tabletop interface
for navigating photographs arranged chronologically in a spiral. The timeline spiral appears
around the physical control object, fashioned from a kitchen timer and optical mouse, when
it is placed on the table. Turning the control object will navigate through the timeline – a
lens overlaid on the spiral shows the currently active section of the timeline. Photos taken
during the active section of timeline are expanded, with lines indicating the point on the
lens corresponding to the photo capture time. Dragging an image out creates an enlarged
copy.

An evaluation was conducted with 20 participants, who brought a subset (80–100) of
their own image collection, which ranged in size from 100 to 10 000 photographs (x̄ = 3 340).
Participants enjoyed using the interface, and particularly appreciated the chronological
ordering of photographs. One complaint was that thumbnails on the timeline were too
small to use as navigation targets. Clutter was also identified as problematic, a commonly
occurring theme amongst tabletop interfaces (e.g. Leithinger and Haller [2007], Shen et al.
[2002], Morris et al. [2006b], Ryall et al. [2006], Hartman et al. [2006]). Clearly, tabletop
interfaces need mechanisms to effectively deal with the problem of clutter for this class of
task.

Summary

So far, only Photohelix has investigated how people share their own collection of photographs
at tabletops – this is an extra step in the evaluation process that can have privacy concerns,
but is invaluable if we want to observe authentic photo sharing behaviour. It is also
common for tabletop searching and browsing interfaces to require photographs to be
hand-annotated with metadata such as category tags, the people depicted and geographic
locations. Photohelix is unique in relying only on Exif data that is created automatically by
a digital camera, and while it encourages users to make explicit groupings to help organise
their photographs, it is not a requirement.

If we are to investigate effective ways to support storytelling, for which tabletop interfaces
are particularly well suited, it is critical that we utilise the users’ own photographs and, to
validate our scenario, we must accept them in their authentic form, unsorted and without
metadata beyond what the digital camera gives. We must also support realistic collection
sizes – if not an entire collection of photographs, at least the full set of photographs that one
might wish to share in one sitting. This might be all the photos taken during a particular
trip, for example, or all the photographs that might fit on a digital camera memory card –
usually 500–2 000.

39



2.5. Chapter Summary CHAPTER 2. BACKGROUND

2.4.3 Audiophotography

Frohlich [2004] introduces the idea of audiophotography, defined simply as photographs
with associated sound. This audio might be ambient sound when the photograph is taken,
a piece of music, the subject of the photograph talking, or conversation about the subject –
“photo-talk”. The latter forms a type of audiophotograph called conversational photographs.

In studies using traditional, printed photographs, he identified two types of photo-talk:
reminiscing, which was characterised by equal participation in conversation, overlapping talk
and usually occurred when all participants shared the memory depicted; and storytelling,
usually occurring when a participant was not involved in the memory, characterised by little
overlap, unequal participation and a tendency for the photographer to focus on particular
photographs in a collection. Frohlich presents evidence for the value of capturing and
preserving conversation around photographs [Frohlich et al., 2002], but also states that the
reminiscing style is unlikely to have long-term value as a voice-over [Frohlich, 2004] due to
the more unstructured conversation style. Preserving storytelling, however, is suggested to
have benefit.

As yet, no work on digital photograph sharing has attempted to automatically capture
the photo talk.

2.5 Chapter Summary
Tabletop interface design poses some challenging constraints. Being able to sit opposite
the storyteller (as in Figure 1.1) permits eye contact to be made, indicating awareness
and attentiveness in the story, and direct manipulation allows for gesturing and pointing.
However, without a keyboard or mouse, there is a sparse set of interaction operations,
typically just touch, dwell and drag (and in multi-touch some combinations). Furthermore,
we must overcome problems stemming from the pragmatics of tabletop interaction such as
orientation (text and otherwise), large displays (resolution, user reach), and coordinating
interaction. These are important differences compared with conventional computers.

To assist application designers in supporting the tabletop interface, an effective frame-
work is required that considers the constraints of tabletop interaction, and provides flexible
and new ways for users to interact with the tabletop, as well as with each other. One cannot
assume that interface elements designed for a single user on a vertical display designed to
be used indirectly, via a keyboard and mouse, will have the same effectiveness when used
on a multi-user direct-interaction tabletop interface. Toolkits for tabletop interaction have
not yet gone far enough towards providing the necessary application support for the rapid
development of novel, flexible and functional tabletop applications.

The tabletop interface and an effective application framework give us a special oppor-
tunity to leverage social aspects that the interface can provide in order to share our digital
photographs. Such an environment has real potential to bring back some of the emotional
attachment that is accorded when interacting directly with printed photographs, as well as
providing a digital environment to facilitate sharing our collections of digital photographs,
without having to print them out. By virtue of being digital, we also have the opportunity
to automatically capture this interaction to implicitly create an audio-augmented digital
photo album of our stories as a side-effect of the photo sharing. Realising this goal, whilst
providing an extensible application framework with novel and effective interface elements
for browsing through large collections of real users’ digital photographs is the focus of this
thesis.

40



Chapter 3
Design Overview

We begin with a high-level design overview, and discussion of our design rationale, before
going into depth about how the design is realised in Cruiser and PhoTable. There are two
aspects to design in this thesis: design of the software framework, and design of the user
interface. Throughout development, these aspects have influenced each other – the Cruiser
framework from the bottom-up and the PhoTable user interface (combined with the photo
sharing motivation) from top-down.

Because the interface depends on the framework (and the framework is intended to be
able to support a variety of interfaces), it is tempting to begin by describing the framework.
However, programming necessitates abstractions, and the Cruiser framework has many
abstractions to deal with the complexities of software development. To provide the design
influences that establish the requirements for these abstractions, this chapter will begin by
describing design of the user interface.

This chapter, too, is necessarily abstract, as we give rationale for our design before
presenting actual design, which is then followed by the implementation behind the design.
If you are unfamiliar with the Cruiser framework, you may wish to refer to figures in
Chapter 4, or accompanying video you may have received with this thesis, to give the
rationale some initial context.

3.1 User Interface Design Drivers

Before describing the specifics of design for the user view of the PhoTable application,
a more general description of design for tabletop interfaces is needed. This chapter first
describes the particular problems that must be overcome in design for tabletops, followed
by the key elements for interaction that were identified for use in Cruiser.

Given the novelty of tabletop interfaces, there has been little work with a focus on
design for tabletop interfaces. Some important foundation work includes Scott’s [2005]
studies of users managing photographs at a tabletop as a basis for the design of personal
spaces and storage bins. From many general guidelines [Nielsen, 1993] of user interface
design, and an early influence of considering usability for the elderly [Apted et al., 2006],
we established principles to guide the design of our tabletop interface:

G1. Focus on learnability and memorability.

(a) Rely on familiar aspects of manipulating physical documents (e.g. photographs)
on a tabletop. This reduces the amount to learn and remembering is easier since
the user already knows how to move and share physical photographs.

41



3.1. UI Design Drivers CHAPTER 3. DESIGN OVERVIEW

(b) Minimise the number of interface elements, based on common user interface
goal of simplicity.

(c) Strive for predictability by maximising consistency.
(d) Use new objects with new appearances for new interface behaviours [Tognazzini,

1996]. This avoids clashes with the user’s existing knowledge.
(e) Provide continuous and appropriate feedback (usually contextual visual feedback

for the tabletop, as audio can be problematic with multiple users).
(f) Avoid modal operation where possible, as this requires switching and memory

of the current mode; particularly avoid irreversible changes.

G2. Address special aspects associated with multi-user tabletop user interfaces:

(a) They may be large so a user may be unable to reach the whole table easily.
(b) Ensure the user can easily make interface elements larger. This ameliorates the

effects of poor display granularity and also, by allowing the user to enlarge user
interface elements as much as they please, they can reduce the need for fine
motor co-ordination and reduce the effects of the “fat finger syndrome”.

(c) Ensure interface elements can be rotated, for viewing by different people, situated
at different sides of the table, or at arbitrary angles.

(d) Support the user in reducing clutter. Clutter is a particular issue for tabletop
interfaces. In addition, this is especially important if many user interface
elements need to be large. In general, we should reduce distraction from the
current focus.

(e) They are social spaces, commonly used with small groups of people. G2b is also
significant here; e.g. when users enlarge an image in order to discuss it.

(f) They form part of a pervasive computing environment (e.g. lacking keyboard
and mouse), and may need to interact with other parts of the environment (e.g.
throw a photograph onto the wall, attach a digital camera, etc.).

G1 is largely adapted from classic guidelines such as Nielsen [1993], which emphasise
predictability, consistency, feedback, error prevention and reduction of memory load. The
tabletop gives additional focus. For example, Wu et al. [2006] noted the importance of
providing continuous feedback (G1e) at a gestural, tabletop interface. In addition, in the
absence of an undo operation, feedback is particularly important to help prevent errors.
Providing an undo operation remains a problem exacerbated by having multiple users and
simultaneous interaction.

Similarly, a modal interface (G1f) often requires all users to be aware of, and agree
upon the current mode, so is best avoided. A common use of modes in traditional graphical
interfaces, such as drawing programs, is the toolbar. Selecting an item from the toolbar
puts the interface into a new mode, such as draw or select, and is usually indicated by
changing the mouse cursor, which gives an iconic indication of the active mode at the
same location as the user’s focus. However, even if users can be reliably distinguished, the
absence of a cursor in direct-interaction tabletop interfaces means that the indication of
the current mode must always be away from a user’s current focus.

G2 addresses problems that are special to tabletop interfaces, and is given some focus
by the context of our photo sharing application. Clearly, the set of guidelines cannot be
blindly applied to all tabletop applications. Some applications, particularly more basic
or constrained tabletop applications (e.g. gaming), will not be affected by all of the same
issues. However, the full set of guidelines are important for a generic framework.

42



CHAPTER 3. DESIGN OVERVIEW 3.2. Influences for User Interface Design

G2b was partially influenced by our initial focus on elderly but has wide applicability –
a user cannot pick a photograph up to examine it closely and the large dot pitch means
that leaning closer to the table (e.g. as observed by Terrenghi et al. [2007]) helps only
slightly. G2c and G2e arise because of the multi-user nature of tabletops – if we are to
leverage the benefits of multi-user and social interaction that interactive tabletops can
provide, we must design software aspects of the interface to support this.

The issue of clutter (G2d) arises because of the fundamental differences from physical
tabletop interaction. For example, it is easy to create new images and multiple people
may interact in parallel (e.g. with copies of the same photograph). The issue of clutter
is a prominent issue amongst research involving interactive tabletops and the kinds of
tasks they are designed to support (e.g. as observed by Shen et al. [2002], Morris et al.
[2006b], Ryall et al. [2006], Hartman et al. [2006], Hilliges et al. [2007], Leithinger and
Haller [2007]).

We now discuss how these guidelines, and the restricted input available (G2f) in the
tabletop interaction paradigm, influence the high-level design of user interaction.

3.2 Influences for User Interface Design

For the user interface design, we intend actions to be as natural as possible through the use
of a variety of visual affordances. Some of these affordances are derived from equivalent,
purely physical interactions that occur with printed photographs placed on the tabletop.
We do this to reduce the semantic gap and to minimise the number and complexity of new
concepts our users were required to learn (G1a). To maintain the link with the physical
world, users interact only with photographs – there are no buttons, menus or toolbars to
be navigated, nor any special keyboard or gestural commands (G1b).

Special photographs, with a different appearance (G1d), but consistent behaviour (G1c)
perform special functions. These special photos are moved, rotated and resized just like
regular photos, but trigger their special function when dwelled upon, or when another object
interacts with it. The interaction of objects in this manner gives additional opportunities
to provide continuous feedback (G1e) and avoids modes (G1f) because, rather than having
a toolbar, the “tool” itself is available on the interface. Feedback is given throughout the
special actions, so the user can immediately see the effects of their interaction. The actions
are also designed to support an early exit with minimal, reversible changes if the user
decides, from the feedback, that it was not their intended action.

This section now discusses the user interface “keystrokes” that are available to designers
of tabletop interfaces. This provides the basis for a form of evaluation when exploring
potential alternative designs for an interface action.

3.2.1 Direct-Touch “Keystrokes”

The lack of a keyboard or mouse (G2f) means that we must reinterpret the meaning of
keystroke – there are no keys. In a Goals, Operators, Methods, and Selection rules (GOMS)
analysis, the original Keystroke-Level Model (KLM) [Card et al., 1980] represented the
operators required to perform a user interface task in terms of Keypress (on a computer
keyboard or mouse button), Point (with a mouse), Home Hands (to move hands between
mouse and keyboard), Mental preparation, and system Response time. These were
combined with heuristics for the placement of M operators, and have been updated
for WIMP-style direct manipulation interfaces [John and Kieras, 1996]. However, these
operators are not appropriate for direct-touch interfaces, such as tabletops, where there
are no keys and no cursor to move.

43



3.2. Influences for User Interface Design CHAPTER 3. DESIGN OVERVIEW

This thesis does not attempt to formulate a new GOMS for tabletops. Indeed, for
many of the tasks tabletops are well suited to (e.g. multi-user collaboration and, in this
case, photo sharing) measuring task execution time is less important than effective support
for the creative, and often artistic, processes involved around tabletop collaboration. In
addition, GOMS is designed for expert performance, and we explicitly want emphasise
learnability as well as expert usability. However, it can still be useful to consider our
interface design in terms of such operators, or interaction primitives. For direct-touch there
are surprisingly few:

Touch (or tap) where a user makes contact with the interactive display with a finger or
stylus,

Dwell where a user maintains stationary contact with a point on the display, and

Drag where the user slides their point of contact over the display.

A stylus with buttons can incorporate an additional component, but otherwise more
complex interactions can be formulated in terms of these three. Even multi-touch can be
represented simply by using multiple of these operators.

Shape recognition in tabletops may provide more operators through the detection of
various hand or object shapes, but not all tabletop hardware has support for this and the
robustness of such recognition can have a negative impact on usability. As the approach
to development of tabletop software in this thesis is to be hardware-independent, shape
recognition is left for future work.

Note that throughout this thesis, a “touch” or “touch point” refers to contact made
with either a user’s own fingertip or with a pen/stylus. We do this mainly to simplify
descriptions of the interaction techniques.

3.2.2 Design Approach

Since tabletop interaction is a new area for user interface design, we utilised a form of ex-
ploratory design based on iterative refinement within our flexible development environment.
The essential elements of the approach are:

• a development platform that is sufficiently flexible that we can explore diverse
approaches, reducing the constraints on our thinking;

• brainstorm about the primitive actions that should be explored;

• choose one and then brainstorm about the gestures to support it;

• conduct desk evaluations based on heuristic evaluation and keystroke analysis;

• use this to refine the design;

• evaluate with user trials; and

• iteratively refine the design and repeat evaluations.

Here evaluations include informal user trials such as exhibitions and interactive demon-
strations, and larger, more systematic evaluations of the interface (e.g. Apted et al. [2006],
Apted and Kay [2006a], Collins et al. [2007], Apted and Kay [2008], Collins [2006]).

This is a fairly standard exploratory design approach with a short iteration cycle
between refinement of the design. The challenging aspects for tabletop interfaces are to
establish a suitable development platform, escape the straight-jackets of preconceptions
from both experience in the physical world and conventional interfaces and identify suitable
heuristics for the desk evaluation.

44



CHAPTER 3. DESIGN OVERVIEW 3.3. Key Design Elements

Function Why Core

Select Establish Focus, raise to top, ensuring visibility

Move Pass photographs, organise, layout, etc.

Rotate Orientation for user view and sharing
* Resize Make focus for discussion or view (enlarge), make smaller when not focus

Copy Duplicate whole photos and control objects

Grouping Attachment, Storage Bins, Personal spaces – designate areas of the table,
object associations, flip

Delete
(Hide)

via the “Black Hole”: Reduce table clutter, remove mistakes

Capture via the “Frame”: crop photos and create new photos, allows further
levels of zoom and a facility to retrieve finer detail from the original
photograph, on disk

* Rotate and resize is a combined action – rosize

Table 3.1: Summary of Core Functionality in a Cruiser user interface

3.3 Key Design Elements

This section addresses the functionality that was considered core for our tabletop interface.
An exhaustive set of implemented functionality and features is left for the following chapter.
Here, the emphasis is on core facilities that we may build upon to address our design
drivers. A summary is provided in Table 3.1.

3.3.1 Select

Select is accomplished by physically touching an object on the display (G1a). Visual
feedback is given that indicates which object is selected (G1e) and, when user identification
is available, a colour corresponding to the user who selected it (G2e). Objects with hotspots
– special areas that trigger actions other than move – also have their hotspots highlighted
when selected. For example, selecting a photo will show the areas that can be used to rotate
and resize it. All objects on the display are selectable (G1c), unless they are currently
being manipulated by another user (G2e) – items cannot be stolen.

An explicit deselect is not normally required (G1b) – selecting a new object triggers an
implicit deselect of selected objects. Touching the background (i.e. selecting nothing) also
deselects. Maintaining only a single selection for each user also assists the goal of simplicity
(G1b), but note that we do need a selection model that keeps track of each user’s activity
(G2e). Grouping techniques (§3.3.5) can provide methods to manipulate multiple objects,
that multiple selection would provide.

Using hotspots also means that actions such as move, rotate, resize, etc. do not need
to be preceded by an explicit select, and do not require modes (G1f). That is, the touch
and drag primitives may be combined where user memory of the hotspot locations allows
the select step to be skipped. Hotspots also allow the number of interface elements to be
reduced – toolbars, icons and/or menus are not required (G1b) to change the mode.

3.3.2 Move

Moving objects is accomplished by a drag operation – the selected object, or objects, are
moved the same displacement as the touch point (G1a), whilst giving continuous feedback

45



3.3. Key Design Elements CHAPTER 3. DESIGN OVERVIEW

(G1e). All selectable objects on the display can be moved (G1c).
It is sometimes not possible to move a particular object to the new location, for

example, if it would move out of the display area. In these cases, each object is moved to
the closest permissible location. This is pragmatic – we do not want users to lose objects
by inadvertently moving them so that they fall off the table. However, the same logic can
be used to enforce private areas, only accessible by particular users (G2e).

Flicking objects, an action motivated in some of the earliest touch screen research
[Minsky, 1984], involves releasing an object whilst it is being moved quickly. The object
initially retains its velocity, but is subjected to a frictional force that slows it down, similar
to flicking a physical coin across a regular table (G1a). For tabletops, flicking allows objects
to be moved to distant parts of the display (G2a, G2d), pass objects to other users who
may be out of reach (G2e), and potentially to transmit objects to other displays in the
environment, such as a wall display (G2f).

3.3.3 Rotate & Resize

This is a composite function, using the drag operation and hotspots, that we created as a
way to achieve simple interaction (G1b). To activate, a user touches an object in one of its
corners and drags.

By combining rotate and resize in one action – rosize – it is possible to maintain the
appearance of a single point on a photo being stuck to the participant’s touch point (G1a),
as it is for move. The hotspot area is shown when an object is selected, and all four corners
behave alike (G1c). This design symmetry is also important as it is not always possible to
tell which way an object is oriented, and objects may be viewed and manipulated by users
seated at all angles around the tabletop as the social nature (G2e) means that seating
arrangements might not be fixed1.

During a rosize, the object is rotated and resized concurrently to keep the location
on the object that was touched continually beneath the touch point (G1e). Note that it
would not be possible to maintain this stuck effect if we performed only a rotation or resize
without requiring the user to restrict their movement to a purely radial or circular motion.
The stuck effect is also what we would expect when manipulating physical objects (G1a).

Rosize also fulfils some new requirements of the tabletop interface, namely the provision
of an easy resize to make elements larger (G2b), and a rotate so objects may be viewed
at arbitrary angles (G2c). In addition, an easy way to resize also lets objects be made
smaller, e.g. to manage clutter (G2d).

3.3.4 Copy

Copy is also considered a core function to provide for the tabletop. The collaborative
nature of tabletop interaction (G2e) means that we can expect multiple users to need to
speak about, look at and act on the same object. With a large table (G2a), this is infeasible
or uncomfortable with a single object. Even a single user may want multiple copies of an
object; for example, where they want to create several collages which each include the
same image, or where they want to keep a copy of an original image before performing
actions to transform it. In addition, file copy is a fundamental aspect of operating systems,
and needed to support current user behaviours with digital cameras (i.e. to backup digital
photographs).

The need for a copy is also indicated by studies where people were observed to steal
objects from others [Morris et al., 2004b]. This can be avoided by making it easy for people

1In particular, for some types of social interaction (e.g. storytelling) users may have a preference for a
face-to-face arrangement, rather than side-by-side.

46



CHAPTER 3. DESIGN OVERVIEW 3.3. Key Design Elements

to copy an object so that any or all people at the table may have their own copy, oriented
as they please and at the size they choose.

Clearly copying and resizing are not feasible with most physical objects but can be
supported in tabletop interfaces.

3.3.5 Grouping

Grouping applies to creating areas of the tabletop to designate as personal space (G2e),
creating objects to serve as temporary storage, or creating associations between items. A
temporary storage helps people to manage clutter (G2d) and making the storage movable
can assist in moving groups of objects around the table (G2a). Creating associations allows
a hierarchy of object relationships to be formed, can assist in tagging, and may serve as a
means to place new, dependent objects in a meaningful place, via attachment.

Other important forms of grouping can be based on the notions of personal spaces
(objects or screen elements that can be made private), storage bins (movable and resizable
containers, with behaviour like regular photos – G1c), and attachment. Personal spaces
enforced by the interface can help avoid stealing behaviour [Morris et al., 2004b], and
Scott’s [2005] work suggests the need to explore personal spaces as well as personal storage
[Scott et al., 2005].

Attachment could be activated by flipping an object over like a postcard (G1a), with
items able to be attached to the reverse side (and automatically laid out) simply by moving
them over a flipped object and releasing. Browsing techniques also need to present an
initial grouping for objects when they are newly loaded onto the interface, for example to
group the contents of folders on disk.

3.3.6 Delete

Unlike a physical table, the virtual objects on a tabletop display are created easily. In order
to minimise clutter (G2d), and to support the user in task management, a delete operation
is important. In designing the delete operation, we wanted a reversible action that could
be executed simply (G1b) and with continuous feedback (G1e), so that the action could
be cancelled early if was started unintentionally – an image should not simply disappear,
based on some action that may be triggered accidentally. A confirmation dialogue asking,
“Do you really want to delete?” was dismissed as it could be irritating, it would detract
from social aspects like storytelling (G2e), we would not know where on the table to show
it (G2a) or which way to orient it (G2c), and the text could be hard to read (G2b).

We also did not wish the user to navigate a command hierarchy, toolbars or text as
these create additional interface elements to learn and remember (G1b). In addition, menus
and text typically require an orientation which might not be determinable (G2c). This
is compounded by the typically large dot pitch of the tabletop display (G2a), which can
make text hard to read and icons hard to distinguish. Another important concern when
interacting with such objects on touch interfaces is the fat finger syndrome whereby small
objects are hard to select (G2b), and the display is often occluded by the user’s hand whilst
trying to find the item they wish to select – there is no mouse cursor (2f).

Our solution to this was the Black Hole and is somewhat analogous to the astronomical
phenomenon (G1a, G1c). It is discussed in detail in Section 4.3.1.

3.3.7 Capture

The desire for a capture functionality initially arose from a cultural probe study [Risborg
and Quigley, 2003] which highlighted the importance of scrapbooking and postcards in
existing non-technological photo sharing habits. Capturing a highlighted area of the display
allows a collage of images to be loaded as a new object, similar to a physical postcard G1a.

47



3.4. Further Exploration CHAPTER 3. DESIGN OVERVIEW

However, the same technique found further applicability for cropping a single image,
when only part of a single image is highlighted. This not only provides a useful tool for
users to crop their photographs, but can also improve the viewing quality of photographs
on the tabletop.

When designing a computing interface, we must consider the hardware limitations we
must work within. At present, digital photographs typically have much greater resolution
than computer displays2. One option that allows users to see all the image detail available
requires the image to be shown much larger than the display, requiring panning. However,
this means the tabletop is “taken over” by a single photograph blocking other users (G2e),
requires additional steps to find areas of interest (due to lack of context), and requires the
image to be reduced in size before the interface can be used for further interaction (G1f).

There are also pragmatic reasons not to do this. Loading the full image data of all
photographs on the table will quickly reach limits of the computer memory, or else require
complex data structures and preprocessing to allow it all to be retrieved in an arbitrary
and flexible manner. The graphics implementation also usually has a limit (typically
2048 × 2048 pixels) on the size of an image that it may render, so that images on the
interface may be efficiently rotated and resized. So high-resolution photos can not be
loaded at their full size.

However, cropping a geometric region can be performed with the original file on disk,
in order to gain access to the full image quality. A rotation may also be required, if the
highlighted area is not orthogonal to the image but this, too, can be performed on disk.
This creates a new file that can be loaded into the interface, using the full image data
available in the highlighted region that was captured. This allows users to very quickly
zoom in on areas of the photograph they are discussing, while seamlessly retrieving a
higher-quality version of the zoomed area.

The capture tool is simply a transparent photograph highlighting an area, like coloured
glass (G1a), that may be rotated and resized in the same way as other photographs (G1c).
Unlike photographs, for which it rarely makes sense to stretch vertically or horizontally,
the highlighted region can have its aspect ratio changed, allowing arbitrary rectangular
shapes to be created. Continually highlighting an area gives immediate feedback about the
area that would be captured (G1e). Providing a single tool that crops, makes collages, and
retrieves high-quality image data (i.e. zooms) allows the number of interface elements to
be reduced (G1b). In all cases, the resulting image is saved on disk for later use (e.g. it
might be later used as an email attachment).

The capture technique has also been explored for tagging areas of images and regions
on maps. In this mode, rather than creating a new image from the highlighted area, the
highlighted area is given a tag.

3.4 Further Exploration

While the elements in the previous section are key to the design of PhoTable, our framework
gives us the opportunity to easily investigate other user interface elements that are worth
exploring. To motivate these, we consider other tasks one might wish to perform at a
multi-user interactive tabletop for sharing digital media. Discussion of the implementation
of these interface elements is left for Section 4.4.

Video It is becoming increasingly common for digital still cameras to also support recording
video. Users may wish to share videos present on their camera memory as part of
a storytelling session, or in other media sharing scenarios around the table (e.g. a

2This is especially true of current commodity projection hardware that is usually limited to 1024× 768
pixels.

48



CHAPTER 3. DESIGN OVERVIEW 3.5. Drivers for Framework Design

presentation). An extension of this is to support live video, such as from a webcam,
television tuner or network video stream. Supporting these types of video could, for
example, enable video conferencing with groups of people at tabletop interfaces in
other locations, or support video editing (e.g. Smeaton et al. [2006]).

Remote Desktop (Interactive Images) Access to a remote desktop (or Virtual Net-
work Computing (VNC)) gives us instant support for any kind of legacy application
that might run on a traditional computer. Simply by updating the contents of
an image from a remote computer screen, and making that image interactive, we
can support any regular application on our tabletop. For example, one can run a
full-screen web browser pointed to Google Maps to provide map navigation on the
tabletop. Some VNC servers3 support multiple, virtual desktops so a single computer
is not limited to providing a single interactive image, and can also provide desktops
of arbitrary resolution.
Of course we need a way to distinguish a drag on the remote computer (e.g. to move
its mouse cursor) from a drag on the tabletop (e.g. to move the interactive image).
The solution to this may break our guidelines by requiring a mode (G1f). One may
also transfer files shown on the remote screen to the tabletop by dragging an icon to
the edge of the virtual display. Recent versions of the protocol used for VNC support
file transfer, but we can also use a backchannel for transferring files (similar to FTP).

Keyboard Support Our key tabletop interactions are built around direct interaction
and do not involve a keyboard (G2f). However, there are some situations where
keyboard input is appropriate. For example, a tabletop brainstorming application
my require the rapid simultaneous input of ideas. Because we have multiple users,
we also explore providing each user with their own keyboard. In addition, providing
keyboard input allows us fully leverage our interactive images, for example, sending
keystrokes as well as mouse cursor movements to the remote display.

Handwriting It is natural for people to write at tables, and so we also explore this for
our interactive tabletop. Using touch or, more sensibly, a stylus one can annotate
images (e.g. with labels), write messages on the back of flipped photographs and
draw simple drawings.

With our framework, we can also provide users with the flexibility to chose the interface
elements that best suit their task. For example, a stylus can be used for handwriting and
drawing, but a keyboard may be more suitable for text input, and presenting a dedicated
drawing application (such as Photoshop) inside an interactive image provides a way to
create more complex drawings.

We also maintain consistency (G1b) when exploring this additional functionality. For
example, an interactive image can be copied like regular photos, and each copy will be
interactive. For example, this can provide multiple users with a shared drawing canvas to
allow the construction of a drawing collaboratively. Similarly, performing a capture that
crops a video object will create a new video object that is updated with only with the
region captured from the original; effectively zooming in to that area of the video, just as
a capture of a still photograph can also be used to zoom.

3.5 Drivers for Framework Design
To this point, the Design Overview has dealt only with the user interface design. To allow
developers to easily create new tabletop applications, we must also carefully consider the

3e.g. TightVNC (http://www.tightvnc.com verified 2008-07-08) on Linux

49

http://www.tightvnc.com


3.5. Drivers for Framework Design CHAPTER 3. DESIGN OVERVIEW

design of the software framework. The need for a flexible and effective software framework
grew out of our early work [Apted et al., 2006].

Initial development of Cruiser was partially motivated by the need for a demonstrator
photo sharing application for DiamondTouch hardware donated by MERL [Dietz and Leigh,
2001], in 2004. At the time, there was a single developer (myself) and a single application
in mind. This led to a very “flat” architecture – the basic photo sharing application was all
that it could do. In addition, we only considered interaction with DiamondTouch, which
simplified many of the design choices.

The initial application (at the time, called SharePic), showcased some of the potential
of tabletop interaction. It was demonstrated widely: for several Australian government
ministers and a number of exhibitions and open days, including the Australian CeBit. It
also gave many insights into the technical challenges of creating experimental tabletop
software. However, to effectively explore tabletop interaction possibilities, a more generic
development framework was required.

When the drive for new features and collaborations began, combined with the need
to go beyond photo sharing applications, a more flexible framework was needed. To help
direct this new development we identified design goals in the early stages of our design
process, which we now describe.

3.5.1 Design goals

Design goals are distinguished from features as properties that influenced the overall
structure of the framework, and the implementation methodology, rather than a component
or aspect of the framework. The design of Cruiser was directed by the following goals:

• maintain a stable code base

– for use in demonstrations,
– for incremental user studies,
– to evaluate design ideas;

• enable rapid and easy experimentation of new interface features, by

– decoupling experimental features from the core requirements,
– providing an easy path to introduce experimental features into demonstrations;

• provide a cohesive but functional and unencumbered core infrastructure to explore
new applications, by

– providing (visually) a “blank slate” to explore applications with diverse appear-
ance,

– requiring minimal library dependencies in the core,
– providing a pre-compiled binary option for development;

• operate independently of the novel interaction hardware (i.e. support stylus, touch,
DiamondTouch, etc.), while

– operating in a pervasive computing environment, without keyboard or mouse,
– making it easy to support new interaction hardware, without causing an unne-

cessary (library) dependency on it;

50



CHAPTER 3. DESIGN OVERVIEW 3.5. Drivers for Framework Design

• able to exploit dedicated computer graphics hardware found in most modern com-
puters;

• able to leverage multi-core systems to provide an additionally responsive interface
(but otherwise remain responsive on single-core systems by running intensive tasks in
the background);

• run effectively without specialised hardware, so that it performs adequately even on
a laptop (e.g. for roaming demonstrations);

• cross platform both in development and execution; and

• provide a flexible and functional infrastructure that encourages code reuse for a range
of graphically immersive, interactive tabletop applications.

This section will now elaborate on the motivation for the choice of these design goals.

3.5.2 Stable code base with easy experimentation

This is desirable for any large piece of software (see e.g. Beck and Andres [1999]), but
is particularly important in research systems. Manpower is typically in short supply, so
rather than supporting a software release, it is more efficient to have a continually evolving
but stable code base for user testing, demonstrations and for use in other projects (e.g.
honours students). We can also use this for experimentation with new interaction elements,
as part of our iterative design approach (§3.2.2).

However, in research systems there is also the conflicting goal of wanting to encourage
experimentation in all elements of the code, which may easily break stability. Decoupling the
software into a stable, core set of functionality (with a plugin architecture) and potentially
unstable plugins with experimental functionality allows this dual goal to be satisfied. If a
plugin is too unstable for a demonstration or user test, we simply do not load it. This has
the added benefit of making it easy to selectively load particular functionality for focused
user studies.

3.5.3 Visually bare, yet functional and unencumbered core

This goal is related to the previous one, but the focus is on functionality, rather than
stability. Adding functionality typically creates library dependencies, sometimes with the
undesired effect of reducing portability. It is important that the core remain unencumbered
by platform-specific code or optional features as the core represents the set of functionality
that all plugins should be able to rely on being present. For example, detection of
the insertion of removable storage is very platform-specific and not only adds library
dependencies on some platforms (and those libraries might not be available) but may also
require an additional thread of processing to wait for the event provided by the operating
system4. If a particular application does not require this functionality, it could needlessly
add complexity and waste resources.

It should also be visually bare, so that the interface may be adapted to a very specific
task, provided by a plugin, simply by not loading any other plugins. That is, the core
should provide simply a blank screen when no plugins are loaded. But it should still
be functional: infrastructure should remain, such as for processing events, loading new
on-screen objects and providing textual feedback (e.g. for debugging). An alternative
would be to explicitly turn off visual objects when the plugin is initialised, but this is a
needless complication for plugin writers. So, for example, adapting the interface to work

4This event queue is different from that needed to process input events from a Human Interface Device
(HID) on most platforms.

51



3.5. Drivers for Framework Design CHAPTER 3. DESIGN OVERVIEW

as a casino table (§6.2.2) or other game, just requires loading application-specific screen
resources. Plugins are essentially given a blank slate but may also share plugin libraries
(§5.4) and alter their load order for additional dependent functionality.

3.5.4 Hardware independent and easily adaptable

There is not yet any standard protocol or programming interface for tabletop hardware to
communicate with the operating system and applications. Most interface devices today
that connect to ordinary computers use the Universal Serial Bus (USB) interface. When
adapting existing hardware for use as a tabletop input device, this is seen in devices such as
Mimio, SmartBoards (DViT and others), DiamondTouch and Hitachi StarBoard [Hitachi
Software Engineering America, 2007]. These each use a USB connector. However, the
manner in which input from the device is received by the operating system, and the manner
it may be subsequently used by applications differs in each case.

Mimio [Virtual Ink Inc., 2006], for example, uses a wholly proprietary and obfuscated
protocol to communicate with their device over USB. Allowing third-party applications
to interface with the device directly is not currently part of Virtual Ink’s business model.
Mimio’s applications provide mouse emulation, but this is insufficient if we wish to identify
multiple users (e.g. where each user uses a different stylus). Under Windows, it was
necessary to write a plugin for their unmaintained Merlot application to allow stroke data
to be accessed over sockets. Under Linux, a reverse-engineered kernel driver5 was updated
to work for newer kernels6 in order to access the device, and to report input events to
applications. As a bonus, input lag is perceivably reduced in this case, over Windows.

SmartBoard [SMART Technologies ULC, 2006] is kinder, using a known standard
protocol for their device firmware: the USB Human Interface Device (HID) class protocol
[USB Implementers’ Forum, 2001]. This allows the device to be recognised by a compliant
operating system “out of the box” and events to be processed without proprietary software.
However, SmartBoard also provides an SDK for coordinating with their own suite of
applications, including accessing calibration data. Whether we choose to access the
hardware directly, or go through the SmartBoard SDK may depend on the end-users other
needs.

DiamondTouch [Mitsubishi Electric Research Laboratories, Inc., 2006] is still primarily
a research prototype, so the interface may change. It currently uses a proprietary, but open
protocol. The protocol may be proprietary due to the somewhat unique nature of the data
that DiamondTouch is able to generate: two arrays of sensor levels (one for columns and
one for rows) are reported7, rather than an array of coordinates. An SDK for interpreting
the protocol is provided for Windows, and a Linux driver is available on request.

What is clear from this sample and the wide range of potential hardware discussed in
the Background (§2.1), is that we cannot rely on all tabletop hardware to communicate
with applications in the same manner. If we are to support different kinds of hardware
in our framework, the best we can do at this stage is make it easy to adapt and support
new types of hardware. A plugin architecture helps here – hardware-specific code can be
provided in a small plugin that is detected at runtime to support hardware unknown at
compile time.

We can also rely to some extent on open standards – the HID standard shows particular
promise and results in very little hardware-specific code for hardware that uses it. For

5Mimio Xi driver for Linux 2.6 (<2.6.15) http://www.cs.nmsu.edu/~mwilder/dl/idx.html, retrieved
2008-01-28.

6Mimio Linux kernel driver package http://praxis.it.usyd.edu.au/mimiolinux.tar.bz2, retrieved
2008-01-23.

7Introspection suggests that the HID standard physical descriptor data structure (see [USB Implementers’
Forum, 2001]) may be able to support DiamondTouch data.

52

http://www.cs.nmsu.edu/~mwilder/dl/idx.html
http://praxis.it.usyd.edu.au/mimiolinux.tar.bz2


CHAPTER 3. DESIGN OVERVIEW 3.5. Drivers for Framework Design

example, SmartBoard-specific code is about 30 lines, encapsulated in a self-contained
file (see §A.5.1) – it does not require the SmartBoard SDK or its own operating system
driver, and simply linking it allows Cruiser’s own calibrator and input framework (§5.3.3)
to detect and use it. Future devices using the HID standard should easily be incorporated.
The Cruiser framework even provides a fallback mechanism if the input events are similar
to an already known protocol.

3.5.5 Able to leverage modern hardware (GPU, and multi-core CPU)

Low-cost or ultra-portable laptops excluded, most current computers have accelerated
graphics (i.e. a Graphical Processing Unit (GPU)) and multi-core CPUs. By leveraging
this additional processing power we can not only provide a rich display with many, high-
quality interface elements such as high-resolution photographs, but we can also increase
responsiveness of the interface by performing processor-intensive tasks in a concurrent
thread, freeing the main thread to process user input.

3.5.5.1 Texture Processing

The gain from concurrent threads can be significant. Consider a typical 5 megapixel
digital photograph. First, it must be read from disk – reading approximately 2MB of
JPEG-encoded data from disk and decoding it into a 15MB buffer (5 million, 3-byte pixels).
Next, for optimal display with a graphics card, images (textures) must be square. Some
work (e.g. Isenberg et al. [2006]) may require images to be square before loading but if
we are to support authentic digital photographs (§1.1), we have two options to make the
image square: extend the shorter dimension with dummy pixel data so the image becomes
square; or rescale the image to square dimensions.

Digital photographs are typically larger than the maximum supported square texture
resolution of graphics cards (usually 2048× 2048). So, as we have to reduce the size of the
image anyway, we choose the second option for loading photographic images. Thus, the
15MB buffer must then be processed into a 12MiB8, square texture using image rescaling
algorithms9. Note that the initial focus is on photographic images, due to the key driving
influence of PhoTable. However, the framework extends to broader applications such as
browsing documents [Collins et al., 2007] and remote desktop, where the first option (i.e.
using dummy pixels rather than rescaling) is more suitable10.

However, when there are many photographs being displayed simultaneously, most will
be much smaller than this texture size or they simply would not fit in the resolution of the
display. In order for the graphics card to efficiently display textures at a range of sizes, we
must also create mipmaps. This involves further rescaling operations; each halving the
dimensions of the texture into new buffers, until we have a 1 × 1 square – a pixel that
is the average colour of all pixels in the texture. In maximum quality, this results in 11
further rescaling operations into buffers occupying an additional 4MiB.

The final step involves loading this data into the graphics card texture memory, from
system memory. Only in this, final stage must the display be paused while we are unable
to redraw the screen due to the GPU being busy transferring data.

Note that 16MiB is also a lot of texture memory to occupy for a single photograph
given that graphics cards typically have only 128–512 MiB of available memory: we would
only be able to load 8–32 photographs. So in Cruiser, we also ask the graphics card to
compress textures in this step; usually increasing capacity 4-fold (for 32–128 photographs).

8MiB: Mebibyte (binary megabyte), 1MiB = 220 Bytes.
9Cruiser uses 12MiB as the maximum, when the graphics card is good; on more restricted hardware,

smaller textures are used instead – 10242 or 5122 (3MiB, or 768KiB).
10See §5.5.9.

53



3.5. Drivers for Framework Design CHAPTER 3. DESIGN OVERVIEW

Other techniques, such as initially loading low-resolution thumbnails for browsing (§5.4.5),
reducing overall quality as a configuration option (§5.2.6), and leveraging the ability of
recent graphics drivers to swap out the high-resolution versions of mipmaps to system
memory, significantly reduce the memory burden on the graphics card further, so that
many hundreds of photograph objects may be present (which is a reasonable upper bound,
even for large tables).

OpenGL implementations typically provide a function (gluBuild2DMipmaps) to perform
all but the JPEG-decoding step. However, this function requires access to the graphics
card – using it to perform the mipmap processing steps would needlessly make the interface
unresponsive. An important design decision was that Cruiser needed its own implementation
that is able to execute in a concurrent thread – freeing both the GPU and all but one CPU
for other tasks. On a single-core system, this thread is given a low priority – it is able to
execute between screen redraws, thus leaving the interface responsive. Cruiser also uses
an intelligent screen redraw algorithm (§5.2.7) to minimise needless screen redraws, thus
providing more time for low-priority tasks.

Here, image pre-processing is given as an example, but Cruiser benefits from placing
a number of other processing tasks into concurrent threads as well. For example, most
tasks involving disk or network access (e.g. loading or saving audio, accessing the metadata
database, sending images to remote displays) are executed in a separate thread. Having all
these threads and managing their resources can become complex, so Cruiser was designed
with a cross-platform thread manager that makes it easy to start any function call in a
separate thread, with a particular priority. The thread manager is also able to treat these
requests as tasks to be executed in series, so that when many instances of the same function
call are requested, a thread is not started for each; just one thread for the function task
(see §5.2.6).

Another important design decision, to support responsiveness of the interface, was
the creation of a metadata database as a cache for compressed textures, to avoid much
of the above processing after the application has been run at least once. This works as
follows: after initially loading mipmaps into texture memory, Cruiser requests the (now
compressed) mipmaps back from the graphics card, up to a pre-set size (as databases are
generally not suited to storing very large objects). Then, in a concurrent thread, these
are saved to the metadata database. When a thumbnail-sized version of a photograph is
subsequently requested, the compressed mipmaps are loaded from the database. This not
only avoids the JPEG-decoding and pre-processing stages, but also reduces the critical
time required to transfer the texture data to the graphics card, as the texture is already
compressed.

In summary, there were several critical design decisions around leveraging the graphics
card to allow Cruiser to handle hundreds of high-quality and responsive interface objects
at once. Leveraging the multitasking capabilities of modern processors then keeps the
interface responsive – thus avoiding the lengthy “Loading...” and “Saving...” screens
often experienced in graphically-intensive applications, such as computer games and image
editing.

3.5.6 Run effectively without specialised hardware

Cruiser is still foremost a tabletop interface framework. However, many of its contributions
can be applied equally to desktop environments. In particular, users may wish to utilise
Cruiser and PhoTable for sharing photographs without the need for a tabletop interface.
This is considered in the design: most operations can be performed with a mouse cursor.
There are also pragmatic reasons – much of the debugging occurs at a traditional computer.

However, this should not limit the flexibility of Cruiser on specialised hardware. The
input and gesture frameworks in Cruiser are able to take advantage of more complex

54



CHAPTER 3. DESIGN OVERVIEW 3.5. Drivers for Framework Design

interactions available with special hardware, such as user identification and multi-touch.
Mouse inputs are mapped to equivalent operations within the gesture framework.

Cruiser also considers the limitations of older hardware and provides configuration
options for reducing the quality on such systems. For example, my own laptop was bought
in January 2005 and has a single-core, 1.7GHz Pentium “M” processor. Yet, it is this
system on which many demonstrations of Cruiser and PhoTable have been performed,
particularly those overseas. For these, Mimio (also easily transported) was used, and a
table and projector were borrowed, making it readily transportable in luggage.

Importantly, this is not limiting. More powerful hardware is able to run with increased
image quality and at higher resolutions. Background tasks such as image pre-processing
are also able to complete much sooner. Responsiveness, however, is typically able to remain
unaffected on more limited hardware, until large numbers of full-resolution images are on
screen at once. This may result in textures being swapped to and from system memory
during a screen redraw. However, this situation usually coincides with excessive tabletop
clutter and Cruiser has methods to deal with that (§4.3.1, §4.3.7).

3.5.7 Cross platform

Cross platform software has a number of advantages: there is an increased chance of
adoption; it permits a choice of alternative operating systems (and possibly free alternatives,
which may reduce the cost of a tabletop interface appliance, for example); and it typically
results in software code that is built on international standards such as Portable Operating
System Interface (POSIX)11 and International Organization for Standardization (ISO)
C++12. Such standards have internationally accepted and well-defined behaviour, are more
widely supported and less likely to lose support in future (i.e. break). To maximise efficiency
and flexibility we use C++, and writing portable code allows us to retain cross-platform
support, without the need to use an interpreted or byte-compiled language such as Java13.

Importantly, each operating platform has arguments for supporting it, beyond simple
user preference. Windows is widely used and makes it easy to distribute closed binaries.
However, it has a poor process scheduler that can affect performance where there are
multiple threads, as well as incomplete dynamic library support (see §A.2), lack of support
for significant elements of the POSIX standard and poor support for compiled-in debugging
(such as POSIX signals, and extracting a stack trace at any point in runtime). Mac
OSX is gaining increased adoption and is fully POSIX-compliant but requires special,
Apple hardware. Linux, meanwhile, has a small level of adoption but is free, mostly
POSIX-compliant, supports some enhanced runtime debugging and is sometimes able to
communicate more directly with hardware, thus reducing lag.

There are also pragmatic reasons behind the cross platform design decision. In one
period during 2007, three developers, each developing an application utilising Cruiser,
had preferences for different operating systems – OSX, Windows and Linux – and did
most of their development and testing in their preferred system. A cross platform Cruiser
allowed each developer to develop and test their tabletop application in their preferred
environment.

We must also consider the new hardware that is quickly emerging. If we are to retain
flexibility, we must accept the possibility that certain hardware may only be released with
support for selected operating systems. While standards such as the HID specification

11This is the ISO/IEC 9945 standard, published in 1988.
12This is the ISO/IEC 14882 standard, first published in 1998 and revised in 2003; commonly known as

C++98.
13Some argue a technicality that Java is not cross platform, as the code will only run on the Java Virtual

Machine.

55



3.6. Chapter Summary CHAPTER 3. DESIGN OVERVIEW

[USB Implementers’ Forum, 2001] will help, we cannot rely on all hardware manufacturers
to support international standards.

3.5.8 Flexible, functional and encouraging code reuse

This is a design goal that any software framework should have. In Cruiser, it is realised
by the design in a number of ways. For example, having two library levels (core and
plugin libraries – see §5.1) allows functionality to be shared between plugins. Good Object-
Oriented (OO) programming practices are used to allow much of the functionality provided
by the core to be inherited and overridden. Hooks are provided at appropriate points (e.g.
during draw routines) to allow derived classes to perform additional steps. Callbacks allow
plugins to provide code to be run when certain events occur, such as when a key is pressed
or an object is added to the display.

Cruiser provides class hierarchies for the implementation of many of the major features.
The Resource hierarchy (§5.2.4 and Figure 5.2) provides a variety of on-screen elements
and is the one most visible to the user. User input is processed using a Gesture hierarchy
(§5.2.10). Automatic layout of collections of Resources is provided by a Layout hierarchy
(§5.2.4.2). Screen animations are provided in the Animation hierarchy14 (§5.2.9). These,
and other hierarchies provide a base functionality that a new type, from a plugin, may reuse
and give the application writers the flexibility to override and extend much of functionality
available in Cruiser.

3.5.9 Other Goals

We established several additional goals that influenced the design. These mainly relate to
pragmatics:

• should not be encumbered by a particular license (e.g. inclusion of GNU Public
License (GPL) code would require the license for Cruiser to be GPL)15;

• structured so that Lesser GNU Public License (LGPL) libraries may be used without
affecting the license (i.e. they must be dynamically linked, which can be cumbersome
in Windows – see §A.2);

• legacy support to run arbitrary programs within an interactive photograph, so that
we could easily augment the experimental interface with existing, familiar tools if
that was useful for an experimental trial;

• fast prototyping to allow new ideas to be tested quickly;

• debugging facilities that work well within the complexities of multithreading and
immersive graphical environments;

• support for written annotations, with a pen or stylus.

3.6 Chapter Summary
The design focus presented here has guided the implementation of the Cruiser framework:
its API, implementation methodologies, interaction techniques and user interface elements.
The development has also been influenced top-down, by the requirements of the PhoTable
application. However, by grounding the design in generic interaction techniques backed by

14or, more correctly, a lattice due to multiple inheritance
15Inclusion of code licensed under a Berkley Software Distribution (BSD)-style license does not have this

problem, as long as attribution is made.

56



CHAPTER 3. DESIGN OVERVIEW 3.6. Chapter Summary

flexible and reusable framework components, we aim to create a general purpose framework
allowing a number of versatile tabletop applications to be built.

The key design elements (§3.3) influence what users of the tabletop interface will see
and interact with. The realisation of the interface design is described from the user view
in Chapter 4, to follow. Evaluation of the effectiveness of the interface is presented in
Chapter 7.

The framework design drivers (§3.5) primarily influence what application and plugin
developers will use to create new tabletop functionality. The Cruiser framework has been
designed to address all of these drivers, and is discussed in Chapter 5. Evaluation of the
effectiveness of the Cruiser framework in terms of these goals is presented in Chapter 6.

57



3.6. Chapter Summary CHAPTER 3. DESIGN OVERVIEW

58



Chapter 4
User View

The development of Cruiser was motivated by the desire to share digital photographs
on a multi-user interactive tabletop interface, thereby realising the PhoTable application
(see §1.1.1 Naming). To achieve this effectively, development of software aspects of the
interface have been geared towards facilitating a highly learnable, natural and intuitive
interaction, tightly bound in physical analogies. The starting point is the display of the
digital photographs on the tabletop that mimics the way physical, printed photographs
would behave.

A photograph is displayed as a rectangular object, appearing on the interactive tabletop,
with the image content of the photograph visible. Many photos can be visible on the
tabletop at once, and they may be arranged. Photos can be moved, simply by dragging
them with a finger, stylus, mouse cursor, or some other input device, depending on the
hardware configuration (Cruiser is designed to avoid dependence on any specific hardware
device). Photos can also be rotated, resized, flipped and manipulated in other ways. These
interface actions are described in Section 4.2.

However, a photograph is just one type of on-screen object: an image. Visible objects
are generalised as resources, and other examples include handwriting, audio, video and
interactive images. Image is also specialised to create objects with behaviour similar to
photographs, but with added functionality. For example, special image objects can act as
temporary storage bins, a cropping tool, content browsers, or a “black hole” (for deletion)1.
The behaviours of special resources are described in Section 4.3.

The display of the visible resources is achieved by maintaining the positions of the
objects, their scale and orientation, in computer memory. Each time the screen is redrawn,
OpenGL is used to draw each on-screen object. For photographs this involves rendering
a mipmapped texture, with decorations to assist selection, laid out appropriately on the
interface. When interaction occurs, we determine which object is touched, and where on
that object contact is made, which determines the type of manipulation that should occur.
The mechanics of selection are managed by the Cruiser framework and will be described in
Section 5.2.1.

This chapter will focus on the user view of the interface. That is, the appearance
and behaviour of the interface and interface components from the perspective of an end
user. The design of the framework is at a lower level, and so the interface from a plugin
developer’s perspective is covered in the next chapter. In this chapter, concepts are
described in terms of on-screen objects and interaction behaviour, where Chapter 5 will
deal with concepts in terms of classes and functions.

1Figure 5.2 shows the relationships of most of the special objects available, with a complete depiction in
Figure A.2.

59



4.1. Interface Design Approach CHAPTER 4. USER VIEW

4.1 Interface Design Approach
Here, design refers to the general structure of on-screen objects and the interactions that are
available to the user, rather than notions of graphic design, which could be deferred to later
stages of development2. This section discusses the design approach, towards creating the
PhoTable application and showcasing the functionality provided by the Cruiser framework.
But interactive tabletops are a new environment for computer-human interaction, so how
do we design the interactions on such an interface?

Design drivers were presented in Chapter 3. In essence, there are several fundamental
differences between tabletop interfaces and conventional desktop computer interfaces. The
tabletop provides both opportunities and challenges of innovation in creating new ways to
interact. If we are to exploit the opportunities offered by the special properties of tabletops,
whilst taking account of the limitations that they impose on design, we need support for
the exploration of the rich design space.

One key requirement for this is a set of techniques to assist in evaluating a range of
possible ways to design new elements for tabletop interaction. With the current state
of the evolution of tabletop interaction, there are many interface elements that deserve
exploration. Existing tabletop systems have many different ways to do even such primitive
actions as moving, rotating and resizing objects visible on the table.

Many of the interaction primitives that are a core part of traditional interfaces are
yet to be explored. For example, there is only early work on mechanisms for accessing
files that are stored in a file system attached to the table [Collins et al., 2007]. Another
common task that has received little attention is copying, and my own work has formally
explored the basic action of copying elements on the table [Apted and Kay, 2006a] (see
also §4.3.8). Similarly, clutter is a serious problem for tabletop interaction (§3.1), yet there
is still much to be done in exploring techniques for this to be addressed; some are explored
in this thesis.

The approach to interface design was primarily influenced by our guidelines in Chapter 3.
But we still need a way to evaluate the design. Part of this involves user studies, which
are presented in Chapter 6.1. Heuristics were used early in the design process to assist
development.

4.1.1 Design Heuristics

Heuristic Evaluation [Nielsen, 1994b] is a well established technique for evaluating inter-
faces. It has the very desirable property that it can be conducted quickly, and relatively
inexpensively; suitably expert evaluators can make use of a set of heuristic guidelines, or
rules, to evaluate an interface. One essential requirement is a suitable set of guidelines.
These can be used both for summative evaluation of an interface and they can also play an
invaluable role as an aid for designers as they explore the design space: with a good set of
design guidelines, or heuristics, they can use these to inform that exploration and conduct
very quick formative evaluations of a range of new possibilities.

Certainly, the very broadest design guidelines, which apply to all interfaces are still
of value for tabletops. However, established heuristics – including those for conventional
and non-conventional interfaces – fall short of some critical interface challenges for the
tabletop interface that are not present in traditional interfaces. For example, multiple,
collocated users introduce a dichotomy of interface requirements, as multiple people often
results in the interface having to support multiple simultaneous user goals [Tang et al.,
2006]. Traditional sets of heuristics are typically designed for a single user with a single
goal. While there are many sets of guidelines, some generalised [Nielsen and Molich, 1990,

2Aesthetics are not a current focus of development – they are considered insofar as to not detract from
usability.

60



CHAPTER 4. USER VIEW 4.1. Interface Design Approach

Shneiderman, 1992, Nielsen, 1994a] and others highly specialised (e.g. the Mitre Set [Smith
and Mosier, 1986] and others [Brown, 1988, Mayhew, 1992]), there is no set that properly
supports the particular class of tasks involved in designing new interaction elements for
tabletop interaction.

Scott et al. [2003] conducted an analysis of existing tabletop research from the Human-
Computer Interaction (HCI) and Computer Supported Cooperative Work (CSCW) fields.
From this, they propose a set of heuristics to facilitate the design of tabletop interfaces, and
outline directions for future research. The heuristics proposed are summarised in Table 4.1.

1. support interpersonal interaction
2. support fluid transitions between activities
3. support transitions between personal and group work
4. support transitions between tabletop collaboration and external work
5. support the use of physical objects
6. provide shared access to physical and digital objects
7. consider the appropriate arrangements of users
8. support simultaneous user actions

Table 4.1: Tabletop Interface Heuristics from Scott et al. [2003]

A clear focus of these heuristics is supporting transitions (such as between activities or
people), rather than usability. As such, the focus of these heuristics seems to lie with the
design of the overall user experience, at a high-level. Moreover, they involve both hardware
and software. In this thesis, the goal is the design of software to support interaction.

My work is particularly concerned with software design at a low level, where the design
is an exploration of possibilities for elements within the interactive experience. Heuristic
evaluation at this level, such as for the design of a specific user interface widget or gesture,
is important to the design of a highly usable tabletop user interface framework. Scott’s
guidelines, being at a very different level, do not address this. In addition, there are some
aspects of tabletop interaction, such as clutter, that these heuristics do not cover.

Instead, much of the design influence was gained from Nielsen’s original set of heuristics.
While these heuristics were developed with only traditional, vertical computing interfaces
(typically data entry interfaces), many continue to be relevant for the highly graphical and
immersive pervasive computing interfaces such as those on a tabletop. Nielsen [1994b]
suggested these ten, to provide coverage of published usability problems (quoting from
[Baecker et al., 1995]):

N1: Visibility of system status. The system should always keep users informed
about what is going on, through appropriate feedback with reasonable time.

N2: Match between system and the real world. The system should speak the
users’ language, with words, phrases and concepts familiar to the user, rather
than system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order.

N3: User control and freedom. Users often choose system functions by mistake
and will need a clearly marked “emergency exit” to leave the unwanted state
without having to go through an extended dialogue. Support undo and redo.

N4: Consistency and standards. Users should not have to wonder whether dif-
ferent words, situations, or actions mean the same thing. Follow platform
conventions.

N5: Error prevention Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.

N6: Recognition rather than recall. Make objects, actions, and options visible.
The user should not have to remember information from one part of the dialogue

61



4.1. Interface Design Approach CHAPTER 4. USER VIEW

to another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

N7: Flexibility and efficiency of use. Accelerators – unseen by the novice user –
may often speed up the interaction for the expert user such that the system can
cater to both inexperienced and experienced users. Allow users to tailor frequent
actions.

N8: Aesthetic and minimalist design. Dialogues should not contain information
which is irrelevant or rarely needed. Every extra unit of information in a dialogue
competes with the relevant units of information and diminishes their relative
visibility.

N9: Recognise, diagnose, and recover from errors. Error messages should be
expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

N10: Help and documentation. Even though it is better if the system can be used
without documentation, it may be necessary to provide help and documentation.
Any such information should be easy to search, focused on the user’s task, list
concrete steps to be carried out, and not be too large.

Intrinsically, the tabletop brings support for N2 to a new level beyond what traditional
computing interfaces can provide. By providing a graphical, immersive and direct interac-
tion with virtual objects, a very tight match between the system and the real world can be
provided. The interactive graphical environment also enhances recognition of objects and
actions (N6), rather than having to rely on recall.

However, complications of multi-user, pervasive interaction, and problems of orienta-
tion and text readability exacerbate the straightforward support for many other Nielsen
heuristics. For example, should undo (N3) revert only the command of the user invoking
the undo, or should it be a “global” undo that takes the entire interface back to a previous
state? Shortcuts (N7) are difficult to implement for expert users when a keyboard is not
available. Similarly searchable, online help (N10) might not be appropriate for viewing on
the table – a peripheral display may be better suited to this task.

We are at a crucial point in time where we have the potential for tabletops to break
away from the interaction that has come to be normative; that seen in Microsoft and Apple
desktop products. Tabletop hardware is currently evolving quite fast and we would want
Heuristic Evaluation to be independent of the hardware3. Because there are no established
interfaces yet, this is a time when we can consider a broad range of possibilities without
concerns of backward compatibility and we are less fettered by entrenched mental models:
users coming to a very different interface may be more open to, and willing to learn about,
new and unfamiliar ways to interact.

Nielsen’s heuristics provide a starting point, but cannot be blindly applied to tabletop
interfaces. Really, a new set of heuristics is required for tabletop interfaces. Some of the
existing heuristics are inappropriate for direct-touch interaction, or the intent needs to
be re-purposed to suit the kinds of applications that the tabletop is designed to support,
as there is a difference. But this is beyond the scope of this thesis. Such a set should
be developed as a community effort and when the field is more mature, with a chance to
reflect upon real-world use of tabletop interfaces.

Instead, our approach was to develop our own guidelines to drive the design, as presented
in Section 3.1. In this chapter, we give these guidelines more context and further indicate
how our design was influenced by these guidelines. This is summarised in Table 4.2.

3Whereas these vendors have a vested interest in support for only particular hardware.

62



CHAPTER 4. USER VIEW 4.2. Interface Actions

Core
Function

Design Influence Guideline

Select Photo corners, colour shows selecting user G2e, G1a

Move Tight coupling with selection point G1a

Rotate Large activation area in photo corner, bound to
photo

G2b

* Resize Same activation as for Rotate (fewer actions to
remember); Easy, flexible enlarge when vision is
poor

G1b, G2b,
G2e

Copy Builds on move (predictable) G1b, G1c

Grouping Postcard influence – attach to back after flipping
over, tools to help manage clutter, support limited
reach and permissions

G1a, G2e

Delete
(Hide)

Avoiding cluttered displays; gradual, reversible ac-
tion with continuous feedback

G2d, G1b,
G1d

Capture Photo frame or viewfinder G1a, G1d,
G2b

* Rotate and resize is a combined action – rosize

Table 4.2: Design Influences on Core Functionality in Cruiser

4.2 Interface Actions

Section 3.3 discussed the key software design elements we consider for implementing our
tabletop interface for sharing digital photographs: Select, Move, Rotate & Resize, Copy,
Grouping, Delete and Capture. This section goes beyond the abstract roles of these actions,
explaining how these elements are implemented in Cruiser, from the user view. That is,
how the user perceives the interface actions to work, rather than how they are implemented
in code, which is touched on in Chapter 5.

4.2.1 Select

As discussed in §3.3.1, select is accomplished by physically touching an object on the
display, whereupon hotspots for objects that support special actions are shown. Select gives
visual feedback to indicate what is selected, who selected it, and the hotspot areas that
trigger special actions. For photographs and other images, these hotspots can be seen in
Figure 4.1 – they are the triangular regions around the edge of the photograph. Note the
symmetry – all four corners behave in the same fashion (for rotate/resize), as do the four
edge triangles (for flip).

The image border, and the dashed lines demarcating the hotspots, are given a colour
corresponding to the user who selected it. When not selected, the border is given a default
colour, and dashed lines are not shown for the hotspots (although they are still operative).
Note that the nature of our interaction – giving continuous reversible feedback – means
that simply touching a hotspot, rather than the centre of the image, will not perform any
action beyond select unless the touch is immediately followed by a drag. Thus, for a novice
user, tapping anywhere on an image will select it and highlight the hotspot areas, without
performing any further action.

63



4.2. Interface Actions CHAPTER 4. USER VIEW

2

1

1

The centre of the image remains fixed while the image rotates and resizes to keep the “8” under a user’s
finger.

Figure 4.1: The rotate/resize gesture, showing hotspots

For non-novices, the select step is usually skipped – hotspots allow a move, rotate,
resize, or flip action to be activated in a single drag movement, with an implicit select.
Comparing to a GOMS model, this is akin to skipping the mental preparation step. Also
note that, for consistency and usability, the hotspots do not extend beyond the image
boundary – users would be unable to trigger a hotspot action without selecting if they
tried to anticipate where the hotspot would appear, because the area beyond an unselected
image could not perform the implicit select.

Demarcating the corners of the image in this fashion is reminiscent of photo corners –
small pouches or slots into which the corners of a physical photograph are placed in order
to mount it in some styles of photo album. Using visual affordances in this way, drawn
from physical analogies, assists in conveying the impression to users that they are not
interacting with a computer, and helps leverage users’ tacit knowledge.

Multiple Select (deprecated)

We also implemented a selection mode where selecting a new image does not automatically
deselect any previously selected images: images must be explicitly deselected. In this mode,
all selected images are moved during a translate, maintaining their relative positions where
possible. Sometimes relative positions are not maintained; for example, images are still
prevented from being moved off screen or into private areas. If one of the selected images
was manipulated in other ways, all selected images would undergo the same manipulation.

64



CHAPTER 4. USER VIEW 4.2. Interface Actions

In early experimentation, this selection model has been found to be less intuitive
than the single selection model. Further development of the model has not been pursued,
although it remains compatible with the current implementation and feature set. For
example, the module that was used for multiple selection is used implicitly when the Black
Hole is selected: all objects in the Black Hole are also selected, which will then move when
the Black Hole is moved, and become deselected when the Black Hole is released.

An alternative multiple-select mode that would not require an explicit deselect could
be a lasso-style select, whereby a circle is drawn around the group of objects to select.
Pursuit of such a mode is left for future work. Cruiser has other mechanisms for grouping
objects (§4.3.9 storage bins, and §4.3.4 attachment).

4.2.2 Move

Move should be one of the most intuitive operations in Cruiser, as it is not only used to
move objects around. The move action – performed with a drag (§3.3.2) – translates a
selected object, when the touch point is within the main area of the image (i.e. not in a
hotspot). It also serves to trigger some special actions, either by releasing an object while it
is inside another, or by a swipe action that moves the object so that is passes over another.
This is our approach to performing higher level functions such as delete, grouping, copy
and capture: rather than using a series of menus, pop-up dialogues, toolbars and modes
(which all go against our guidelines in §3.1) the objects themselves are the tool. Moving
or otherwise manipulating the tool object (or moving another image to the tool object)
activates the tool and allows its parameters to be specified, such as which image it should
operate on.

Because the Cruiser core framework avoids modes, objects can always be moved unless
it is explicitly disallowed (e.g. if an interface element is permanently attached to another or
in another user’s private area). This avoids potential confusion stemming from knowledge
about which mode is currently active. Indeed, the Interactive Image plugin (§4.4.1), which
is not used by PhoTable, explores a modal operation that can disable move, and is a
common source of confusion4.

4.2.3 Flicking and Momentum

The desire to draw interface affordances from physical analogies led us to explore an
extension of move in the form of flicking. The basic idea for flicking and the associated
momentum and frictional forces is similar to the technique described by Minsky [1984].
The goal is to make on-screen objects behave as physical objects would, when placed on a
table.

When on-screen objects are moved and then released, the speed of movement (i.e. of
the human’s touch point) is used to determine whether to give the object momentum.
The velocity of the object is calculated from a past window of timestamped positions. If
the velocity is greater than a configurable threshold, the image will maintain its current
velocity upon release. It is then subject to a simulated kinetic frictional force that causes
it to decelerate.

Cruiser’s physics does not skimp on the model of momentum by using a fixed-time
animation that estimates the deceleration effect. Instead, a coefficient of kinetic friction and
a gravitational constant are used to determine the rate of deceleration, which is distributed
proportional to an object’s velocity in each dimension. When the deceleration has caused
the momentum to approach close to zero, the object is stopped. The coefficient can be
different for each object, as it is set by a gesture that different types of screen objects
may override. This would allow, for example, a heavy object to be given greater friction.

4a solution for this that avoids modes remains future work

65



4.2. Interface Actions CHAPTER 4. USER VIEW

Cruiser also provides a reasonable default coefficient, that can be overridden. An object
with momentum is also stopped if caught – either by the user who flicked it, or another
user (if that user has permission to select it).

Objects with momentum are given special treatment around the Black Hole, to assist
deletion – see §4.3.1.3.

4.2.4 Rotate and Resize (rosize)

The need for rotate and resize, and the rationale for combining them in a composite gesture
called rosize, was discussed in §3.3.3. In keeping with our physical analogies, rosize makes
it possible to maintain the appearance of a location on an image being stuck to the point
of contact. Rotating or resizing independently would break this coupling.

Rosize is activated by dragging a photo corner, as demonstrated in Figure 4.1 – the
photo is rotated and resized concurrently such that the initial touch location continually
remains beneath the point of contact. In this example, the start position of the touch is
marked À and the initial state of the image is indicated by the small image at centre of
the figure (this initial state is also mirrored in the top left of the figure). Moving the touch
point at position À outwards and in an anti-clockwise arc (as indicated by the solid line),
causes the image to rotate almost 180° while increasing in size approximately 200 percent.
This makes the final state of the image that shown as the larger rotated version of the
same image taking most of the figure, with the touch point indicated by Á.

The action is smooth, giving feedback throughout by keeping the initial location on the
image that was touched – indicated by 8 – beneath the point of contact at all times.

In maintaining the desire for a tight coupling with the physical metaphor of printed
photographs, we note a similarity to the approach taken by Kruger et al. [2005], where
rotation and translation (rather than resize) occur in a single action (called RNT). That
work found that the combined gesture was well understood and efficient as well as preferred
over separate actions for their participants, sourced from a university population. In
this thesis, we also wished to have an easy, single-point resize operation, to support our
guidelines (§3.1) that emphasise an easy, non-modal way to change the size of an object.
This is so that photographs may easily be made larger (to share them), and to manage
clutter and the fat finger syndrome. Regarding the latter, note that the hotspots of the
images in Figure 4.1 are proportional to the size of the image – making the image larger
also makes these hotspots easier to select, thus helping to alleviate the fat finger problem.

Some other work with touch and tabletop interfaces performs resize independently of
other actions. Possibilities include: a technique similar to the operation for application
windows in common computer desktop environments (e.g. Ringel et al. [2004]); using
enlarged corner handles going outside the bounds of the window frame (e.g. Shen et al.
[2004]); an implicit strategy, based on location of objects on the tabletop (e.g. Vernier et al.
[2002]); or the use of a multi-touch gesture (e.g. Rekimoto [2002]).

Rather than forcing application designers to use a particular technique, the Cruiser
framework provides specific extension points to allow developers to provide their own
manipulation gestures (§5.2.10) for manipulating objects. In addition, the user interface
components provided are designed to facilitate flexibility and exploration of new interaction
elements. If desired, different types of on-screen object are able to provide distinct
manipulation techniques, even in a single running application. However, this alternative
technique would go against the consistency guideline we use in the design of the PhoTable
application.

66



CHAPTER 4. USER VIEW 4.2. Interface Actions

4.2.5 Flip

Flip is a technique for flipping images over that uses hotspots similar to the rotate & resize
operation. It leads to one of the strategies available to users to accomplish grouping, one
of the key design elements of our interface (§3.3.5). Again, the inspiration comes from the
physical analogy – the photographs on our table can be flipped over, just like physical
photos placed on a table surface. The photo’s flip side is white and other objects may
be attached to it. Users may also write on the back of photos – the initial motivation
for flip came from the desire to for users to create postcards that could be flipped over
and written on. However, for PhoTable, another appealing aspect this can support is
annotations similar to those that people make on physical printed photographs.

To implement flip, additional triangles are rendered on the edges of the photograph, at
the midpoint of each edge. Like the photo corners for rosize, they appear when objects are
selected and do not require an explicit select. These can be seen in Figure 4.1. A touch
in one of these triangles begins the flip action. As the touch point is dragged across the
image, the image is seen to rotate on a horizontal axis, perpendicular to the straight line
joining the two edges. If it is flipped less than half way, it will return to its previous state
when the touch is released, otherwise it will flip over completely5.

Apart from writing and attachment, the reverse side of an object is useful for showing
many kinds of metadata about a particular object. Currently, we render the filename on
the reverse side of photograph images. Other textual information, such as image resolution,
the date it was taken, etc. could also be displayed. Non-textual information can also be
displayed: currently, audio associated with image files is loaded and attached on the back
as a numbered, circular item that can be played back. Files on disk with the same name
as the image, an optional serial number, and the extension .wav6 are loaded at the same
time as the photograph, and attached. Ã of Figure 4.2 shows four of these items. Other
media items, such as related images, can be treated similarly, or loaded from a database.

Flipped images are shown in Figure 4.2. The objects indicated by Ã and Å are flipped,
and have attachments. Ã shows four audio objects; Å shows an audio object, two attached
photographs and the handwriting “Sydney”. Attached objects are automatically laid out
within the back of the photograph.

Flip is closely related to the attachment higher-level function, discussed in Section 4.3.4.
Details on the implementation of flip appear in Section 5.2.1.1.

4.2.6 Dwell Actions

In Section 3.2.1 we discussed the interaction primitives for direct-touch interaction in a
pervasive computing environment – touch, dwell and drag. So far, the interface actions we
have discussed have used only touch and drag. Now we discuss dwell.

A dwell occurs when a user maintains stationary contact with a point on the display.
To support this we need to define two parameters: the time required for a touch to become
a dwell, and the allowable maximum distance within which we detect a dwell rather than
a drag. These parameters may be changed in a configuration file, but by default we define
a dwell as a touch longer than 1 second that stays within 15 pixels of the original touch
point. This area is derived from the typical width of a finger on our projected displays.

5We did also implement a multi-touch gesture for flip. This was accomplished by placing two fingers on
the image, one each in adjacent photo corners (the same used for rosize). The fingers were then dragged
across the image to flip it. But this gesture lacked a visual affordance – it is hidden functionality that must
be explicitly taught and is easily forgotten as there are no hints to inform the user that they must use
multiple touches.

6Digital cameras that include a microphone allow an audio recording to be made using the camera,
when the photo is taken, which is saved in this format. These recordings are automatically detected, loaded
and attached to the flip side of photographs.

67



4.2. Interface Actions CHAPTER 4. USER VIEW

À: The Black Hole (an image partially within it)
Á: An image photo corner (selected by ‘cyan’ user)
Â: A dynamically updated interactive image from a laptop
Ã: An audio object, attached to the back of a “person” photo

(audio objects on people are synchronised with a voicemail inbox)
Ä: The Frame; Å: A flipped photo with attachments (some writing)

Figure 4.2: Projected image for 4 users, showing many Cruiser interface components

Dwells can occur immediately after a touch, or after a drag (without releasing). For
most interactions, the latter is ignored. This is because, in early experiments, users would
often trigger spurious dwells after moving an object, as they would retain contact whilst
preparing for their next, unrelated action. This would be a particular concern for tentative
first time users who may lack confidence, or users with some level of motor impairment
resulting in slower actions.

The action that occurs for a dwell (and whether to ignore a dwell at the end of a
drag) is dependent on the screen object that was dwelled upon, and any functionality that
plugins may have introduced via callbacks. For example, the menu system plugin (§6.2.5)
provides context pie menus to perform commands on images (if an image is dwelled upon),
or over all images (if the background is dwelled upon). Without the menu plugin, dwelling
on a photograph usually initiates an explicit audio recording – dwelling again stops the
recording and attaches an audio object and, if the vuwidget plugin is present, a VU meter
providing feedback on the recording volume is shown.

A drag on the background (i.e. without a selection) usually does nothing. However,
we trace out the path to give the user feedback. Usually this path will disappear when
the touch is released, but a dwell at any point during the drag will retain the traced path.
This may be used, for example, as a drawing that may be subsequently moved, attached
or deleted; or as a way to create writing that is not initially attached to an object. For
example a crude, animal-like drawing appears near the centre of Figure 4.2.

A dwell on the background without a drag starts a global zoom – the objects around
the dwell point will gradually fill the display, but releasing will reset the display to the
normal view. However, this hidden functionality is rarely used in our tabletop applications

68



CHAPTER 4. USER VIEW 4.3. High-Level Functions

and may easily be overridden.

4.3 High-Level Functions

In Cruiser, high-level functions – those that require more than just a touch, dwell, or drag
– are usually performed through the interaction between two or more interface objects.
Alternatives to this strategy – such as menu items, commands, complex gestures, toolbars,
and changing modes – all go against our design drivers as outlined in Chapter 3.

In summary, by performing high-level functions through the interaction of interface
objects, and linking the function with an interface action such as move (from the previous
section), we are able to:

• draw more from physical analogies;

• reduce the number of interface elements (such as toolbar icons) that users must learn
while also avoiding text;

• trigger special actions in a fashion consistent with regular interaction;

• give distinct appearances for each behaviour;

• provide continuous feedback for actions (e.g. by performing an action gradually,
linked with move); and

• avoid changes in mode.

These points map directly to guidelines G1a–G1f in §3.1.
The high level functions described in this section address components of our key design

elements from §3.3 that were not covered in the previous section. The remaining elements
are delete, capture, grouping and copy. These overlap with the functionality provided
to realise the PhoTable application, which includes techniques for loading and browsing
photographs (which involve copy and grouping); so these too will be presented in this
section.

4.3.1 Delete (Black Hole)

The Black Hole is the interface element for deletion – similar in function to the Trash
or Recycle Bin on modern computing desktops. In our interface for manipulating digital
photographs, we wished to support a reversible deletion method that provided continuous
feedback, rather than having objects simply disappear. In addition, clutter is of particular
concern for tabletop interfaces, and the Black Hole is one of our techniques for dealing
with it.

The Black Hole is a semi-translucent image with swirls as shown in Figure 4.3. It is
always shown in front of other photos and can be manipulated as a regular photo – it may
be moved and resized – but some operations are restricted. For example, the Black Hole
cannot be duplicated or be moved into any private area.

The Black Hole is an object with a sphere of influence, that affects the size of photos
within and around it (i.e. that overlap the Black Hole photo). This notion is inspired by
analogy with astronomical phenomenon. Photos closer to the centre of the Black Hole
are proportionally smaller than photos on the fringes. Very close to the centre, the photo
is hidden. Figure 4.3 shows a user moving a photo into the Black Hole. As the photo is
moved from the right to left, the photo gets smaller as it moves closer to the centre. This
gives the impression of the photo being sucked into the Black Hole.

69



4.3. High-Level Functions CHAPTER 4. USER VIEW

Figure 4.3: Putting an image into the Black Hole

Note that, as for rosize, we do not want the point of contact on the image to slip. An
additional mathematical step means that the decrease in size as an object is moved towards
the Black Hole occurs centred on the point of contact, rather than the centre of the image,
as for rosize.

The Black Hole helps support the ability to free screen space and dispose of unwanted
images. This is somewhat like the Trash can on many desktop user interfaces, but the
Black Hole also satisfies a number of natural interaction rules that improve its usefulness
for collaborative interaction, while satisfying our design drivers:

• photos placed in or near the Black Hole can be recovered (photos are not deleted
permanently),

• photos can be partially removed (i.e. out of the way, but easily retrieved),

• photos maintain a physical-virtual coupling as they progress from normal 7→ partially
hidden 7→ hidden 7→ retrieved (i.e. giving continuous feedback),

• photos influenced by the Black Hole do not suddenly appear or disappear,

• photos placed in or near the Black Hole remain bound to it (e.g. when the Black
Hole is moved), and

• as the Black Hole is resized, the photos within its sphere of influence change their size
accordingly (the photos are not moved, but the amount of image within the Black
Hole will change, resulting in a change of size).

An object placed partially in a Black Hole can be seen in Figure 4.2, indicated À.
There are a number of techniques to recover objects from the Black Hole. If the object

is still on the fringe, it may simply be be moved out, provided some of the photo pokes
out from underneath the Black Hole. If no part of the image is selectable, the Black Hole
may be made smaller, decreasing its effect proportionally, and making the object on the

70



CHAPTER 4. USER VIEW 4.3. High-Level Functions

fringe become larger; it can then be moved away. However, the Black Hole cannot be made
arbitrarily small, or it would be too hard to re-select, so we have explored other techniques.

When private spaces are enabled, a user can also attempt to move the Black Hole into
their personal space. The latter technique is based on the premise that, while the Black
Hole cannot be moved into your personal space, the photos within it can. Thus the Black
Hole gets stuck on the border of your personal space, while the photos within it gradually
come out.

A third technique to retrieve objects from the Black Hole does not rely on private
spaces – it uses flick and is described below. The Black Hole can also be flipped. A planned
feature for future work is to perform a layout of objects inside the Black Hole when it is
flipped over, allowing them to be removed.

Implementation details for the Black Hole are in Section 5.2.4.4.

4.3.1.1 Moving the Black Hole

If a user wishes to move the Black Hole, they do this simply by dragging it. The Black
Hole and all its contents (including items on its fringes, which may still be visible) are
moved to the new location, maintaining their relative positions. As the Black Hole moves,
photos it comes near are affected by the Black Hole, if the centres of those photos enter
the fringe. If the Black Hole is then released, those objects are captured, allowing the Black
Hole to be used something like a vacuum cleaner on the virtual environment.

4.3.1.2 Dwelling on the Black Hole

We noted in Section 4.2.6 that objects may provide their own actions when they are dwelled
upon. Dwelling on the Black Hole initially causes all images in (or partially within) the
Black Hole to be deleted permanently, so that they cannot be retrieved. This allows the
system resources (e.g. memory) used for those images to be reclaimed. However, this is
not usually required for regular photo browsing: Cruiser has other, automatic strategies to
conserve and reuse system resources. Also note that the original files on disk are never
deleted – such a level of file management is not a focus at this stage of our interface
development.

A dwell on the Black Hole also affects all images on the interface, by gravitating them
towards the Black Hole – each object will begin to move along a straight line towards the
centre of the Black Hole. The speed of movement accelerates – increasing in speed the
longer the Black Hole is dwelled upon. This is a significant global action to perform, but
as it begins small and gives very obvious feedback, it is easily stopped simply by releasing
the Black Hole.

4.3.1.3 Flicking around the Black Hole

We want to allow users to put objects into the Black Hole, even when the Black Hole is
not easily within reach. A flick gesture that started moving an object towards the Black
Hole could allow objects to be quickly deleted without requiring the full move operation to
be performed.

To achieve this, around the Black Hole, flicked images (§4.2.3 – i.e. those with a current
momentum) are subject to a gravitational force that causes them to accelerate towards the
centre of the Black Hole. This has the result one might expect of orbiting astronomical
bodies in the physical world.

We continue to apply the wormhole effect (reducing the size of the image), and maintain
the incident momentum as it approaches the Black Hole. But, as we wish to avoid a
perpetual orbit in most cases, when the component-wise change in velocity is in the opposite
direction to the current velocity, the acceleration towards the centre of the Black Hole is

71



4.3. High-Level Functions CHAPTER 4. USER VIEW

increased. This will cause the path of object to favour spiralling in to the centre of the
Black Hole (when not aimed directly towards it).

We also capture objects when they enter the centre region of the Black Hole. Thus,
while objects with large momenta may sling shot out of the Black Hole, images aimed
directly at the centre of the Black Hole, will be caught. The analogy here is that an object
has collided with the body at the centre of the Block Hole’s sphere of influence.

Images with momentum may be flicked to the Black Hole, whereupon they can be
sucked in. This would allow, for example, a user to delete an object even if the Black Hole
is not in reach. The manner is modelled on gravity and physics so we maintain feedback
while the image is deleted. Thus, an object does not just disappear when it hits any part
of the Black Hole, and neither does the flick need to be accurate – any flick that would
cause the image to pass though any region of the screen occupied by the Black Hole will
be influenced. If the flick is too hard, however, it will continue past the Black Hole, rather
than being sucked in.

Combined with flicking, a new technique for removing items from the Black Hole is
possible. A quirk of the caching techniques used to optimise performance means that
objects can also fall out of the Black Hole if it is flicked. The Black Hole does not gain
momentum. Instead, if it is moved quickly and released, some of the objects within it are
“left behind” and move to the Black Hole fringes, allowing them to be removed. Usually
multiple flicks are required to get images all the way out.

4.3.1.4 Black Hole Example

Consider the following scenario, a user plugs their digital camera into our interface. It
holds a large number of photos taken from a recent holiday, so we load an object containing
thumbnails for those photos. Sometimes, the thumbnail is insufficient quality to judge
whether an image is the one desired to discuss, or to decide between two closely related
photos. Dragging a thumbnail off the object causes a higher-quality copy of the thumbnail
to be created. However, the user decides that they no longer need this copy, so they wish
to delete it.

On a traditional computing interface, the user might drag the icon to Trash, but in
a virtual environment, this has a number of problems. The Trash is usually located at
a fixed position on the display; on a physically large virtual interface a user might not
be able to reach this object, and so they may wish to flick it in the direction of the
Trash. Alternatively, they may wish to move the trash object around the environment.
There may be multiple users and the Trash may only be oriented or easily accessible by
a single user. Opening the Trash to retrieve something might be impractical. Offering a
confirmation dialogue to confirm deletion, or a context menu to move an item to Trash
might be impractical. The Trash may be obscured and a user might inadvertently move an
item over the Trash, accidentally deleting it. An object may be displayed on screen much
larger than the Trash object, and without a mouse cursor, it might not be clear how to
indicate that something should be moved to the Trash. We may also wish to support the
user in partially hiding the image – this can be accomplished by moving the object onto
the edge of the Black Hole.

To delete the photo using the Black Hole, the user drags the virtual object (e.g. with
a finger or stylus) towards the Black Hole. Once the user’s finger (i.e. not the centre of
the image; regardless of where it was touched) is within the influence of the Black Hole it
begins to reduce in size. As the user’s finger gets closer to the centre of the Black Hole,
the image gets smaller, until it can no longer be seen; at the centre of the Black Hole.
Alternatively, if the user notices the reduction in size, and decides they do not actually
want to delete/hide the image, they can take it back out immediately.

72



CHAPTER 4. USER VIEW 4.3. High-Level Functions

The Frame, selected, has been just been “dwelled” upon, and the new image can be seen expanding
from the centre of the Frame. Hand icon indicates touch point – it does not appear in the interface.

Figure 4.4: The Frame, as it copies a photo

4.3.2 Framing and Capturing

The Frame is a special image, shown in Figure 4.4, that takes a snapshot of the area
beneath it, loading it as a new image. To achieve this, the user first positions the Frame
over the area that they wish to capture; rotating and resizing to get the desired orientation
and size. Because the Frame is transparent and coloured, immediate feedback is given; the
area to be captured will be highlighted. To perform the capture, the user dwells on the
Frame, and the new image is loaded.

The Frame copies an area, which may consist of arbitrary rectangular parts of a single
image (for a crop) or multiple images (for a collage); rather than a single, whole image.
The dwell action activates after touching the Frame for one second without substantially
moving it and is accompanied by an audible shutter sound as additional feedback.

This description belies a complex and multi-faceted implementation, hidden from the
user, that is described in Section 5.5.8.

4.3.2.1 Frame Example

A user is looking at their digital photographs on the interface. One, high-quality photo
has a large number of people in it. The original photo has sufficient detail to make out the
people more clearly, but on a computer screen or projector they are a bit blurry, because
the screen resolution is only a fraction of the photo resolution.

By positioning the capture frame over a face, and dwelling on it, a new object is loaded,
consisting of the area that was highlighted by the capture frame – i.e. just one person’s
face. The original file on disk is processed in the background and in a few seconds the
quality of the captured face is upgraded, making details clear. In addition, the user has

73



4.3. High-Level Functions CHAPTER 4. USER VIEW

created a new file on disk, consisting of just the captured face, which can subsequently be
used (e.g. in other documents, or shared electronically).

4.3.2.2 Other Frame Behaviours

The latest design iteration of the Frame is drawn with decorations indicating the flip hot
spots, as found in regular images. However, the Frame does not flip. Instead, these areas
provide hot spots to change the aspect of the Frame. So, the width or the height of the
Frame rectangle can be altered independently. For example, it could be made square.

4.3.3 Bounds Checking and Claiming

All object movements are bounds checked. That is, for each movement, the user must have
permission to move the object to that location. Otherwise, the object is moved to the
closest point to which they have permissions.

For example, no user has permissions to move an object off-screen. Thus, when an
object is flicked it will hit the screen boundary, but it will not immediately stop. If the
movement is at other than a perpendicular angle to the screen boundary (as it usually
is), the point closest to where the object would otherwise move is actually further along
the screen edge than where the initial hit occurred. So, flicked images travel along the
boundary until they either lose momentum or hit a corner.

But the table border is just one example of a bounds. Bounds may also be used to
enforce privacy in the interface. A user can be prevented from selecting objects whose
centre is within another user’s personal space, and attempts to move an object into that
personal space will instead move it to the closest point not within it.

Dynamic personal spaces can be supported by allowing users to claim photographs.
Multiple photographs can be claimed and, as they are moved, their personal space will be
updated.

The inverse of the private area, combined with support for dynamically updated bounds,
is the scenario where one object is kept inside another. In this way dependent objects (e.g.
thumbnails) can be forced to stay inside the bounds a parent object that contains it. Yet,
the child object can still be moved around, whilst staying inside the parent.

The bounds checking implementation is described in Section 5.2.5.1.

Personal Spaces

A personal space is a coloured area of the tabletop, close to you, in which only you can
work. Work using DiamondTouch, such as UbiTable [Shen et al., 2003a], included the
idea of a personal space, but permissions were not enforced – users were able to move
items into other people’s personal space. Early iterations of Cruiser also included personal
spaces, and our bounds checking enforced permissions (see §7.1.6.3). However, the idea
of a personal space is not as useful for storytelling as it is for collaborative work, so they
are not used for our PhoTable application. Moreover, as the notion of the storage bin was
explored, it can serve a dual function as users’ personal areas.

4.3.4 Item Attachment

When images are flipped (§4.2.5) they behave in a way that allows other objects to be
attached. Simply dragging an object over a flipped image and releasing will cause it to be
attached. Feedback is given as soon as the object is over a flipped object by flashing the
image it would be attached to on release: the reverse side, normally white, will briefly be
displayed green. Similarly, when detaching – dragging an attached object off – the image
it was attached to will flash pink.

74



CHAPTER 4. USER VIEW 4.3. High-Level Functions

Attached objects are laid out on the image they are attached to, with any other objects
that are also attached. Attached objects are sorted according by earliest creation time
and laid out in reading order. The creation time will be one of: photo capture time (for
digital photos), file creation time (for other images), or time loaded into the interface (for
dynamic objects). The layout algorithm is a flow layout, that keeps the original size of
the objects, and tiles objects; using a new row if needed to fit within the parent image,
and making each row as high as the tallest attached object in that row. A flipped image
with four attachments laid out – writing, audio and two images – is shown in Figure 4.2,
indicated Å.

Attached objects may be resized while still attached, but they will always align their
rotation to the parent object. An animation causes objects to spin back to align with
their layout if they are rotated while still attached. Similarly, when attaching, objects will
animate to their location in the layout as soon as they are released. This gives continuous
feedback – animating the object makes it clear what is happening; it does not simply
reappear in a new location.

An object with attachments may still be moved around whilst flipped by selecting
a point outside the attached elements and dragging. The attached contents will move
with their container and remain laid out. If resized, attached objects will resize similarly,
maintaining the appearance of being glued to their location on the back of the flipped
image. When an image with attachments is flipped back to its front side, the image graphic
is shown again, and the attachments will now be hidden on the reverse side. To add or
remove attachments, the parent image must be flipped over again.

Attachment is useful for managing clutter, and for creating relationships between
objects. For example, the Capture Frame (§4.3.2) can create new images that have been
cropped out of others. If desired, the user may flip the parent image, and attach the
cropped photo on the back. One could even crop out all the faces in a photograph, attach
them to the back and record a story about each one.

Attachment can be used as a trigger for special actions. For example, attaching to an
image representing a remote computer (or printer) can be used to send an image to the
corresponding device.

More details about item attachment appear in Section 5.2.1.2. Details about the various
layout techniques appear in Section 5.2.4.2.

4.3.4.1 Tagging (Swipe)

Some objects in the interface cannot be attached to others. For example, it is impossible to
attach the Black Hole to objects, and it would rarely make sense to attach special objects
such as the Capture Frame. Another instance where this rule is useful is for the attachment
of tags – rectangular objects with text, which can be manipulated like images. We could
manually copy the tag each time we wanted to attach it, but instead we do not permit the
original tag to be attached – we instead automatically make a copy.

This behaviour introduced a new gesture to the interface – a swipe. To associate a tag
with an image, the image is first flipped over to see any current tags that may be attached.
To attach a new tag, the tag is swiped over the back of the image. That is, the tag is
moved over, and then off the image in one motion. As the tag passes over a flipped image,
the tag object is copied and immediately attached to the flipped image.

Tagging was implemented as a plugin contributed by another student, and is explored
further in Section 6.2.3.

75



4.3. High-Level Functions CHAPTER 4. USER VIEW

4.3.5 Explicit Audio Attachment

Whilst sharing photographs, the PhoTable application initially records all audio, then
performs an analysis to automatically associate filtered audio stories to the correct pho-
tographs. However, for other applications, Cruiser provides a means to explicitly record
audio attachments for photographs that will appear immediately on the interface, and also
be saved to disk. When photographs are later loaded, we check for the presence of these
audio attachments and load those, too7.

We explored two approaches for the creation of explicit audio annotations for images.
Audio may be attached either through a context menu item or with a dwell on an image
object, when there is no other action bound (see §4.2.6). Once initiated, recording begins
(on the first use in a session, there is an audible prompt). When the menu or dwell action
is repeated, recording stops and a circle with a number in it is attached to the back of the
image. Dwelling on the attached circle (one may need to flip the image first), will replay
the audio. We also optionally play the audio immediately after recording, as feedback.

Recording subsequent pieces of audio will add more audio circles, with incrementally
larger numbers. Pre-recorded audio loaded from disk is attached, automatically, in the
same way. Audio may be deleted by dragging the circle into the Black Hole. Audio may
also be re-attached to other images, simply by dragging it over another flipped image.

Note that for the capture of audio while storytelling with PhoTable, recording of the
attached stories is fully automated. This will be discussed in Section 4.6.1.

4.3.5.1 VU Feedback

Usually, audio recording and playback is accompanied by visual feedback (as well as the
obvious audible feedback) showing the Volume Unit (VU) level8. This indicates first of all
that the microphone is recording (and working), and shows the volume level being recorded.
It also indicates the object that the audio will be associated with, and where to dwell a
second time to stop the audio. For playback, it indicates to which object the audio playing
is attached.

This feedback given is a pulsating VU Meter, drawn at the centre of the parent image.
This is a circle that increases in size the louder one speaks into the microphone. The circle
is partially transparent and has a minimum and maximum size that corresponds to the
typical volume range of voice recording. This range largely depends on the microphone
configuration so is adjustable, but defaults to 60%. Thus a level at 60% volume will have a
feedback circle the same size as the photo it is upon. There is also a minimum size, so it is
always visible (even when recording silence), and it visibly reacts to soft sounds.

But size is not the only parameter we control – colour is also used. Base and gradient
primary colours are chosen – green and red for recording, blue and red for playback. The
base colour is fixed while the gradient colour varies according to the intensity of the full
detectable range. These are mixed to form the final colour of the circle. In this way, size
corresponds to the normal range, while increasing levels of red colour indicate excessive
volume.

7Cruiser also checks for audio created by digital cameras and associated to photographs.
8Actually, it shows a simulation of VU, which is typically a scale from −20 to +3 defined to be 0 when

connected to a 600W resistance carrying a 1 kHz sine-wave with 1mW power. Cruiser’s audio framework
computes a value in the range [0.0, 1.0] derived from an exponential back-off of the absolute value of the
amplitude of the digital signal, which is typically a sequence of 44 100 integers per second in the range
[−215, 215).

76



CHAPTER 4. USER VIEW 4.3. High-Level Functions

The image on the right is about to be dragged off, making a copy.

Figure 4.5: The Browser Interface (with 9 photo thumbnails)

4.3.6 Image Loading

For sharing new photos, we need a way to indicate a set of new image files to load onto
the interface. The intention is not to use a file selection dialogue from a traditional
interface – this would go against our guidelines. Another student has developed techniques
for associative search for loading files onto the table using a Cruiser plugin (see §6.3),
which provides search access to files on a remote computer. However, our scenario (§1.1.2)
deals with unsorted digital photographs, which are difficult to search, and behaviours for
searching and sharing photographs are often integrated [Frohlich et al., 2008]. PhoTable
supports this by using intelligent browsing techniques, but the first step is presenting the
set of images to browse.

The scenario presented in the Introduction (§1.1.2) gives us a use case we should support.
Someone returning from a holiday, having taken a large number of digital photographs,
will have a memory card full of images that they wish to share, and possibly annotate.
The simplest answer is simply to plug in the digital camera (via a cable) or memory card
(into a card reader) and have the photos appear, ready for sharing. And this is exactly
what is done – the Cruiser framework includes a plugin that requests these events from the
operating system and immediately searches newly inserted storage devices (which include
cameras) for loadable images, possibly with associated audio recorded by the camera.

This extends also to other removable storage, such as USB flash thumb-drives. So, for
example, inserting a USB drive will load the images on it. However, in this case the photos
may already be organised, requiring an alternative browsing technique, which we discuss
next. Browsing large unsorted collections of many hundreds of photos requires a different
browsing approach, discussed in Section 4.5.5.

4.3.7 Browsing

A Browser is an object that groups a number of photographs, allowing them to be browsed.
A Browser holding nine photographs is shown in Figure 4.5. One, simpler, type of Browser

77



4.3. High-Level Functions CHAPTER 4. USER VIEW

has its contents derived from a folder on disk. This may be a folder on an internal hard
drive9, or the root folder of newly inserted removable storage.

Essentially, we needed a way for users to interact with a hierarchical file system and we
do this via a Browser object. Whenever a Browser is created, Cruiser searches for a sub-
folder containing images and creates low-resolution thumbnails for them. The thumbnails
are attached to the front of the Browser, laid out inside a margin using space-filling
techniques [Cockburn et al., 2006]. A margin allows the Browser to be moved around,
rotated and resized; carrying all its thumbnails with it.

When any thumbnail is dragged off the Browser, Cruiser makes a copy; leaving the
original in the Browser for future copies. At this point, Cruiser also upgrades the quality of
the image. Thus, any photograph on a Browser object can be copied, and the copy placed
at the desired position, with a single stroke.

If multiple sub-folders are found to contain images, each sub-folder is loaded into the
Browser as a SubBrowser. The first image found in each sub-folder (or a specially named
folder.png image) is chosen as the SubBrowser background. SubBrowsers are arranged like
thumbnails, but their corners coloured like Browsers. Dragging off the SubBrowser creates
a new Browser, using the corresponding sub-folder as the new root of the Browser, and
immediately loading thumbnails (or any further sub-folders) found.

This action is shown in Figure 4.6. Different colours indicate the active selection (red)
and the newly created object (white). Once the action is completed, and the new Browser
released, the SubBrowser returns to its original position in the original Browser. Dragging
off thumbnails from SubBrowsers works similarly but triggers loading of the high-quality
image (rather than image thumbnails).

Note that the colours here are chosen to optimise contrast. We cannot anticipate the
contents of images in order that we may chose more subtle colours – they might not be
easily distinguishable on all images that would be loaded on the interface. In nature
photography, blue (skies and water) and greenery are common, so reds and yellows were
our first choice for maximum contrast. Future work may include investigating a colour
scheme, or textured borders, that may be more aesthetically pleasing.

4.3.8 Copy

The collaborative nature of tabletop interaction means that we can expect multiple users
to need to speak about, look at and act on the same object (see also §3.3.4). Such an
interaction possibility is suggested for ConnecTables [Tandler et al., 2001] where “a simple
gesture creates a simultaneous view of an information object,” but this interaction was not
explored further. A copy was also suggested in one usage scenario for the UbiTable [Shen
et al., 2003a], when moving a document into one’s personal area (to create a copy on their
laptop), but a copy operation was not explicitly provided.

The previous subsection introduced one example of copy in Cruiser. Thumbnails (and
SubBrowsers) are not removed from the Browser that holds them. Instead a new copy is
created. For images, the new copy will be of higher resolution. For SubBrowsers, the copy
is now a full Browser, and the contents of that sub-folder are loaded into it. Copy is a key
element of our interaction design (§3.3), so it has been explored further.

4.3.8.1 Brainstorming possibilities for Copy

We first considered possibilities at conventional interfaces: a menu bar, context menu,
or keyboard sequence. These all pose problems on a multi-user tabletop interface. For
example, any display of menu text is prone to orientation and legibility problems; context

9This path may be pre-configured or passed as a command line argument, e.g. by dragging the folder
icon onto the icon for the Cruiser application in Windows Explorer.

78



CHAPTER 4. USER VIEW 4.3. High-Level Functions

The line – – shows the path of the user’s touch point from start to finish (where the hand icon
appears); line and hand do not appear on the interface (users interact directly and so no cursor is required).
As the cluster is dragged off the parent Browser, a copy is made (a “SubBrowser” in the lower right), and
loading of image thumbnails within the cluster begins immediately.

Figure 4.6: The Browser Interface with 7 SubBrowsers, as one is dragged off

menus are a problem with the limited input primitives. These and other problems stem
from the fundamental differences of tabletop interaction.

Drawing instead from our guidelines (§3.1), we explored the idea of a special object
that had the sole purpose of copying. One needs to be careful about having many such
special objects at a table but it is an approach which deserves some exploration.

We also explored the potential for existing elements of our interface to support copying.
This provided two additional approaches: copy by dragging an item off the file browser;
and make use of the Capture Frame, which creates new images by grabbing all the visible
content under it.

Our design approach produced three special interactive objects which can copy. Aside
from copying, they have the behaviour that we have established as fundamental to objects
in our framework (i.e. move, rotate, resize):

• The Frame (§4.3.2),

• The Browser (§4.3.7), and

• The PhotoCopier.

4.3.8.2 PhotoCopier Object

This interface object copies photographs. It has a stylised background with an image of an
office photocopier to indicate its function. In addition, the corners indicating the rosize hot
spots are drawn in solid colour (rather than transparent), to distinguish it from regular
photographs. This appearance is similar to the Browser, but the background is fixed, and

79



4.3. High-Level Functions CHAPTER 4. USER VIEW

Figure 4.7: The initial layout shown to participants in our copy study

it only ever holds a single child image, attached as follows. A PhotoCopier object can be
seen left of the centre in Figure 4.7.

Any object (e.g. a photograph) moved over the PhotoCopier object acts as though it
has been copied into it, replacing any existing object. The action to do this is a swipe
(§4.3.4.1) – an uninterrupted move – which causes the initial copy to appear attached to
the front of the PhotoCopier. The PhotoCopier can be moved, rotated and resized like
other objects with the copy remaining attached. When any user then tries to move the
attached copy off the PhotoCopier, we instead make a another copy, which immediately
becomes that user’s active selection. Again, the move operation is not interrupted. Thus
the process of selecting the (original) image to copy, initiating the copy and placing the
copied object occurs with two strokes. Subsequent copies of the same object require only
the placement stroke.

Still photographs are not the only interface objects that may be copied. For example,
the Capture Frame may be swiped over the PhotoCopier. Dragging the Frame off will
the create duplicate Capture Frames that retain all the properties and behaviours of the
original. For a single user, or in storytelling, it is not normally necessary to have multiple
frames. However, the PhotoCopier’s behaviour extends to most objects on the interface,
including storage bins, described next, for which it is often useful to have duplicates.

4.3.8.3 Comparing Possibilities

Using a combination of an informal “keystroke” analysis (see §3.2.1), heuristic evaluation
(§4.1.1), user trials (formal and informal), and a questionnaire, we performed a comparison
of our three ways to copy objects in Cruiser [Apted and Kay, 2006a]. The Browser requires
the least numbers of “keystrokes”, as something is merely dragged off to create a copy.
Applying heuristics suggest the PhotoCopier may be superior because it draws closely on
analogy from the real world (N2), has a recognisable action (N6), and has a clearly defined
purpose (G1d).

In formal trials we asked seven participants to “make six copies of any photograph as
quickly as possible,” after providing a 5-minute interactive tutorial to familiarise and allow
them to experiment with the techniques. Participants were provided with the initial layout
of objects shown in Figure 4.7. The task was lightweight as we wanted to examine the
participants’ natural reactions and recollection of the techniques available to them. We
wanted the participants to choose the copy technique they thought made the most sense
and were comfortable using, even after such a brief introduction to the interface.

All participants were able to complete the task without assistance. However, contrary
to what the stroke analysis would indicate as fastest (the Browser), we found that 5
of our 7 participants first chose an image from the Browser; dragged it off, then over

80



CHAPTER 4. USER VIEW 4.3. High-Level Functions

the PhotoCopier; then dragged 6 copies off the PhotoCopier. When asked, most users
commented that they felt that each object had a specific task – the Browser for selecting
photographs, and the PhotoCopier for copying photographs – even though the objects were
explicitly introduced as three different ways to copy photographs.

Some users commented that they particularly liked the analogy that the PhotoCopier
provided and found it very easy to use. Some mentioned that the Frame seemed complicated
and over-powered for this task, so they did not use it. Three of our participants were
particularly excited by the prospects the tabletop interface offered, and continued to
experiment with the interface, long after the questionnaire.

See Apted and Kay [2006b] for more details of this study.

4.3.9 Storage Bins

Our storage bins draw on the ideas of Scott et al. [2005] – the bins themselves are movable
and resizable, and adding an item to the storage bin triggers an animation as it is placed
within. However, in part due to difficulties Scott et al. observed their participants having,
and our own desire to avoid menus in our system, move and resize operations on the bin
are not activated through a radial context menu as for Scott’s bins.

Instead, spacing is maintained around images in our storage bins. Selecting the bin
rather than an object within it will move the bin (and all objects within it). Similarly, and
as for regular images, selecting a corner of the bin will initiate the rosize action. Thus, our
bins are also rotatable, whereby all contents within the bin will also be rotated as if glued
on. This contrasts Hinrichs et al. [2005a], which has an implementation of a lazy Susan
type rotation directly upon Scott’s storage bins, whence they became interface currents;
usable as a storage area. Note that this storage bin move, rotate and resize behaviour is
consistent with all other objects in the Cruiser interface, thus satisfying our consistency
guideline.

One problem addressed by storage bins is the issue of clutter. Reducing clutter is one of
our guidelines, and storage bins help by providing a storage space of infinite capacity that
uses a fixed amount of space. This is achieved by using space-filling techniques10 [Cockburn
et al., 2006]. The same technique is used to represent folders containing arbitrary numbers
of images in Browsers (4.3.7). Furthermore, the space used by these storage bins is resizable
and movable, around the interface.

Storage bins provide another mechanism that works in concert with the Browser to
alleviate the clutter problem. Dragging new images off the Browser creates copies, which
can quickly clutter the interface. So, when a new SubBrowser is dragged off its parent,
other SubBrowsers and thumbnails copied from the same parent are automatically cleaned
up – removed from the interface. However, any image placed into a storage bin (or attached
elsewhere) will remain on the interface. Thus, images that would otherwise clutter the
interface are instead placed within a well-organised storage bin. New, empty storage bins
may be generated after swiping any existing storage bin over the PhotoCopier object.

The storage bin was designed for users to collect a set of related photographs. For
example, if they needed to explore several photographs in their collection to select just the
ones for a particular story, they might place each selected image in a bin while they continue
exploring and selecting other photographs. Study participants have also commented that
the storage bin is a good tool to place photos that one might want to print, for example.

10Details on the layout algorithm are provided in Section 4.5.6.

81



4.4. Extended Functionality CHAPTER 4. USER VIEW

4.4 Extended Functionality

The Cruiser framework has been designed to encourage code reuse and easy experimentation,
making it easy to explore new and useful functionality as an extension of existing techniques.
Section 3.4 motivated some additional functionality for tabletop interfaces that it is
worthwhile to explore. Cruiser facilitates this exploration with plugins that are packaged
with the Cruiser framework for reuse by application designers.

The interface elements described in this section contribute new functionality that is not
used by the PhoTable application, but demonstrate the flexibility of the Cruiser framework.
They also provide elements that can be reused for new tabletop applications, and have
been used in numerous demonstrations of the interface.

This section covers only plugins implemented by myself. The Cruiser framework was
written to be used by others and, in this way, has facilitated the implementation of further
extended functionality created by other researchers. These extensions are also implemented
as plugins, and are discussed in §6.2.

4.4.1 Interactive Images

An Interactive Image is simply an Image object whose texture can be updated dynamically.
In the current implementation, updates are sent to the application from a remote computer
using the VNC protocol, which is well suited to representing the changes that occur on a
desktop computer display. It is not well suited to video, for example, but for typing, static
updates, cursor and window movements it is especially good. For example, a PowerPoint
presentation could readily be supported inside an interactive image. The display is held
within an object that behaves like other images and is able to be moved, rotated, resized,
attached, captured and copied. An example interactive image can seen in Figure 4.2 on
page 68, indicated Â.

To support this, a VNC client has been written, which talks to any compliant VNC
server (e.g. RealVNC, TightVNC, X11vnc, etc.), running on any operating system. The
remote display may be sourced from another computer accessible via any network, or a
virtual display running on the same computer. Multiple servers can be communicated with
simultaneously, with each screen appearing in its own, interactive image. We support the
VNC password authentication method – the password is saved in the configuration file and
authentication is by a 3Data Encryption Standard (DES) challenge-response mechanism.
We currently support raw, copy rectangle, Rise and Run-length Encoding (RRE) and
CoRRE update mechanisms, which are encodings used by the VNC protocol to efficiently
update only the altered parts of the remote display.

After establishing the connection and authenticating, we wait for framebuffer updates.
When an update arrives, the interactive image updates a hidden framebuffer held in system
memory, collecting the bounding box of all sub-updates. When the update is complete
(we only get one update until we ask the server for another), we generate a sequence of
texture updates and notify the main thread when they are ready. Up until now, this all
has occurred in a background thread to keep the main interface responsive.

At a suitable point of low activity in the main thread, the parts of the image texture
that need updating will be updated by transferring the preprocessed information to the
graphics card. The time this takes depends on the size of the updated area. For small
updates such as cursor movement or typing new characters it is very quick – usually less
than 100ms.

This process propagates any updates on the remote computer screen to the image in
Cruiser. But the image on the tabletop is also interactive. However, to make the image
interactive we now need to break some of our guidelines. For keystrokes, the answer is
straightforward: introduce a keyboard (preferably wireless) which transmits keystrokes to

82



CHAPTER 4. USER VIEW 4.4. Extended Functionality

the remote display corresponding to the currently selected interactive image. But now we
have a keyboard, breaking our pervasive environment guideline (G2f).

For mouse cursor movements, we need a way to distinguish a regular move of the entire
image, from a request to interact with the underlying display. This introduces modes,
breaking guideline G1f. A number of ways to indicate the mode are available: a button on
a stylus may be pressed, a different coloured stylus can be used, or the interactive image
may be flipped. Flipped interactive images appear the same (they don’t have a reverse side),
but they cannot be moved until flipped over again. In all cases, dragging a touch point
over the interactive image will instead perform a click-and-drag on the remote computer
at the corresponding location – the position is translated, rotated and scaled so that it
corresponds with what the user sees inside the image on the tabletop.

However, breaking our guideline has a negative effect. Users are often confused about
the mode of the interactive image when flipped. We write “interactive” over a flipped
interactive image, but only when it is not selected, otherwise it would interfere with
the interactivity. This means users often inadvertently interact with interactive images
when they instead intended to move it. Similarly, the alternative of switching pens often
causes users to forget which is the move pen and which is the interact pen. Using a
stylus with a button currently works best, but the hardware support needs improvement.
Furthermore, when using fingers in a purely touch-based interaction, this option is not
available. Improvements on the indication of mode may also help ameliorate the negative
effects, but this is left for future work.

4.4.2 Video Images

The VNC protocol is poorly suited to updating rapidly changing displays, such as those
showing video. However, the techniques for updating the texture data from the hidden
framebuffer in system memory are fast enough to update high-quality video from a local
file. Another Cruiser plugin provides video images, which permit videos to be played inside
an image displayed on the tabletop. Again, it may be moved, rotated, resized, attached,
captured and copied. Interestingly, capturing a portion of a video with the Frame has
the option of performing a live capture, that creates a new video image that shows some
portion of the original video area.

Digital cameras are increasingly offering a video recording mode, so Cruiser’s video
images can be used to display these. However, videos typically have sound already, and
this may detract from the ability of PhoTable to automatically capture stories, so we do
not consider videos in our photo sharing studies.

Cruiser’s video images support a full range of video formats, by relying on the cross-
platform mplayer program11. The output of the media player that would normally go to a
computer screen is instead redirected to the hidden framebuffer where Cruiser converts it
into textures. Leveraging mplayer also allows Cruiser’s video images to display streaming
video, such as live television (when a TV tuner card is present), Internet video streams, or
video from an attached webcam.

4.4.3 Remote Images and Image Transferal

Operating in a pervasive computing environment means there is often a desire to transfer
images in either direction between the tabletop and a remote display. Cruiser currently
offers four techniques for initiating transfer of media to and from the tabletop:

1. Flicking an image to a particular edge will send to remote (e.g. wall) display,

2. Flicking to the edge, leaves it active until removed (e.g. as part of a slideshow),
11http://www.mplayerhq.hu verified 2008-06-15.

83

http://www.mplayerhq.hu


4.4. Extended Functionality CHAPTER 4. USER VIEW

3. Attaching or detaching to a special object, synchronises the attachments with a
remote interface (e.g. a voice-mail inbox), and

4. Transfer of images via Windows Explorer icons from an interactive image.

4.4.3.1 Flick to Edge

When flicked (§4.2.3) to the very edge of the table, our bounds restrictions (§4.3.3) prevent
it from falling off the table. However, when items hit the edge, an implicit action may
be triggered. We do this to send an image to other displays in the pervasive computing
environment, such as a display projected onto a wall.

In one setup, one side of the table was closest to a stereoscopic Data Wall display.
Flicking to this edge causes the image to fly up to that display. This is an 3D animation
showing the image moving from the estimated position of the tabletop, up to the large
display; enlarging so that it fills the screen. In the future, this could possibly also support
stereoscopic image files and a moving carousel slide show.

Example: Flick to wall-size display for presentation A user has a photograph on
the table that they wish to present at a larger size or to a larger audience, or they wish to
put it on a wall display for future reference. To do this, they flick an object on the table
towards the wall display they wish it to be presented on. When the object hits the edge of
the table, it is sent to that wall display, and it appears. (e.g. filling the screen).

4.4.3.2 Flick to edge, active whilst on edge

This is an extension of the sending described in the previous subsection. The side closest
to a “Magic Mirror” display will insert the flicked image into a slide show. When moved
off the edge of the tabletop it will be removed from the slide show. Thus, while it rests at
the edge of the table, it is active on the remote display.

Example: Slideshow A user has a number of virtual photograph objects on their coffee
table, and a digital picture frame that runs a slideshow. They wish to change the photos in
the slide show. On the table, images currently in the slide show are lined up along an edge
of the table. Flicking a photo to that edge inserts it into the slideshow of the digital picture
frame. Selecting a photo on the edge and moving it away removes it from the slideshow.

4.4.3.3 Synchronised Attachment, active whilst attached

Using any technique to attach a media object to another (e.g. dragging over whilst flipped
– §4.3.4; or dwell to record an audio attachment – §4.3.5), causes the attached media object
to be sent to the remote display with an identifier for the object it was attached to. If the
remote display has a record of this identifier, it adds the sent media object to the collection
of objects associated with that identifier.

Using any technique to detach – mostly simply drag the representation of media item,
attached on the reverse side of an object – sends a message to the remote display to remove
this association. Subsequently attaching it to another object moves the association to a
new identifier.

Example: Send audio messages to people photos On the table, we show photo-
graphs of people to whom a user might wish to send audio messages (similar to voicemail).
Gesturing over one of the photos (e.g. by dwelling on it), begins an audio recording.
Touching the photo of the person again stops the recording, and an audio media item
is attached to the person. At the same time, that media item is sent to the computer

84



CHAPTER 4. USER VIEW 4.4. Extended Functionality

responsible for managing these audio messages, along with an identifier for the person to
whom the audio was attached. This media item may then be sent to that person. Back
on the table, the representation of the audio item can be seen on the reverse side of the
person image. Dragging it off the back of the image causes the message to be deleted from
the messaging computer.

In reverse, when the messaging computer receives a message for the user (from a
particular person), it notifies the table and sends the media item to the table. The table
interface then automatically attaches the audio item to the reverse side of the image, in a
different colour to indicate received. Gesturing (dwelling) on this audio item will then play
the message that was sent.

These people photographs, with synchronised audio attachments can be seen in Fig-
ure 4.2, indicated Ã.

4.4.3.4 Transfer via dynamically updated framebuffer object of remote dis-
play

Dragging an icon displayed inside an Explorer window of an interactive framebuffer image,
to the edge of that image will cause the media item that icon represents to be sent to the
table and loaded at the current point of contact.

Example: Retrieve media items off a laptop computer, to display on interface
Two people are meeting at the table interface to discuss some media items. Currently the
items are located on one of the user’s laptops. The laptop is running a VNC server and
the “1-pixel” application (see §5.5.9), and it has an Explorer window open at the folder
containing the media items to discuss. The table connects to the laptop and then it is put
aside.

On the table, a miniature version of the laptop screen is visible inside the interactive
image, which can be moved around, rotated and resized. Using an interactive pen, the
owner of the laptop selects an icon within the interactive image and begins to drag it to the
edge of the photo on the table. The photo updates, as cursor movements are communicated
to the laptop; causing the icon to be dragged. Once the icon reaches the edge of the screen
it is sent to the tabletop interface, and appears at the current location of the point of
interaction, as a loaded media item (e.g. it might show a photograph). This new item is
decoupled from the framebuffer photo and can be moved, rotated and resized; around the
tabletop interface.

This scenario is also plausible to explore for PhoTable, although it requires users to
have an an additional computer, rather than simply a digital camera or memory card.

4.4.4 Drawn Annotations

For interactive images (§4.4.1), changing stylus or pressing a button changes into an
interactive mode. Images that are not interactive can also take advantage of this ability
to change modes. For regular images, changing pens or pressing a button allows users to
directly annotate the image. That is, draw on it, creating a writing attachment on the
front of the image, rather than the flip side (see §4.3.4).

4.4.5 Paper (Anoto) Frame

Anoto is a patented technology for identifying the location (e.g. of a pen stroke) on a
piece of paper. A dot pattern is printed on each piece of paper that is read by a camera
built into a special pen as it writes on the paper. We developed a technique for loading
something written on Anoto paper onto the tabletop as a handwritten label.

85



4.5. Sharing Photographs with PhoTable CHAPTER 4. USER VIEW

First, the user positions and sizes a special Anoto frame (similar to the Capture Frame)
at the location where the label should appear. The paper is placed on the tabletop, over
the projected image of the Anoto frame. Note that images already showing on the tabletop
will now appear on the paper, where it overlaps the projected screen. A user writes on
the paper (within the Anoto frame) and then physically draws an arrow pointing onto
a projected image outside the Anoto frame, at the location where the handwritten label
should be attached.

When the paper’s send button is checked, the pen strokes are digitised and loaded as
a new image with the same size, orientation and position of the Anoto frame. An arrow
is rendered from the centre of the back of the label image, to point to the same location
as the physically drawn arrow. The label is now attached to the image it points to and
inherits manipulations, so that the label maintains its relative size and position to the
parent image. Manipulating the label itself will change the relative position.

4.5 Sharing Photographs with PhoTable

In this section we discuss aspects of the PhoTable application, built with Cruiser, and how
it satisfies the requirements for our photo sharing application outlined in the introduction
(§1.1). The PhoTable application specifically addresses the scenario outlined in Section 1.1.2.
Here we discuss the subset of functionality used for our PhoTable evaluations discussed in
Section 7.3.

Our goal is to support the user in making use of a large, unsorted collection of photos tell
stories about their recent travels12. That is, we facilitate social interaction, between one or
more peers, where the photographer shares the photographs and relates stories about them
in a natural way. One focus is on providing effective access to large collections of unsorted
digital photographs, and facilitating the social interaction involved while storytelling with
the photographs. Second, and for the most part as a side-effect of this social interaction,
we wish to help the photographer (or users) construct a digital photo album of their trip,
that has been annotated with audio; stories told during the photo sharing experience.

4.5.1 Rationale

Note that research into how people manage their digital photographs after capture but
prior to sharing [Kirk et al., 2006] found that trips are also a typical storage behaviour.
That is, a (date-stamped) folder full of unlabelled images; one folder for each trip. Thus,
our approach may also be used to annotate users’ existing archived photo collections, long
after the photos were taken.

The digital album we create shall be accessible on the tabletop interface for later sharing,
as well as off the table, such as on a series of web pages that may be shared remotely. Both
versions of the album shall include, as well as the photos themselves, audio captions (the
stories captured during the sharing session) and trails through the photographs – album
pages with logical sequences through the most interesting photographs; as well as links to
related photographs.

The focus of PhoTable is on facilitating the social interaction, whilst enabling the
capture of information required to automatically construct the digital photo album in the
future. For example, we record data such as when a particular photograph is selected and
by whom; the sequence of selections and the size users make the photographs; and any
explicit relationships that users create via attachment. Users may also create new images
via the cropping tool. These actions will be correlated against the captured audio stream
to assist segmentation and association of audio clips with the correct photograph.

12That is, miyagebanashi ( ) or “a tale of one’s travels”, explored in §1.2.1.

86



CHAPTER 4. USER VIEW 4.5. Sharing Photographs with PhoTable

All objects may be moved, rotated and resized by the user, and they may overlap. Clockwise from
top-left the objects are the Copier, Frame, Black Hole, storage bin and Browser.

Figure 4.8: The initial, interactive display of PhoTable

4.5.2 Method

We needed interaction elements that enable a user to access their photo collection for
storytelling at the tabletop. The main obstacles include issues of orientation, arm reach,
large pixels (resulting in, for example, difficulty reading small text), clutter, the “fat finger”
syndrome (whereby small objects are difficult to select) and complications of collocated
multi-user interaction. Our goal is an immersive interface, where users should not have
to think about using a computer, instead being able to focus on the social interaction in
storytelling.

Thus, we need a tight coupling with the physical metaphor of printed photographs
lying on the table: we need to enable smooth, informative, continuous feedback in a
direct-manipulation style. We also want a readily learnable interface – on first use, people
should be able to pick it up through exploration. This means there cannot be hidden
functionality and there should be affordances – clues to the objects’ behaviour and hot
spots to perform commands, rather than menu systems, toolbars or a gestural language,
which would require training.

Figure 1.1 on page 4 shows the physical tabletop setup we use for sharing photographs,
and two people using it for photo sharing. Figure 4.8 shows the initial view, projected on
to the table, for our user study. This figure shows only the projected objects, cropping the
other parts of the table. For the PhoTable application, we use the Black Hole (§4.3.1) for
deletion (§3.3.6), a storage bin (§4.3.9) for grouping (§3.3.5), the PhotoCopier (§4.3.8) for
copying (§3.3.4), and the Frame (§4.3.2) for cropping & capture (§3.3.7). In the bottom-left
of Figure 4.8 is a special, clustered, version of the Browser (first described in §4.3.7).
This, Clustered Browser is key to facilitating effective browsing of large, unsorted photo
collections and it will now be described in depth.

4.5.3 Clustering Background

Before a story can be told, users must find the relevant photographs that they wish to
share. In our scenario, where a storyteller is sharing photographs from a recent trip, the

87



4.5. Sharing Photographs with PhoTable CHAPTER 4. USER VIEW

first goal is to give an overview of the available photographs. This overview serves to
provide memory triggers, and helps the storyteller decide what they wish to talk about. We
do not wish to constrain the storyteller by presenting photos in a chronological progression
(e.g. one-by-one on a timeline), but we also wish to support systematic storytellers who go
through their photos in sequence. The audience (story recipient) and time available for the
photo sharing session will also influence sharing behaviours.

When designing a solution to this problem we must take into account all the limitations
of the tabletop interface. There is no keyboard or mouse, no obvious up direction, the
dot pitch is large (∼30dpi) and there are multiple users interacting. For the handheld
StoryTrack device [Balabanović et al., 2000, 2005] photographs are ordered chronologically
and grouped in batches (such as a roll of film). In the Personal Digital Historian tabletop
interface [Shen et al., 2003b] filtering is provided for pre-sorted photographs using who,
what, where and when axes, and layout techniques based on image content and principal
components analysis. However, for photographs newly taken from a digital camera, only
the when is available. Furthermore, and new to tabletop research, we wish to support the
automatic capture of users’ stories and thus the production of remotely sharable accounts
as suggested by Crabtree et al. [2004] (see §1.2.2).

Graham et al. [2002] demonstrated that utilising time, and clustering on time in
particular, shows promise in improving search performance for personal collections of
digital photographs. Platt [2000] observed that even simple time-based clustering (split
if a new photo is taken more than a ∆t since the last) can perform very close to a
human-clustered ground truth. In later work Platt et al. [2003] use a more sophisticated
time-based clustering algorithm, and evaluate using a search task comparing different
browsing software, but do not elicit a significant benefit for task completion. Cooper et al.
[2005] present a thorough analysis of a range of supervised and unsupervised temporal and
content-based clustering algorithms and compare performance with two, hand-clustered
collections. One of these techniques – an adapted similarity–based media segmentation
algorithm that forms hierarchical clusters based on timestamps – is used in the FXPAL
application [Adcock et al., 2003, Girgensohn et al., 2003], designed for regular computer
interfaces.

4.5.4 Clustering in PhoTable

PhoTable, too, performs a time-based clustering technique, and we observe how it assists
users in storytelling on a tabletop (as opposed to single-user search on a regular computer).
Previous photo clustering research – whether it be a tabletop interface or otherwise – has
not yet tackled the task of storytelling.

Specifically, our clustering attempts to separate the trip into episodes, about which
a story can be told and captured. An episode is a chronologically contiguous sequence
of photographs with a significant temporal separation from any photograph in another
episode, and it is held within a cluster. However, we also impose a heuristically determined
maximum cluster size that optimises the separation between two episodes. This is used
when a large episode would otherwise be too large to display clearly in a single cluster or,
else, span two clusters.

More details on the clustering algorithm will follow, but first we must revisit our
Browsers (§4.3.7), which were designed for folder hierarchies rather than clusters.

4.5.5 Browsers Revisited

The Browser, shown here in Figure 4.9, supports access to the user’s photo collections. At
any time, only one Browser is present for each collection: it cannot be deleted. The Browser
is typically created upon the insertion of removable storage containing the collection (as

88



CHAPTER 4. USER VIEW 4.5. Sharing Photographs with PhoTable

Shows the Browser (left), an extracted SubBrowser (top right) with 19 thumbnails for the
highlighted cluster (centre), and a photo extracted (bottom right), from the top-left thumbnail of

the SubBrowser.

Figure 4.9: A Browser with 25 clusters from a large collection (285 photos)

in §4.3.6), or can be loaded from a specific folder. Figure 4.9 shows a collection of 285
photographs arranged in 25 event clusters. The centre cluster has been dragged off.

Figure 4.6 shows how a user drags a cluster off a Browser. This creates a SubBrowser
as shown at top right of Figure 4.9. Once a cluster is dragged to the edge of the Browser,
a copy appears at the same location, but outside the Browser. This SubBrowser contains
thumbnails – one for each of the photographs in that cluster.

These thumbnails may be dragged off in a similar action: the user sees the thumbnail
copied as a new image on the table. As this happens, the full-quality photograph is loaded
in the background; replacing the low quality texture in both the thumbnail sized image in
the SubBrowser and the image that has been dragged onto the table.

Thus, we have a 3-tier browsing hierarchy: a root (the Browser), SubBrowsers below
that, and photographs as leaves. This hierarchy creates the initial set of relationships
between photographs and can be used to navigate the collection – both on the table and
offline on a conventional interface. However, further explicit relationships can be formed
via attachment to photographs, and implicit relationships via cropping, and interaction
trails discussed later in this section.

To reduce clutter, only the Browser and one SubBrowser is active at a time. When a
new SubBrowser is created, the previous SubBrowser and any photographs dragged from it
disappear. If the user needs photos from different clusters, those photos must placed in a
storage bin. This is the rectangle labelled “StorageBin” in Figure 4.8. It, too, can be moved,
rotated and resized, and photos in it are laid out as in SubBrowsers. However, dragging a
photo over the storage bin places it in and dragging it out removes it, whereas the contents
of a SubBrowser do not change – copies are made when thumbnails are dragged out.

89



4.5. Sharing Photographs with PhoTable CHAPTER 4. USER VIEW

4.5.6 Clustering in Depth

We use a space-filling thumbnail technique [Cockburn et al., 2006] to scale and position
clusters and images within the Browser and SubBrowser objects, respectively; as well as
within storage bins. As new items are added, thumbnails reduce in size to make room,
but otherwise take up as much space within the Browser as possible. Specifically, if C is
the number of clusters (or children), we pick m = d

√
C e as the number of images in each

column (i.e. the number of rows) and n = b
√
C +mc as the number of columns. Dragging

items off (Sub)Browsers causes copies to be made, and triggers background loading of the
cluster item thumbnails when dragging off a Browser, or of the high-resolution image when
dragging off SubBrowsers.

When a digital camera or memory card is plugged in, it is scanned for photographs.
Exif data is extracted and stored in a database – this includes the date and time the photo
was captured. With this value, we perform a 1-dimensional clustering algorithm inspired
by k-means [MacQueen, 1967], but substantially different. It performs only a single pass
over the data, and so has linear scalability (whereas k-means iterates numerous times over
the data), and incorporates heuristics to maintain some properties of the clusters, in order
to create effective events – chronological sequences of photographs – that are suited to
browsing on the tabletop.

Challenges

For storytelling and tabletop interaction, it is undesirable that any cluster has just one, or
even a few, photographs. This makes inefficient use of the space available in a SubBrowser.
It may make it hard for the user to draw context of the event to construct a story. It
may also annoy users, as they would need to load a SubBrowser to access just one image.
Outliers must be treated carefully.

Perhaps more importantly, we cannot have any cluster that is too large as this would
cause a SubBrowser to be created with too many items, thus it would have thumbnails too
small to see clearly, and too small to easily select on the tabletop. Using k-means without
heuristics can readily create clusters that are too large, or clusters of single items. We also
must avoid having too many clusters, as this would clutter the parent Browser.

However, determining the ideal number of clusters for a data set remains a difficult
research problem (e.g. Chen and Gopalakrishnan [1998]). Clustering methods such as
k-means have a fixed number of clusters that must be pre-determined using heuristics.
In demonstrations, the Slider interface object provided by Cruiser is able to change the
number of clusters on-the-fly. Re-clustering with our clustering algorithm and Cruiser’s
texture cache is quick. However, we did not want the number of clusters to be a distraction
during storytelling with the PhoTable application – not only can it interrupt the flow of
the story but it will also change the location of the images, affecting spatial memory. In
addition, we anticipated that the clusters used during storytelling could be preserved for
use in the digital photo album creation, as an alternative way to navigate the album.

Solution

In PhoTable we can use properties of the browsing interface to help inform the decision of
the number of clusters to use. The Browser layout technique achieves maximum efficiency
of space and minimal distortion when the number of items is a perfect square. To leverage
this we might begin by selecting a perfect square as our target number of clusters, but
this was found to affect cluster sizes too dramatically. Fixing at 25 clusters often made
episodes too small for effective storytelling. For collections smaller than 300 photographs,
we divided the number of photos in the collection by 12 to reach the target number of
clusters.

90



CHAPTER 4. USER VIEW 4.6. Storytelling and Album Creation

We also want an even spread across SubBrowsers so, after sorting chronologically,
initial cluster seeds are spaced at regular intervals. Seeds are then grown, one image for
each cluster; picking the un-clustered photo adjacent to the cluster that has the closest
timestamp to the average of photographs currently in the cluster. We repeat this until
all photographs in the collection are assigned a cluster. Finally, in order to reduce the
possibility of a split across a true cluster, a photograph may move between clusters if its
timestamp is closer to the average time of an adjacent cluster. Our clustering algorithm
scales linearly with the size of the collection, permitting rapid re-clustering if desired.

Each object within the Browser corresponds to one cluster of photographs, and they
are ordered chronologically. The cluster is represented by the earliest photograph taken of
that cluster. This photograph serves as the thumbnail for the cluster within the Browser
as well as the background image for the SubBrowser once dragged off. In future we may
instead choose a summary photo as suggested by Graham et al. [2002].

However, using the first image in a cluster not only helps indicate the photos that
might be present in that cluster, but also the cluster before it. This is because the image
will be the transition point between the events represented by the clusters. For example, if
an event had too few photos to deserve its own cluster, there would be no way for a user to
determine in which of two adjacent clusters the event was placed if we chose representative
images from within the cluster. By choosing the first image, the transition point is visible.

Our Browsers and clustering technique also support requirements for digital photo
management identified by Rodden andWood [2003]. Their study emphasised the importance
of two features their participants found very useful: sorting photos chronologically and
displaying a large number of thumbnails at once. These are both supported by our Browser.
Interestingly, Rodden and Wood also found that the availability of text-based indexing and
retrieval was not enough motivation for their participants to invest the effort in manual
annotation of their photographs – participants most commonly wanted to browse their
photos by event, rather than perform a query based on more specific properties. This lends
further credence to the strategy outlined here, which needs only the images themselves
and not pre-annotated photographs.

4.6 Storytelling and Album Creation

One hypothesis of this thesis is that by providing the immersive and highly usable tabletop
interface outlined in this chapter, users can ignore the computing interface and instead
concentrate on their social interaction and storytelling. If we can achieve this, not only
have we provided a novel and effective way for people to share their photos in digital
form, but we also have the opportunity to use a recording of the stories told – untainted
by fumbling around the interface – as the basis for long-term preservation in a digital
photograph album annotated with audio. Furthermore, because of the digital interaction,
we can implicitly correlate the stories to the right photographs, and derive relationships
between photos in the story, thereby creating this digital photograph album merely as a
side-effect of the social interaction at the interface.

Two “pages” from an example, automatically generated digital photo album resulting
from one user’s photo sharing session in our user study is shown in Figure 4.10. We now
describe how this is generated.

4.6.1 Capturing Audio and Interaction Traces

Cruiser’s audio framework captures the users’ dialogue using a table microphone, and
correlates the time code with interactions on the interface. Thus, at each point in the
recording we know each users’ active selections, the photo size, orientation and any

91



4.6. Storytelling and Album Creation CHAPTER 4. USER VIEW

“This is a better one – you can actually see
him.. you can see the rope there, he actually
is out on the rope and the boat’s over here

somewhere. He’s right at the .. going
through a corner. He did come off though. I
think I’ve got one where he actually. Yeah.
This is how you actually stop. Because,
normally with skis you just let go. . . ”

“. . . and, you know, you float nicely up to
shore. But, you can’t do that on when

you’re on your feet, unless you want to risk
hitting the sand and falling over and hitting
your head. So basically you just try and fall
down and you skim along on your back a

little bit.”

Above the main photograph is a timeline, which shows the sequence of photos in the story,
in the order that they were touched; the centre photo is enlarged, each webpage has one
enlarged photo; thumbnails either side are photos touched immediately before or after the
centre photo (each photo has only one webpage so there will be multiple if it was reached
via multiple paths); at the bottom of the page are listed any Subimages: images selected
during the viewing of the current photo, but not long enough to split the story; all photo
thumbnails are hyperlinks to that photo’s webpage and stories; the slider below the image is
the associated story: clicking the play icon will play it; there may be multiple stories, and the
length of each slider is proportional to the duration of the audio snippet. The stories for these
photos are transcribed verbatim below. Note that this splitting was fully automated, using
the interaction trace while using the interface. Filtering is performed on the stories to remove
pauses without affecting clarity so, for example, the first audio annotation is 15 seconds long
even though the photo was selected for 27 seconds.

Note: If you have an electronic copy of this document in PDF, clicking either image above will, in a
compliant PDF viewer such as Acrobat Reader, play back the embedded audio.

Figure 4.10: Screenshots of PhoTable’s generated Digital Photo Album, showing consecutive
photos and their automatically associated stories, in a web browser

92


album-1.wav
Media File (audio/wav)


album-2.wav
Media File (audio/wav)



CHAPTER 4. USER VIEW 4.6. Storytelling and Album Creation

attachments. For example, if the user designated as the story teller selects a photo and
makes it large, there is a high likelihood that they are currently talking about that particular
photograph and audio recorded at this time will automatically associated with it.

The interaction trace includes the time of an action (in seconds since the application
was started), a user identifier (i.e. who is performing the action), the action type, a resource
identifier, a photo identifier13, and various state variables. It also includes the filename of
the object, and (for attach actions) the name of its immediate parent, if any. An example
trace is shown in Figure A.3 on page 230.

We use the interaction trace to determine the sequence of selections taken by each user
through the course of the storytelling. Relationships explicitly created via attachment
(either on a flipped photo, or to a storage bin) are also determined. These are correlated
with the captured audio and used to determine logical paths of related photographs, thereby
creating a hyperlinked, digital photo album.

4.6.2 Digital Photograph Album

The interaction trace is machine-readable14. Its location, along with the location of the
photo library and the captured audio, are given as parameters to the fully automated
Digital Photo Album Creator. This is a 200-line Python script whose task is to create a
series of hyperlinked HyperText Markup Language (HTML) pages to serve as the digital
photograph album. The album should be standalone, so that it may be placed on a data
CD (for example) and not require a web server or Internet connection.

The script does the following:

• Reads each line of the interaction trace;

• Loads the captured audio into memory15;

• For each photograph from the user’s collection that was touched during the
storytelling,

– record all time intervals that it was selected by the storyteller user,
– record the largest size that the object was ever resized to,
– record subimages: other photographs that were selected briefly while this

photograph was still active;

• Logs the full sequence of selections made by the storyteller;

• For each story interval associated with non-subimages,

– Split the audio,
– Remove silences – sequences of very quiet audio – and thereby shorten,
– Record the new duration of the audio clip,
– Save the split and filtered audio to disk as a WAV;

• Then, for each photo, create a web page (see Figure 4.10) that includes:

– A scaled-down version of the photo (which links to the original photo when
clicked),

13The same photo may appear on multiple resources if it has been copied, for example.
14It is also, intentionally, human readable to assist debugging in early stages.
15This is accomplished by Cruiser’s audio framework (§5.3.1), implemented in C++, but specially designed

so that its functionality can be easily accessed from Python and other programming languages.

93



4.7. Chapter Summary CHAPTER 4. USER VIEW

– An ordered list of the audio clips that were recorded while this photo was active,
displayed as:

∗ a play button (and volume control), allowing each story to be played back,
∗ a slider whose length is proportional to the duration of the audio clip,

allowing seeking and feedback for the current audio location during playback,
∗ an indication of the duration in seconds, and the time (in minutes and
seconds) that the story was recorded;

– A timeline at the top that shows thumbnails for photos touched before and after
the current photo for an indicated location of the photo along the timeline,

– A collection of photos touched before and after this photo (i.e. links to pages
where stories may be continued),

– Related images, which includes,
∗ subimages: those selected briefly whilst this photo was active,
∗ parent images: the photo selected either side of a subimage (which might

have the audio corresponding to this subimage),
∗ attachments: any other photos explicitly attached to the reverse side of this

photo, or cropped photos created wholly from the photo (using the Capture
Frame).

Each thumbnail is a link to that photo’s webpage and stories. The current prototype also
shows the minimum and maximum sizes of the photo, and the number of times a photo
was selected.

The 200-line script is supported by a 230-line class library (also in Python) that
encapsulates the object-model of Audio objects and Photo objects. Audio provides an
abstraction over Cruiser’s audio objects for tasks such as split. Photo abstracts the HTML
fragments used to generate the webpages, and makes the main script more readable.

Python is used for its well-integrated string manipulation facilities, and because (unlike
the interactive Cruiser interface), there is no time pressure. That is, the photo album can
be created in a batch process, without user interaction. Creating an album takes about
5–10 minutes, with the most time taken up by resizing original images into thumbnails.
The audio splitting and filtering is fast, because we leverage the C++ implementation of
these functions from Cruiser’s audio library.

4.7 Chapter Summary
This chapter has presented the user view of the Cruiser interface, which consists of the
basic interface actions users may perform on single objects, and the higher-level functions
they may perform via the interaction of multiple objects. It describes how users are able to
share and tell stories about unsorted collections of their digital photographs with PhoTable
and its novel approach to browsing, and how the interaction at the tabletop is used to
automatically construct a digital photograph album, augmented with their stories. It
also discussed some extended functionality we have explored beyond the photo sharing
applications of PhoTable, and our approach to design of the interface. This design is
backed by our guidelines and design drivers discussed in Chapter 3.

94



Chapter 5
Framework Design

This chapter primarily deals with the design of Cruiser framework, rather than the PhoTable
application (see §1.1.1 Naming). However, it would be incorrect to deal with the framework
design in isolation – that is simply not how Cruiser was designed or developed. Although
Cruiser has evolved into a more generic, flexible and extensible framework for developing
immersive tabletop applications, the design has been significantly influenced by the needs
of photo sharing applications.

The previous chapter presented the detailed user view of applications based on Cruiser,
such as PhoTable. This chapter presents Cruiser from the view of an application or plugin
designer, looking to utilise the framework. However, this chapter will also describe deeper
design aspects, usually hidden from the application designer. To give insight into the
novel approach used for the framework design to maximise flexibility in its reuse, and
the techniques used to maximise responsiveness and rendering performance, this chapter
does go some depth into implementation details. Evaluation of the framework follows, in
Chapter 6.

5.1 System Overview

The underlying platform for experimentation is called Cruiser, building from an earlier
platform [Apted et al., 2006] for manipulating digital photographs. The software driving
Cruiser uses C++ and OpenGL. This gives flexibility in the design choices and allows us to
leverage the capabilities of modern computer graphics hardware to rapidly generate a very
high quality and responsive display. This is particularly important when we consider that
the display may be large and viewed from all angles, by multiple people (§3.1). In addition,
it frees us from an interface carried over from traditional desktop computer interfaces. This
is critical for the design approach.

At the highest level of architecture design, the Cruiser system is largely decoupled
into three main parts: a core library that provides tabletop interaction functionality,
plugin libraries that provide tabletop application components and a set of plugins that
provide application logic. Some functionality has no dependence on the Cruiser core, and
is decoupled into a fourth part, consisting of utility libraries that provide facilities such as
thread management, networking and data manipulation.

This structure is shown in Figure 5.1. In this figure, each node is a directory; containing
source code. Two clusters are present: the inner cluster is the Cruiser core (§5.2), and
the outer cluster (src) contains plugins (§5.5) and plugin libraries (§5.4). Outside of the
clusters are the utility libraries (§5.3).

Cruiser is natively cross platform. That is, it compiles from C++ source code to run
natively on supported platforms, including Microsoft Windows, Linux and Mac OSX. It

95



5.1. System Overview CHAPTER 5. DESIGN

src
p
e
o
p
le

re
s

9

vu
_w
id
g
e
t

6

rfb

1

m
e
n

1

d
isk

lib
fo
ld
e
r

3

b
ro
w
se
r

1

lib
d
b

1

lib
b
ro
w
se
r

6

lib
slid

e
r

6

e
xif

1

lib
fra

m
e

2

co
re

1
0

fsvie
w
e
r

1
3

lib
m
in
xm

l

1

in
p
u
t

3

stro
ke
re
a
d
e
r

1

m
e
ta
d
a
ta

1

n
e
t2

sto
ra
g
e
b
in

2

vid
e
o

lib
vid

e
o

1

g
e
s

p
lu
g

1

a
u
d
io
d
u
m
p

1

ta
p
ta
u
d
io

1

6 3
1
0 1 8

8
7

a
n
i

6

e
n
v

e
ve
n
t

7

e
xtra

in
p
u
t

5

n
e
t

h
a
n
d
le

4

4

re
s/ra

s

2

u
tl

3
5

1

g
e
s

2
1

1
1

1

sd
l_se

rve
r

1

2

rxstrin
g

1

th
re
a
d
m
a
n

1

E
ach

node
is

a
directory,and

arrow
s
indicate

#include
dependencies,w

here
a
source

file
in

the
source

node
depends

on
a
header

file
in

the
destination

node.
T
his

figure
is

generated
autom

atically
using

D
oxygen

but,for
clarity,som

e
transitive

dependencies
have

been
rem

oved.
T
wo

clusters
are

present
–
the

inner
cluster,C

ruiser
core,is

enclosed
by

the
“src”

cluster
consisting

ofplugins
and

C
ruiser

libraries.
N
odes

outside
ofthe

clusters
are

libraries
decoupled

from
the

core.

Figure
5.1:

C
ruiser

A
rchitecture

D
iagram

96



CHAPTER 5. DESIGN 5.2. Cruiser Core

Module
in Core

SLOC† Components

top 3408 environment, resource, reference counting, mystl (headers)

res 3111 image, writing, pcache, layout, blackhole, audiocircle, drawing,
polygon, mixins, circle, arrow, zlayer, setworld, boundres

env 1441 bounds, capture, regions, command, camera, loader

utl 1218 rconfig, logger, stloutput, vectorized-point, point, colours, remutex

event 1216 eventhand, user_events

ras 834 mipmap, texture

ani 648 tweening, animate, momentum

ges 555 gesture, glyph, copier

debug 478 backtrace, debug, signalinfo

net 450 datawall, audiobox

extra 180 jpegstream

input 33 dt_handler

TOTAL 13 542
†SLOC: Source Lines of Code, as determined by the sloccount tool (http: // www.
dwheeler. com/ sloccount/ )

Table 5.1: Submodule summary of Cruiser Core

does not rely on a virtual machine, which could limit its responsiveness and functionality.
For example, one application detects the connection of a digital camera, camera memory
or USB drive, which is not supported by the Java Virtual Machine. The following sections
discuss the design and the functionality available in the Cruiser software architecture.

5.2 Cruiser Core

The Cruiser Core (henceforth core) provides an infrastructure to facilitate the rapid
development of immersive, interactive tabletop applications rendered in high quality using
OpenGL. It is a cross-platform framework that provides event handling, display and
animation of on-screen objects, interactivity, networking and resource management in a
highly responsive, immersive display environment designed for tabletop interaction.

To give an indication of the nature of the code base of the core, we report the size of
each of its main modules in Table 5.1. The modules in core are then described in this
section, with utility libraries, plugin libraries and plugins described in Sections §5.3, §5.4
and §5.5. Table 5.1, and the similar tables for the following sections, have three columns.
The first column is the submodule name, the last column lists the source code files in
that submodule (which hint at some of the functionality), and the middle column is a
measure of the Source Lines Of Code (SLOC). SLOC gives a measure of the size of the
submodule and is measured by the SlocCount program [Wheeler, 2007]. These tables are
also provided to give an impression of the functionality contained in each module, and the
relative programming effort required to implement them.

97

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/


5.2. Cruiser Core CHAPTER 5. DESIGN

Notation

In this Chapter, emphasis will be used to distinguish components from the running text,
like bounds or mystl. A component typically corresponds to a single source code file
which, in C++ terms, will constitute a compilation unit within which declarations without
external linkage are wholly encapsulated. OO class types will be written Capitalised or
in CamelCase, like Environment or AudioCircle. Other code elements such as functions
will be written in a typewriter font, like draw() or residual. External libraries will be
written with an footnote containing a link to the project homepage.

SLOC

SlocCount counts physical SLOC, also called “non-blank, non-comment lines”. Where a
physical SLOC is defined as follows:

“A physical source line of code (SLOC) is a line ending in a newline or end-
of-file marker, and which contains at least one non-whitespace non-comment
character.”

Comment delimiters (characters other than newlines starting and ending a comment) are
considered comment characters. Data lines only including whitespace (e.g. lines with only
tabs and spaces in multi-line strings) are not included.

Cruiser has a good deal of source-code documentation, as befitting a library archi-
tecture. All classes, their data members and member functions are documented. The
Doxygen1 documentation system automatically checks for this documentation and warns
when functions elements are not documented. Doxygen generates cross-referenced HTML
documentation as well as a Portable Document Format (PDF) reference manual, about
2 800 pages in length. This documentation appears in the source code (primarily in header
files), and is not counted towards SLOC.

To give an idea of how SLOC compares to physical lines of code in Cruiser, a count in
January of 2008 counted 23 000 physical lines in the Cruiser core, compared to the 14 000
lines of SLOC from Table 5.1 – approximately 40% of the physical lines are comments
and vertical white space. Combining core with plugins and plugin libraries (but not utility
libraries) gives 42 000 physical lines, compared to 27 000 SLOC lines – the proportion of
documentation in plugins is slightly lower (∼ 30%) as the functions are typically larger
and less suited for reuse (i.e. they are plugin-specific).

Top-Level: Environment and Resource The top level provides essential functionality,
drawing from the other modules in core. The Resource class is the parent class of any object
which is displayed in Cruiser, and the Environment class manages, orders and draws them
on screen (more detail below). Resources are reference counted (essential when objects
may be referenced in multiple threads) and a top-level header provides tools to coordinate
this reference counting, as well as providing Resource declarations for client code that do
not require the full declaration of the Resource class.

Tools not specific to Resources, such as cross-platform C++ utilities for locking and
automated primitive data member initialisation, are provided in cruiser_util. It draws on
the debugging framework provided by Cruiser (§5.2.6) so is not provided as a decoupled
library. Finally, mystl is a mechanism to easily switch between GNU gcc’s “debugging”
versions of Standard Template Library (STL) collection classes (which provide bounds
checks and fail-fast iterators among other runtime checking), and the regular, optimised
versions.

1Doxygen http://www.stack.nl/~dimitri/doxygen/ verified 2008-02-14.

98

http://www.stack.nl/~dimitri/doxygen/


CHAPTER 5. DESIGN 5.2. Cruiser Core

Resource

Drawing

Arrow

Poly

Image

Circle

Writing

AudioCircle

VUWidget

Finger

Container

Label

Blackhole

Attachment

Capture Frame

MenuFrame

Person

Permanent<Image>

Video

Browser

Photocopier

StorageBin

DetachedBrowser

SubBrowser

CopyImage

Thumbnail

MenuItem

LeafMenuItem

MidMenuItem

SliderPic

VNCImage

Greyed nodes are from Cruiser plugins. For clarity, some plugins are excluded (a more
complete inheritance lattice appears in Figure A.2 of Appendix A.4).

Figure 5.2: Resources in Cruiser (Simplified Inheritance Hierarchy)

5.2.1 Resource (top-level)

A Resource is any on-screen object that may be loaded into the Environment and displayed
using OpenGL drawing routines. Resource forms the root of the hierarchy of types that
may be displayed. Figure 5.2 shows a simplified representation of the relationships between
the on-screen objects in Cruiser. Note that many of these are provided by plugins or plugin
libraries. OO programming techniques allow objects to reuse functionality from any object
defined in core or in a plugin library.

Far from being a pure-virtual class (or interface in Java terminology), Resource provides
considerable functionality to make these objects interactive in the Environment. Notably,
multi-user interaction is considered. For example, Resources determine whether particular
users are permitted to interact with on-screen objects based on their type, state, location
in the Environment, and whether any other user is currently manipulating the Resource.
This prevents users stealing objects that are private or in use.

Relationships between Resources (i.e. in the concrete sense rather than inheritance or
composition relationships) are also managed at this level. A Resource may have a single
parent and any number of child objects. Whenever a Resource is drawn on screen, the
transformations applied to the model-view matrix to reach the point where drawing of
the object begins are saved in a cache. These transformations only change if the object is
manipulated, so this cache is refreshed only if a manipulation has occurred to the parent,

99



5.2. Cruiser Core CHAPTER 5. DESIGN

rather than on every screen redraw. In this way, the same transformations can be efficiently
applied to the child objects: when the parent is manipulated, changes propagate through to
all children (and to their children, etc.). The manner that the transformations are applied
varies depending on the relationship between parent and child. This is described in more
detail in Section 5.2.4.

Cruiser is highly concurrent, and a Resource is given special treatment as it is almost
guaranteed to be accessed from multiple threads. Drawing a Resource is accomplished with
OpenGL and these calls must be done in the main thread, as only it is given access to the
3D drawing canvas. But much work tightly linked to a Resource is accomplished in other
threads. For example, loading (or upgrading) a photograph by reading and pre-processing
an image on disk (§5.2.4), converting parts of an image or the display to a JPEG to save
on disk (§5.5.8), scanning directories for photographs (§5.4.1), clustering (§5.5.10), and
loading and saving metadata (§5.4.2) are done in threads so that the interface remains
responsive while these time-consuming tasks are accomplished.

Thus the framework includes mechanisms that allow Resources to be referenced and
accessed from multiple threads. Only when no reference to a Resource exists in any thread
may the resources it uses be reclaimed. This includes system memory, but also more
subtle resources such as texture memory and handles to OpenGL display lists. Using a
language such as C++ allows these resources to be reclaimed timely, reliably and in an
elegant manner through reference counting and the Resource Acquisition Is Initialisation
(RAII) technique. This facility is not available in garbage-collected languages such as Java.
Having this framework in place allows elegant and safe deferment of processing between
threads, by using a Resource to embody the exchange of information. For example, with a
single statement, any member function of a Resource (or any descendant type) may be
called to be processed at the next available time in the main thread’s event queue (see
§5.2.7).

Most functionality encapsulated in Resource is devoted to manipulations of the on-
screen object that an instance of Resource represents. For example, selecting, moving,
rotating, resizing, attaching, deleting and flipping the object. However, before a Resource
can be manipulated, we must first determine which object the user has selected. OpenGL
pick lists are used to determine whether a Resource has been drawn at a particular pixel
coordinate on screen2. This allows the on-screen object that a user intended to select to
be determined, based on a screen coordinate of the interaction that is passed in by the
windowing system or by Cruiser’s input subsystem (§5.3.3). Another system [Isenberg
et al., 2006] has explored alternative solutions to the “picking problem”, but OpenGL pick
lists have performed adequately for our purposes3 and a comparison is beyond the scope of
this thesis.

To select, Environment determines the order that Resources are checked (topmost first),
and the sub-type of Resource determines the manner that an object is drawn (and hence the
parts of the screen that would hit this resource). It is left for Resource to determine whether
and where the object is hit by the touch point. If a hit is determined, Resource converts
the screen coordinates of the hit into object coordinates for manipulation functions to use,
as the initial point of contact is often required. An opportunity is also given for derived
Resources to access a detailed intersection record, which can provide information about the
precise component of the drawn objects that was hit (e.g. the button on a slider Resource).
Then the manipulation gesture begins and the gesture framework (§5.2.10) determines
which manipulation is performed on the resource. Once selected, Resource determines how

2Actually, pick lists are used for the initial select so that subcomponents of a Resource can be picked
out. Another standard picking technique – drawing each object on a hidden framebuffer with a unique
colour – is used when determining whether objects overlap in order to test attachment during a move.

3The picking operation is accelerated by graphics hardware and typically takes only tens of milliseconds,
even with hundreds of on-screen objects, making it unnoticeable to the user (between screen redraws).

100



CHAPTER 5. DESIGN 5.2. Cruiser Core

the manipulation is carried out; processing coordinates and the manipulation type given
by an instance of Gesture.

Resource generally defines the operations that Gestures may execute. For example,
dwell, is executed by the move Gesture under certain conditions (§5.2.10). It is then up to
the derived instance of Resource to carry out a function relevant to the type of Resource.
For example, AudioCircles (§5.2.4) will play their audio with a dwell; the Frame (§5.5.8)
will activate a capture of the screen area it overlaps. Most operations, including move,
resize, etc. may be overridden. For example, moving the Black Hole (§4.3.1) will first select
all objects determined to be in the Black Hole, and then move them together.

At this level, manipulations for changeAspect, claim, copy, dwell, flash, flip, move, raise,
release, remove, rotate, scale and select are provided and all may be overridden or extended.
However, it is not possible to anticipate all manipulations that might be performed on a
new type of Resource. Thus, a plugin developer may provide a specialised set of classes
derived from the core Gestures, which are aware of their new class (derived from Resource).
For example, Remote Framebuffer objects provide a RemoteCursor Gesture that is aware
of and able to call the drag member function of VNCImage Resources, which performs a
click-and-drag operation with the mouse cursor on the remote screen, rather than moving
the entire framebuffer “photo” itself (see §5.5.9). See also §5.2.10 for how the specialisations
are activated.

Resource also enforces any bounds restrictions imposed on an object, such as during a
move. This will be described in Section 5.2.5.

5.2.1.1 Flip Details

The technique for flipping an object was discussed from the user view in Section 4.2.5,
and the implementation is shown in Listing A.5.6. It takes as arguments the (x, y) pixel
coordinate on screen that is the current control point used for the flip – the touch location.
The first step is to convert this to object coordinates using the cached inverse transformation
matrices used to position the object being flipped in the virtual environment (but before
any flipping rotation transformation took place in the draw procedure). The x coordinate is
normalised to make it comparable with the y coordinate (i.e. they are given equal weighting
to determine the initial direction to flip).

If the flip has not already begun, the direction (xflip) is determined as the direction
with the larger component (i.e. most distant from the centre of the image). It is a reverse
flip if we are to the left of centre for a horizontal flip, or below centre for a vertical flip. The
distance to flip (dist) is twice the position component (as points initially extend from −0.5
to 0.5), so dist lies in the range [−1.0, 1.0]. The angle to flip is the arccosine of the dist.
We maintain state to continue a flip in the same direction once initiated, and to determine
whether we are flipping to the reverse side, or back to the front side. The flipping of the
image itself occurs in the draw() procedure.

Initiation Whether we initiate a flip, as opposed to a regular move operation is determ-
ined by the location of the initial touch point. Listing A.5.5 shows the procedure for this.
First we determine absolute values of the components of the object coordinates of the
touch point. We then check whether the touch is in the top-left, or bottom-right, corner of
the first quadrant – mirroring this in the horizontal and vertical (accomplished by taking
absolute values) causes these areas to correspond to the flip hot spots along the edges of
the objects, visible in Figure 4.1. The portion of the edges used as hot spots (i.e. the size
of the edge triangle) is configurable, defaulting to the portion shown in Figure 4.1.

101



5.2. Cruiser Core CHAPTER 5. DESIGN

5.2.1.2 Creating Relationships

Creating new relationships in the Cruiser interface is typically accomplished by dragging
any Resource over another Resource that has been flipped. This creates an attachment,
managed by a Layout (§5.2.4.2). By default, all Resources can be linked, and any instance
that says it is flipped can be linked to, but derived Resources can override these functions.
To provide this linking, Resource provides the facility to detect when objects overlap. This
operates similarly to select, but ignores the Resource being moved. Doing this also allows
the operation to be accelerated by the GPU.

During a move, if the current selection point overlaps a point where another Resource
would be drawn, the Resource being moved becomes a child of that Resource. Derived
Resources also identify their affinity to the parent and whether they are removed from the
interface with their parent, or automatically become detached.

Listing A.5.7 shows the procedure for determining whether an image should be attached
to an object (e.g. one that is flipped), whilst it is being moved. Whenever an object is
moved, checkLink selects the object directly below the touch point4 on the object being
moved. If there is an object there, and it is flipped (or the object says it is flipped), then
attachment occurs.

5.2.2 Environment (top-level)

Environment is the largest class in the Cruiser framework in terms of code size. It operates
as a central control point for managing the runtime environment of the interface, including
what Resources are present, triggering of event callbacks that plugins may have requested,
on-screen messages, active animations, and active users. Environment also performs
initialisation of the interface – establishing screen size, and activating OpenGL quality and
rendering settings.

The main task of Environment is to draw the screen. This involves first updating
any active animations with the current time (and removing any that have finished),
positioning the virtual eye for rendering (whose specifics are delegated to the Camera
class), calling the draw() function for each Resource in their draw order and writing any
current screen messages (primarily for debugging). If stereoscopic rendering is enabled the
eye is repositioned and objects are drawn again.

The actual drawing is not complex, as most of the work is delegated to the draw member
function of each Resource. What is challenging is the efficient management of objects
to draw in the face of concurrency. Cruiser guarantees that public member functions for
Environment are thread-safe. Adding and removing Resources, callbacks and messages may
occur at any time (but they may be delayed until the current redraw or other operations
have finished).

Upon adding, removing or selecting an on-screen object the draw order (z-order) must be
updated. Cruiser’s Environment has the capacity to manage the depth of three-dimensional
objects in the environment, so this is not a trivial task. For example, stacking a pile of
poker chips (betting tokens) in a tabletop game is possible; the stack of chips will appear
in 3D, rising from the surface of the table, and removing a chip from the pile causes the
rest to fall down, just like a real tabletop environment. Depth of on-screen objects is also
something that is inherited in a parent-child relationship between Resources so, for example,
attachments will always appear directly above or below the object they are attached to
(depending whether the parent is flipped). The draw order also assists selection – objects
drawn last are checked first as the are on top.

4Rather than the centre point.

102



CHAPTER 5. DESIGN 5.2. Cruiser Core

Environment is not a singleton. It is envisaged that future applications may be elegantly
implemented with multiple instances of an Environment. For example, a turn-based tabletop
game might switch between Environments for each user.

5.2.2.1 Resource Factories

Loading a Resource can be a comparatively lengthy task. Network-connected resources,
such as remote framebuffers, incur connection initiation delays; a Video may need to load
video decoders; and nearly all Images incur some disk access to load metadata and audio
attachments, as well as the image file itself. Starting a thread to perform such tasks is easy
in Cruiser, but can have added complications. For example, to access an SQLite database
from a new thread, it must be reopened in that new thread – database connection handles
cannot be shared between threads.

An elegant solution to this problem is the abstract factory design pattern, and En-
vironment provides a framework to easily add new Resources to the running interface,
using a factory. This factory might be simply a function call that returns a Resource*,
but the framework that Environment provides allows the create operation of all factories
to be called in the same, background thread in succession. Thus the interface remains
responsive whilst Resources are created; resources such as database handles are shared
between factories; and thread creation is minimised.

However, designing a concrete factory type corresponding to each Resource that is
loaded this way is a needless complication for plugin writers. Therefore, Environment
provides a templatised class implementation and functions that match simple factory
functions (as well as factory classes) via template resolution. Overloads for functions
accepting an argument are also provided. So, the factory could simply be a static member
function of the Resource type we wish to load, rather than a type derived from the
ResourceFactory provided by Environment (but this option is also provided).

5.2.3 Top-Level Utilities

Three other headers are provided at the top level. They are provided at this level because
they are intrinsic to the functioning of Resource and Environment, as well as most other
aspects of the framework. They are:

cruiser_util provides “no-overhead” automatic data member initialisers for primitive
data types, and RAII-style C++ mutex, object locks and reference counting classes,
backed by Simple Direct-media Layer (SDL).
For example, the BoolTrue type works as a regular bool that, when used as a data
member, will automatically be initialised to ‘true’, thus avoiding the need for an
easily forgotten entry in the initialiser list for every constructor of its class. This
is accomplished without incurring any space or processing overhead over a regular
bool.
Mutexes are an Inter-Process Communication (IPC) mechanism to enforce mutual
exclusion locks in critical sections of code. Using RAII techniques means that the
locks are automatically released when the instance of the lock goes out of scope (e.g.
when the function returns). This includes cases where an exception may be thrown
from or over the function, without incurring the need for an explicit try block.5

ref_resource combines the mutex facilities in cruiser_util and Resource to provide a
thread-safe reference-counting handle for reliable deletion and polymorphic access

5Garbage collected languages such as Java cannot provide this facility, and rely on the programmer to
ensure any mutex unlock occurs in a finally block of a try/catch sequence to ensure exception safety.

103



5.2. Cruiser Core CHAPTER 5. DESIGN

to instances of Resource and its children. A reference-counting facility is essential
to reliably manage objects shared amongst multiple threads; ref_resource provides
this while also allowing client code to ignore the problem of memory management for
Resources. Reference counting is implemented using atomic counters so that thread
safety is achieved with very little overhead.

A notable feature of the ref_resource header is that it does not rely on Resource – it
is templatised and needs only a forward declaration to instantiate a template, thus
minimising a dependency on the full declaration of Resource for code that does not
require it (e.g. other headers). This decreases source coupling, which is generally a
good thing, and can also considerably reduce recompile times, when the declaration
of Resource changes.

Ref_resource also provides a debugging mode that is able to show the function
call trace whenever a change occurs to the reference count of a Resource. This can
quickly find dangling references (which might lead to memory leaks) and find missed
opportunities to pass ref_resources by const-reference, which is more efficient.

mystl substitutes debugging versions of STL collection classes, provided by GNU gcc,
when Cruiser is compiled in a debugging mode. These versions, defined in the
std::__debug6 namespace detect many programmer errors such as out-of-bounds
indexes, and the more subtle invalid operations on STL iterators such as dereferencing
singular iterators (e.g. vector::end()).

Support for debugging is important when providing a framework for the development
of experimental code. In addition, it can be difficult to run automated tests for user
interface research, so additional checks in regular execution is of great value. The
mystl header detects whether we are in a debugging mode, and substitutes the correct
version of the debugging collection classes depending on the compiler version. The
GNU gcc versions perform these checks with only a minor performance penalty, so
the interface remains highly responsive in debugging mode. When an application is
considered stable, non-debugging STL classes can automatically substituted for a
speed boost.

5.2.4 Core Resource Framework (core/res)

The core resource framework provides a set of classes derived from Resource that provide
some additional functionality, primarily in the form of implemented draw() functions. It
is rare that when an application wishes to provide its own Resource that it will inherit
directly from Resource – more often the Image or Drawing derived classes will be used.

The classes Image, Poly, Drawing, and Arrow derive directly from Resource. Also
provided are Blackhole, derived from Image; Writing and Circle, derived from Drawing; and
AudioCircle derived in turn from Circle. These are shown in Figure 5.2: other classes in the
hierarchy are provided in plugins and plugin libraries. These eight classes are core because
they provide functionality tightly linked to the operation of Cruiser, without pulling in
additional library dependencies, while providing a framework for code reuse by plugins;
thus working within our design goals (§3.5.1).

Less-visible components supporting the operation of Resource are also found here: the
position cache for efficiently inheriting object transformations, Layouts for organising child
objects, and Resource bounds tracking.

6Or the __gnu_debug_def namespace in gcc versions <4.2.0.

104



CHAPTER 5. DESIGN 5.2. Cruiser Core

5.2.4.1 Image

Image, at the left of Figure 5.2, is the most used subtype of Resource in Cruiser. Essentially,
it represents any on-screen object whose representation is backed by a rasterised image.
Thus, the majority of its implementation is geared towards efficiently loading, rendering
and sharing this image data. Image also serves as a convenient container as it is always
rectangular in shape and thus has bounds that are easy to determine.

The most obvious example of an Image is a photograph file provided from disk.
However, any rasterised content is supported, including Portable Network Graphics (PNG)
images with an alpha channel (useful for interface elements), partial screen captures and
images loaded over the network. Classes derived from Image are also able to leverage the
functionality provided for still images to implement dynamic images – video and remote
framebuffers – by continuously updating the texture data.

Image implements the texture processing assembly line described in Subsection 3.5.5.1
on page 53, in order to load image data from disk into a texture that may be efficiently
rendered by OpenGL. A reload is also supported, where an image initially loaded in
low-quality (e.g. for a thumbnail) may be upgraded into full quality for detailed viewing.

Default decorations are also provided for Images. These are elements drawn over the
image data that indicate the object boundary and ownership (by colour) of an Image.
When selected, elements indicating hot spots – areas of the image that when touched
activate rotating, resizing or flipping – are also displayed (see §4.2.1). Decorations are
rendered efficiently through the use of OpenGL display lists. This is a procedure whereby
the sequence of drawing operations comprising the decorations may be remembered by
the graphics card and given an identifier. Subsequently drawing the decorations merely
requires asking the graphics card to repeat the sequence, using a single function call.

Image manages various texture processing features when loading textures that control
quality and efficiency. Anisotropic texture filtering is a feature provided by modern graphics
card and is available in OpenGL. It provides high-quality display of textures when they are
rendered at an angle to the screen (e.g. when flipping), but is also able to efficiently smooth
image data during texture minification. Minification occurs when the texture is rendered
on screen smaller than a direct mapping of the texture to screen pixels would provide.
Because Cruiser uses very large textures for high-quality photo viewing, minification is very
common, so the benefit from anisotropic texture filtering is significant – without it, photos
made small on the display would appear blurry. Texture compression and helper functions
to load Exif thumbnails or textures cached in the metadata database (as discussed in
§3.5.5.1) are also managed by Image.

The OpenGL identifiers provided by the graphics implementation when a texture or
display list is created are able to be shared amongst Images. A third, helper function can
check whether a particular file has already been loaded, but sharing most commonly occurs
when an Image is copied. This is frequent: interface elements are often duplicated (e.g.
when providing many poker chips of the same denomination, or when duplicating control
objects so each user has a copy), and photographs are often copied from their thumbnail
representation (thence triggering an upgrade of both copies, which may then be shared).
Texture and display list handles are shared with reference counting.

Helpers Loading can also be assisted by an Exif helper. The actual Exif parsing is
provided by an external library and activated by a plugin (§5.5.2). So, an Image may be
loaded using any of the following techniques (tried in order, in a background thread):

• if initiated by a copy() of an existing Image, perform member-wise copy of data
(uses already-loaded OpenGL texture ID and increments reference count); otherwise,

105



5.2. Cruiser Core CHAPTER 5. DESIGN

• if loaded by filename, pass the image filename and desired quality to the preloaded_
_helper, which will return a reference-counting handle to the OpenGL texture ID if
that file was already loaded with the desired, or better, quality; otherwise

– if high quality (i.e. non-thumbnail quality) is requested, load the image and
generate mipmaps from disk; otherwise

• if loaded by filename, pass the filename to the texture_helper, which will re-
turn an array of data structures representing arguments to successive calls of the
glTexImage2D OpenGL function to load compressed textures that were previously
cached in the metadata database; otherwise,

• if not cached, pass the filename to the thumbnail_helper, which checks the file on
disk for an Exif header and, if found, returns the stored miniature thumbnail as an
in-memory JPEG that is subsequently loaded as if it were the entire file from disk
(as in the next technique); otherwise

• pass the filename to the SDL_Image library to decode the file from disk, rescale and
generate mipmaps (as described in §3.5.5.1 on page 53).

The first two of these techniques create a reference to an existing texture, which is used
immediately once the Image is added to the Environment7 and the screen redrawn. The
other three techniques all result in a sequence of successive arguments to pass to the
glTexImage2D OpenGL function, in order to load the set of mipmaps created into texture
memory.

This final step must be done in the main thread, so the array of argument sets is held
temporarily in system memory and a low-priority event is queued (§5.2.7) to perform the
function calls between screen redraws, in the main thread. The event is given low priority
because the step that transfers the texture data from system memory to texture memory
can be lengthy – possibly hundreds of milliseconds8 – and high priority events (such as
user input) should be processed first to keep the interface responsive.

The texture-loading step is also the step where the graphics card may compress the
textures in its own memory, and OpenGL has a facility to subsequently retrieve the
compressed textures from the graphics card. If the texture_helper technique was unable
to find cached textures in the database, Image now retrieves the compressed textures at this
stage; replacing the uncompressed mipmap data in system memory. The (now compressed)
texture loading arguments are then passed to a managed background thread, which is able
to save the compressed thumbnail textures to the database for later use.

5.2.4.2 Layouts and PositionDependant

A Layout is a mechanism for arranging a collection of Resources on screen. As shown in
Figure 5.3, it is a class derived from PositionDependant9, which allows the Layout to be
informed of manipulations of a parent Resource. Thus a Layout is typically used to arrange
objects displayed on the parent Resource, acting as a container ; when the parent is moved,
rotated or resized, the collection of objects it contains will inherit the transformation and
possibly be rearranged by the Layout.

Non-layouts that derive from PositionDependant are used to inherit transformations
for single objects. Arrow and Label are Resources (see Figure A.2 for the full inheritance

7this is a thread-safe operation so occurs between screen redraws
8but rarely more than a second, and much less for thumbnails
9the spelling dependant (rather than dependent) is deliberate for two reasons: dependant is always a

noun (class names should be nouns), and it implies a parent-child relationship beyond simple dependence

106



CHAPTER 5. DESIGN 5.2. Cruiser Core

PositionDependant

Arrow Label Layout PDAdapter

FlowLayout HistoryLayout QuadTreeLayout

BettingBoxLayout SFTLayout

CopierLayout

FixedPDAdapter

Provided by
Plugins and

Plugin Libraries

Figure 5.3: Layout class hierarchy (with PositionDependant)

lattice) that work together to implement labelling of Images with annotation callouts – the
label should look like it is pinned to the Image. PDAdapter follows the adapter design
pattern to allow regular Resources to become dependants, where it is not otherwise a
requirement. FixedPDAdapter fixes a Resource relative to the centre of another, such that
it cannot be moved by itself.

For example, Writing (described on the following page) can be done directly on an
Image, where it will become stuck, using a PDAdapter. It can still be moved around
the Image – PDAdapter does not remove Resources’ own abilities to be manipulated
(FixedPDAdapter does). If it is moved off the image, it becomes detached; the adapter is
discarded and the writing becomes an independent Resource. However, it may be later
attached (on the back) of an image (see §5.2.1.2 on page 102), whereby it will then become
part of a Layout.

Only one layout is supplied in the core. This is in line with the design goals (§3.5.1): the
intention is not to create an exhaustive set of functionality, but only to provide a framework
with the flexibility to add functionality. The added functionality can then be shared
through the use of plugin libraries. The layout provided in core, FlowLayout, is shown in
Figure 5.3. FlowLayout implements a layout similar to words on a page, with Resources
being placed on a new row when they would exceed the width of the container. The name
is inspired by java.awt.FlowLayout10. The other layouts in Figure 5.3 – HistoryLayout,
BettingBoxLayout, SFTLayout (space-filling thumbnail), and CopierLayout – are provided
by plugins and plugin libraries (§5.4).

The collaboration diagram for FlowLayout is shown in Figure 5.4. This figure is also
provided to give some context for the Top-Level Utilities described in §5.2.3. A Layout
contains a collection (coll) of reference-counted Resources and inherits the parent from
PositionDependant. FlowLayout extends Layout with a padding and margin in order to
arrange Resources in coll within the bounds of the container parent. Using Layout in
this manner separates the management required to add and remove items from the layout
(and, importantly, the automatic removal of dependencies) from the logic that performs
the layout. Layout also provides a thread-safe view on the collection of items, so that new

10http://java.sun.com/javase/6/docs/api/java/awt/FlowLayout.html, verified 2006-02-12

107

http://java.sun.com/javase/6/docs/api/java/awt/FlowLayout.html


5.2. Cruiser Core CHAPTER 5. DESIGN

FlowLayout

Layout

PositionDependant

Resource

link

bool

frontside
alwaysfront

RefT< Resource >

parent

vector< RefT < Resource > >

< RefT < Resource > >

r

Refmutex

rlock
refcnt_lock

SDL_mutex *

mut

Refcount

refs

RefT

< Resource >

const void *

lastAdded
lastSettled

double

padding
margin

coll

unsigned

refs

(note: Resource data members are incomplete)

Figure 5.4: Collaboration diagram for FlowLayout

objects can be added from background threads, for example, once an object has finished
loading from disk.

5.2.4.3 Writing, Drawing and Polygon

Writing can either be typed text or a stroke, made with a finger or stylus. Typed text is
rendered using the polyfonts11 library, with a significant improvement added by Cruiser:
the first time any font glyph is drawn, its shape is cached in an OpenGL display list so
that subsequent drawings of the same letter are very quick. Thousands of characters can
be rendered at any size or orientation in a matter of milliseconds this way, in order to
maintain a screen redraw rate of more than 50 frames per second.

Strokes are rendered similarly to typed text, with polygons. As a stroke is being drawn,
it is rendered using OpenGL’s triangle strip primitive, as shown in Figure 5.5 on the facing
page. There are some subtleties in the algorithm to deal with special cases, but essentially
successive trapezia12 (made of two triangles in the strip) are drawn such that their parallel
lines are parallel to the line segment joining each pair of points on the stroke path. The
angles of the non-parallel sides are chosen so that they bisect the angle between successive
line segments (perpendicular at the ends, where there is only one line segment). Width of
the triangle fan can be configured. Once the stroke has been completed, repeating these

11http://www.gameprogrammer.com/polyfonts/polyfonts.html verified 2007-02-13.
12Plural of trapezium (British English), meaning a quadrilateral with one pair of parallel sides (or trapezoid

in US English).

108

http://www.gameprogrammer.com/polyfonts/polyfonts.html


CHAPTER 5. DESIGN 5.2. Cruiser Core

Figure 5.5: Rendering a stroke using OpenGL’s triangle strip
The dashed line in the centre adjoins points on the stroke path; real strokes have many more points than
shown here and segments are typically much wider than they are long; all triangles (not just those solid in

this figure) are drawn in solid colour

calculations would be wasteful, so the points are normalised between ±0.5, a suitable scale
is chosen so the normalised result is identical, and the sequence of OpenGL calls are cached
in a display list, for efficient rendering.

These techniques are a departure from the usual ways of rendering text and handwriting
in an interface. It is traditional for interfaces recording stroke data (e.g. from a stylus) to
require the input to be made on a canvas. That is, an object or area of screen that behaves
similar to a piece of paper; writing on the canvas changes the pixel matrix that represents
the canvas. In some cases it is possible for the canvas to be transparent, such as is used
when annotating an entire screen, e.g. when using software packaged with interactive
whiteboards. However, activating the canvas is modal – you can either annotate the canvas
or manipulate objects behind it, but not both, unless you switch modes. Similarly, text is
typically entered in a text box.

In Cruiser, the text glyphs and stroke annotations themselves are objects that can be
selected, manipulated, deleted and attached to other objects in the environment. Of course,
subtypes can easily be derived from Writing with any of these functions disabled for text
that might be static. Rendering strokes as OpenGL primitives allows them to be easily
selected, using the graphics-accelerated picking techniques available through the Resource
ancestor class.

From Figure 5.2, it can be seen that Writing is derived from Drawing. A Drawing is
notionally an object that is drawn manually, using OpenGL drawing functions. Foremost, it
is distinct from an Image, which may have non-texture decorations, but is always rectangular
in shape. The Drawing class provides a drawer object that uses RAII techniques to establish
and clean up transformations in OpenGL’s model-view matrix to provide classes derived
from Drawing their own coordinate system, independent of the transformations inherited
from Resource (e.g. move, rotate, resize), which are applied automatically. An example
use of a Drawer is shown in Listing 5.1 on page 111.

Note that Drawings (including text and strokes) are easily selected and moved around
the interface. However, by default they do not have decorations that indicate areas that
allow them to be rotated, resized or flipped, as Images do. A derived type can indicate
to the gesture framework that these manipulations should be performed instead of move,
e.g. depending on the area selected. However, the transformation inheritance provided by
Cruiser’s Layouts provides an alternative way to rotate and resize drawings: attachment.
Attaching a Drawing to an Image (which may be a simple container, without a texture),
and then manipulating the Image lets those manipulations be inherited through the Layout.
Subsequently detaching the drawing retains the transformations made to it whilst it was

109



5.2. Cruiser Core CHAPTER 5. DESIGN

attached.
A Poly is a basic polygon shape, drawn with OpenGL’s polygon primitive. Such a

shape could easily be implemented by inheriting from Drawing, but Poly is special. Rather
than being a screen object that may be manipulated, a Poly is fixed in space. Furthermore,
the points of the polygon are given in screen coordinates, and automatically translated
to world coordinates when the Poly is created (using setworld, described later in this
subsection). By default, Polys are also drawn behind any other objects in the environment.
Poly is an example of a screen object with a specific task, for which it makes sense to
inherit directly from Resource. Specifically, Poly was used to implement an early version
of fixed personal spaces (§7.1.6.3).

5.2.4.4 Black Hole

The Black Hole has long been a feature of Cruiser. It is a screen resource for deletion,
similar to a trash can. In early versions it was tightly coupled with other core functionality,
but new flexibility in Cruiser means that it has been refactored so that it can instead by
implemented as a plugin. From a plugin writer’s perspective, it is an example of a Resource
that automatically selects all items nearby, and influences objects moved around it. From
a user’s perspective it is much more, and is described in Subsection 4.3.1.

Black Hole Details To support the Black Hole, there exist algorithms for determining
the layering of photographs around the Black Hole, an algorithm for keeping objects ‘in’
the Black Hole as it is moved and an algorithm/formula for the ‘wormhole’ effect that
determines the size of images around the black hole based on the image size, the size of
the black hole and the Euclidean distance between the centres of each image and the Black
Hole.

For each on-screen object (including the black hole object) we maintain the following
state:

• (x, y, z) position of the centre of the object, in world coordinates (z determines the
order objects may be drawn)

• (x, y) position of the touch point, in object coordinates, if an object is being moved

• s, the desired scale of an object, changeable by performing a rotate/resize operation
on the object

• userLock, the identifier of the user moving an object or NO_USER

For objects other than the Black Hole, we calculate the following on each screen redraw:

• bhd, the most recently determined distance from the Black Hole, calculated as
bhd= d

√
2

s , where d is the square of the Euclidean distance between the centre of the
Black Hole and the object and s is the current scale of the Black Hole

– An object is said to be in the black hole when bhd< 1.0
– The fringe of the black hole is the circular area around the Black Hole where

bhd< 1.0

For objects other than the Black Hole, we also maintain the following:

• residual, an indication of whether an object has been moved into and subsequently
released in the fringe of the black hole, and the value of bhd when that occurred
(residual_bhd)

110



CHAPTER 5. DESIGN 5.2. Cruiser Core

1 void Circle ::draw(bool rendering) {
Drawer d(this , rendering);
glBegin(GL_TRIANGLE_FAN);
glVertex3d (0.0, 0.0, 0.0);
double theta = 0;

6 for (unsigned i = 0; i <= segments; ++i, theta -= sigma)
glVertex3d (0.5* sin(theta), 0.5* cos(theta), 0.0);

glEnd();
}

Listing 5.1: Circle’s draw member function, using a Drawer
Drawer applies transformations (move, rotate, resize, etc.) from Resource, and automatically returns
OpenGL’s model view matrix to its previous state when the draw function exits, so any Drawing is able to
work in its own coordinate system regardless of where it appears on the interface; segments and sigma are
data members initialised in Circle’s constructor

– if an object enters the fringe of a Black Hole other than by a move (or if the
black hole itself was moved such that its fringe encompasses the centre of an
object) then its residual_bhd is 1.0

When an object is “in” the black hole, we alter the displayed scale (after processing the
desired scale) as follows:

• the displayed scale is reduced by a factor of bhd× residual_bhd

• in addition, if the object is currently being moved (i.e. it is being touched), the centre
of the scale operation is not the centre of the object (i.e. the point (0,0) in object
coordinates), but is instead the touch point, so that when the object is rescaled, the
object coordinates of the touch point remain unchanged

There is a transformation from world coordinates to screen coordinates in order to display
an object.

5.2.4.5 Other Functionality

The following is also provided in the res submodule (from Table 5.1 on page 97).

Circle is a Drawing that renders a circle, as shown in Listing 5.1, taking advantage of the
Drawer provided by the Drawing class. It is also an example of a Resource that has
a preferred size: Circles cannot be manually resized (only moved), but can inherit
the size of their parent, whilst attached to another object. Whenever the parent
link changes, we inherit its scale or return to the Circle’s preferred size if there is no
longer a parent link. Circle is implemented in about 40 lines of code.

AudioCircle is a Circle associated with a piece of audio and drawn with a number inside
the circle, to identify it. It overrides the dwell member function to start playing
the audio; and implements the draw hook to draw the number identifying it, using
polyfonts as for Writing. Creating an AudioCircle stops any current recording, saves
it to disk such that it is associated with the image filename for which it was recorded,
and picks the number to identify it, based on the number of existing audio items
for that image. Images also check when they are loaded for any associated audio,
previously saved on disk, and create audio circles for them (without creating new
recordings). Loading, saving and mixing (playing) the audio is managed by the audio
subsystem (§5.3.1 on page 128).

111



5.2. Cruiser Core CHAPTER 5. DESIGN

Mixins provide shortcuts for plugin developers when developing new types of Resource
that should have particular properties. Mixin-based inheritance [Flatt et al., 1998,
Smaragdakis and Batory, 2000] in C++ involves deriving a new type from a templatised
base class that, in turn, inherits from a subtype of Resource, or other mixins. Each
mixin applies a class property by overriding one or more member functions of Resource.
As a simple example, a Resource can be made permanent by returning false from the
removable member function; rather than overriding this function in every resource
type that should be permanent, the plugin writer simply mixes in the Permanent
mixin when inheriting:

class FixedImage : public Permanent<Image> {/*..*/};

Mixins can be chained to establish further properties:

class FloatingImage :
public Permanent<Unlinkable<Image > > {/*..*/};

Core provides the mixins BlackHoleImmune, IgnoresDwell, IgnoresAspect, Unlinkable,
Permanent and Unrestricted.

Zlayer is a set of definitions to assist Environment to establish the z-order of on-screen
Resources. Normally, when a Resource is selected by the user, it is raised, so that it
is not obscured. Layers allow Resources to specify a strict ordering that can override
this behaviour. For example, Resources such as the Black Hole are given a higher
layer than other resources, so that it is always on top. The layer can also be specified
as a background – the bottom layer – or manual, which means the Resource will
manage its own Z coordinate.
Each time a Resource is raised, it is moved to the top of its layer. When new
objects are added to the Environment, objects in higher layers will be moved up to
accommodate it. The resulting Z positions are used to determine the draw order in
the environment. It is important that lower objects are drawn first so that objects
above them are rendered properly. For example, partially transparent objects or
objects with an alpha channel will mix the objects behind them when they are drawn.
Also, drawing anti-aliased lines and polygons relies on the background pixels being
correct as OpenGL does not anti-alias with objects in front of the one currently being
drawn.

Setworld provides a templatised function for converting screen coordinates into object
or world coordinates. Setworld leverages the cached transformation matrices that
are saved when on-screen objects are drawn, and updated whenever they have been
manipulated (see §5.2.1 on page 99). For world coordinates, the global transformation
matrix established by Environment is used. Templates allow the caller to specify the
precision of their desired return type.
The gluUnProject function uses these matrices to do a reverse-projection from the
screen coordinates. This is used, for example, when selecting objects, to determine
where (in object coordinates) on the object the user selected. Using the cache makes
this operation efficient.

Boundres Is an interface implemented by Resources that are able to track their own
bounds, in screen coordinates. Because bounds are typically (but not necessarily) a
set of simultaneous linear equations (see §5.2.5.1), this is easy to do for rectangular
Resources, such as Image and its derivatives. However, for complex resources such as
Writing, we do not bother (and so, for example, complex objects cannot be used to

112



CHAPTER 5. DESIGN 5.2. Cruiser Core

Bounder

BinaryBounder Bounds IndirectBounder NotBounder Unbounded

AndBounder OrBounder

Figure 5.6: Bounder inheritance hierarchy

designate a screen region that may be used to restrict the movement of other objects).
Boundres automatically creates for a derived Resource new Bounders and notifies
any Regions upon its destruction (see §5.2.5.1).

5.2.5 Core Environment Support (core/env)

The env submodule of the core provides support for managing Environment and the objects
it contains.

5.2.5.1 Bounds and Regions

Cruiser includes the concept of a Bounder for bounding points in two dimensions – (x, y) – to
certain values. Conceptually, a Bounder represents an arbitrary region in two-dimensional
space, which need not be convex, nor even contiguous. At the top of the hierarchy, shown in
Figure 5.6, Bounder provides a pure virtual interface with member functions to determine
whether a point lies within the geographic region, and to restrict a point (x, y) to the
closest point that lies within the region. Bounder also provides a concrete implementation
of a restrict that additionally tracks the Euclidean distance that the point was moved.

The Bounder hierarchy uses the composite design pattern to construct a tree of Bounders
that can be combined with logical operations AND, OR, and NOT. This is straightforward
for the within operation (as it is Boolean). Implementing restrict is more involved: AND
will restrict the point to both regions in succession; OR restricts the point to both regions
in parallel, and if they both required the point to be moved, then the restriction that
resulted in a shorter move is used; NOT is more complicated, and involves inverting a not
flag that is propagated through to the leaves of the bounding tree.

Leaves of the bounding tree are either Unbounded or Bounds. Unbounded returns
nochange or failed depending on the value of the not flag. Bounds represents a region
of geometric space represented by one or more inequalities of the form y < mx + B,
y > mx + B, x < C, or x > C, as shown in Figure 5.7. “≤” is supported via a leeway
argument that is propagated through the bounding tree by the within function. Bounds
maintains collections of all the inequalities that together represent the Bounds – adding
to the Bounds is accomplished via a number of utility functions that accept inequalities
in the internal, gradient-intercept form or as the line through two points (x1, y1), (x2y2),
which restricts points (x, y) to the region depending on the Boolean le argument by:

y − y1 <
y2 − y1
x2 − x1

(x− x1), le

y − y1 >
y2 − y1
x2 − x1

(x− x1), !le

113



5.2. Cruiser Core CHAPTER 5. DESIGN

Bounds super

Bounder

double

BOUNDS_EPSILON

PointGrad

m
x0

vector< double >

elements

vector< Bounds::PointGrad >

gr_lb
le_lb

elements

vector

< Bounds::PointGrad >< double >

T

elements

gr_v
le_v

Figure 5.7: Bounds collaboration diagram

Bounds provides an efficient concrete implementation of restrict, which heuristically
determines the closest point to an (x, y) coordinate that simultaneously satisfies all of
the inequalities that represent the Bounds. Initially, the point is simply moved to a
place that satisfies each inequality in succession – this rapidly satisfies most realistic cases
(because bounding lines are usually at right angles). If this fails (e.g. if the angle between
bounding lines is obtuse), the intersection points of the inequalities are determined and
an algorithm similar to point-in-polygon is used to satisfy all inequalities, if possible. If
Bounds is provided with an inconsistent region that cannot be satisfied only the first step
is performed.

When the not argument is provided, we first restrict the point normally – if there
were changes then we know that the original point does not need to be restricted; when
there were no changes, the closest point lying on one of the boundary lines is chosen. This
assumes the inequalities form a concave region – convex and disjoint regions can easily be
supported with combinations of the logical operators previously described.

The final concrete type of Bounder from Figure 5.6 is the IndirectBounder. This simply
provides a level of indirection; holding a pointer to a Bounder that is stored outside the
bounding tree, such as the boundary of each Resource (managed by Boundres). However,
this has implications for memory management and, even in the presence of garbage
collection, it would be necessary to inform the bounding tree that a boundary depending
on a Resource is no longer valid because the Resource has been removed. This management
is provided by a remove function that propagates a request to remove a deleted Bounder
through the tree; pruning any leaves. Copy is also provided; performing a deep copy of
the bounding tree. BinaryBounder holds common parts of the implementation of these
functions for “branches” – AND and OR.

Uses These boundary concepts are useful in a number of circumstances. The original,
and most basic use is simply to stop objects being moved or thrown off the table – when
thrown to an edge, objects behave as if there is a physical border around the table which
they run up against, and usually slide into a corner of the region.

114



CHAPTER 5. DESIGN 5.2. Cruiser Core

Bounders also allow us to enforce private spaces: within checks whether a point lies
within another’s personal space and can block access; while restrict, combined with NOT,
is able to prevent users putting an object into another’s personal space, represented by an
arbitrary region. Additionally, the object appears to physically run up against the border
of the personal space, maintaining a tight physical-virtual coupling with the object being
moved.

Each Resource that implements BoundedRes, such as Image (see Figure A.2), manages
its own instance of a Bounds. This is updated whenever the Resource is manipulated and
allows flexible creation of arbitrary boundaries. For example, users may claim a Resource as
private, thus incorporating it into their personal space using the geometric AND operation.

Bounds are also intrinsic to the behaviour of some Resources. The Browser, for example,
holds within it a collection of thumbnails (or sub-browsers), which may not leave the bounds
of the enclosing Browser. Instead, the thumbnail is copied, when it is dragged off the
Browser. However, additional feedback is provided through the leeway argument to the
within function. Specifying a leeway when checking containment effectively expands the
Bounds in all directions by the leeway amount. Thus, while the thumbnail is restricted to
the actual Bounds, we do not actually make a copy until it has moved beyond the Bounds
more than the leeway amount. This gives feedback to the user in the form of resistance –
more “force” is required to actually make the copy and the bounds restriction is feedback
to say “if you go further we will make a copy”. More details about the operation of the
browser are in §4.3.7.

5.2.5.2 Capture

A Capture is a portion of raster data that has been captured from the OpenGL framebuffer,
for example, when doing a capture with the Frame (§4.3.2). The Capture constructor
takes arguments for the (x, y) offset, width and height of the region to capture, as well as
optional arguments to change the aspect ratio of the capture, or designate a particular
user as the owner. During construction, Capture immediately grabs pixel data from the
framebuffer using glReadPixels() – this must be done in the main thread. When the
graphics card provides access to the alpha channel of the framebuffer13, both 24-bit RGB
and 32-bit Red, Green, Blue, Alpha (RGBA) pixel data is read and stored temporarily in
system memory.

Once pixel data has been stored in system memory, capture processing typically
continues in a background thread. This leaves the Environment free to redraw the screen
and keeps the interface responsive. In a background thread, the Capture may be loaded
back into the Environment as a new Image (after converting the screen grab to a texture),
which may potentially have a transparent, alpha channel. If an aspect ratio was specified,
the resulting Image resource will be adjusted appropriately.

The Capture may also be saved to disk as a JPEG file. Here, if an aspect was specified,
we must first rescale the RGB pixel data to the correct aspect. The pixel data is then
streamed to disk using libjpeg. The filename is determined based on the current date and
time, the owner and an optional additional suffix, such as the name of the original image
included in the captured pixels.

5.2.5.3 Command System

Command is a pure virtual interface for a command, that may be executed either on a
Resource, or on the Environment. For example, it provides a way to represent operations
that may be attached to menu items or executed from a network control interface. The exec
member function executes the command, either on a Resource, or the Environment as a

13nvidia cards typically do not.

115



5.2. Cruiser Core CHAPTER 5. DESIGN

whole. Commands included in core are: attach audio, claim, copy, delete, hide, (orthogonal)
align14, rotate, scale, send and snap. Template classes using the adapter design pattern
are also provided to convert any member function into a Command. Other Commands are
easily incorporated into the system from plugins.

5.2.5.4 Camera

Camera is an abstraction of the 3D view into the Environment, that is used as the basis
for establishing the OpenGL projection matrix which determines how the objects in the
Environment are displayed on the screen. Camera maintains a stack of Views which each
represent the perspective transform, calculated from coordinates for the reference point,
eye, and up vector ; and values for the field of view in the y-direction, aspect of the screen,
near z-plane and far z-plane. Popping a View returns the camera to its previous position.

Two novel functions are provided by Camera. One is a zoom function, which progressively
moves the camera view to a point in the environment, such as a point on a photograph;
gradually filling the entire screen with that point. Another is the fillView function, which
is used to immediately fill the entire screen with a particular Resource in the environment.
Camera also provides a mod count, a number that is incremented each time the framebuffer
is cleared, which is used, e.g. to determine whether the pick buffer can be reused (as when
multiple select operations are carried out on the same screen draw).

5.2.5.5 Loaders

Loaders provide concrete implementations of the ResourceFactory interface for Image and
Capture Resources.

5.2.6 Core Utilities (core/utl)

The core utilities provide general-purpose functionality that is not designed specifically for
Cruiser, but is well integrated into the operation of the framework.

5.2.6.1 Configuration File Parsing

A configuration file is essential for any large software project, particularly one that is
compiled. During development, it is wasteful to recompile whenever a parameter is changed
and, when released, end-users typically do not have the facilities to recompile the software.

When work on Cruiser began, a configuration file parser was one of the first requirements,
but no C++ library at the time provided the desired functionality. The closest was one
provided as part of the LGPL GNU Common C++ library; the ost::Keydata class, which
provides an abstraction of key-value pairs backed by an INI-like file. However, such
implementations are unable to carry out type checking on the data stored in the file when
it is parsed – everything is read and stored as a string until a parameter is requested.

Cruiser’s configuration parser uses a novel approach, that checks the configuration file
for invalid keys, and values of incorrect type. It also has good support for plugins to tell
the configuration parser about the parameters it wants to be parsed. The interface for
using the parser is elegant – it is designed to easily support the transition from a parameter
that is already a locally declared variable (with a default value), into one that can be
overwritten when the configuration file is parsed.

For example, suppose the following definition is already used by a plugin:

double BROWSER_MARGIN = 0.03;

14i.e. rotate to an integer multiple of 90°.

116



CHAPTER 5. DESIGN 5.2. Cruiser Core

and the plugin writer wants the end-user to be able to override this value in the configuration
file. The programmer needs only to add the line:

RCFILE_TELLMACRO(BROWSER_MARGIN);

to the rcfile_tell plugin hook function. This is one of the three functions that all plugins
must provide, along with load and unload. See Listing 6.1 in §6.4.1 for a sample plugin.
RCFILE_TELLMACRO is a macro that stringifies the argument, and passes it to templatised
member functions of the RCFile class that match the type, so that type checking can
be performed using operator>�>(std::istream&, TYPE). For primitive types, this type
checking is provided by the STL.

This approach has other benefits. References to all the targeted parameters are stored
inside the readable configuration parser. Thus, when the file is parsed, we know the names,
types and default values (i.e. those provided at the variable definition inside the plugin) of
all the parameters that we expect to see. This information is output when the application
starts, allowing testers and users easy access to the information about the parameters
that can be overridden, their default values, the values they are overridden with, and any
unexpected parameters that are in the configuration file.

Facilities for parsing non-primitive types that have a <�< operator (e.g. std::string) are
provided, as well as a facility for adding to collections of primitive and non-primitive types
(e.g. std::vector<std::string>). The contents of the operating system’s environment
variables are also checked for parameters, allowing variables to be overridden on the
command line.

5.2.6.2 Point, Vectorized Point

The concept of a point in 2- or 3- dimensional space is used frequently in Cruiser. The
Point class provides an abstraction, with operator overloads for mathematical operations
such as point-wise or scalar multiplication, comparison, length, dot product, etc.

An interesting addition that Cruiser provides is a vectorised point. Recent versions of
the GNU Compiler Collection (gcc versions ≥ 4.2.0), provide automatic loop vectorisation.
This allows operations involving up to 4 numbers to be executed in a single CPU instruction
on most CPU architectures. A point is well suited to this, and Cruiser’s vectorised point is
specially designed to leverage gcc’s loop vectorizer. Effectiveness has been confirmed using
gcc’s verbose output.

5.2.6.3 Debugging

A debugging facility to support plugin developers is a critical part of any framework.
For interactive systems such as Cruiser, user involvement means that tests are often
difficult to automate, making a debugging facility that can be integrated with the regular
operation important. Also, because of the graphical and multi-threaded nature of operation,
traditional debugging methods, such as stepping through code, are often inadequate or
clumsy.

Debugging is usually performed in Cruiser with the help of the DODEBUG macro. This
macro is a wrapper for a printf -like function that accepts a debugging context or level –
the debugging statement is only output to standard error if that debugging context or
level is currently active. Macros are used so we can avoid evaluating the print arguments if
debugging is not required, and it also allows us to decorate the output with the name of the
source file, line number and function name, so that stray statements are easily detected.

Cruiser also provides debugging functionality that can output a backtrace of the function
calls leading up to the statement, at runtime. Because a large portion of Cruiser is accessible
through dynamic libraries, most symbol names are available even when compiled without

117



5.2. Cruiser Core CHAPTER 5. DESIGN

debugging information. This is helpful, for example, when detecting deadlocks or dangling
references to Resources, but also in detecting function calls that should only be made in
particular threads. For example, database accesses may be time consuming and should
not be done in the same thread that draws the screen – the database plugin is able to
output a backtrace when this occurs as a warning to plugin writers to improve their coding
practise. Unfortunately, Windows only provides this functionality through debugging
libraries installed with Visual Studio, which can be accessed externally but are not always
available, so the backtrace functionality is disabled on Windows. OSX and Linux are well
supported.

Here, also, are signal handling hooks for detecting programming errors such as segment-
ation faults. The default behaviour is to output a backtrace when the application crashes,
to aid debugging (even when not run inside a debugger). Windows does not have signals –
instead Cruiser catches errors thrown by (Windows) Structured Exception Handling (SEH)
and outputs the information at hand. In Windows, it is sometimes possible to resume from
the exception: if a crash occurs in a background thread, Cruiser exits that thread and tries
to resume the application. This might, for example, disable a particular plugin’s operation.
In most cases, however, the application must be restarted.

5.2.6.4 Other Functionality

Logger provides predefined output patterns for appending to Cruiser’s log file. This log file
represents the high-level changes in the Environment, such as what Images are loaded
and how they are manipulated. This log file can subsequently be read to extract
usage metrics for evaluating the interface. It is also used as part of the automatic
digital photo album creation, to correlate interface activity with the recorded audio,
and reproduce associations made by the users (see §4.6.2).

Colours provides predefined colours that can be used to set the drawing colour for
OpenGL. In particular, an array lookup determines the colour that corresponds to
each user’s selection highlight.

RxString is a regular-expression-enabled string class that is interoperable with
std::string. Regular expressions are planned for inclusion in the next stand-
ard of C++, currently named C++0x and planned for ratification in 2009. Until then,
Cruiser’s RxString provides cross-platform regular-expression functionality and some
other string utilities, such as syntactic sugar for converting between numbers and
strings.

STL Output provides templatised output operators for STL collections, to assist debug-
ging.

5.2.7 Core Event Framework (core/event)

Unlike a toolkit, Cruiser provides an implementation of what is the core part of most
applications – the event loop. The EventHandler class abstracts this operation. Its public
interface is quite limited: it provides member functions to force most of the behaviour that
would otherwise be activated through user input, a facility to override default behaviours
such as the default Gesture to activate, and the function that initiates the event loop; thus
beginning the processing of input events provided by the operating platform, as well as
user events (see below).

The event loop is shown if Figure 5.8. The main thing to notice is that, unlike most
3D games, for example, the loop is not continuously executing. The step where the loop
WAITs for an event blocks, until an event is available. This is important for Cruiser because

118



CHAPTER 5. DESIGN 5.2. Cruiser Core

Event Handler

env.drawGL()

Terminate?

Animation?

Low Priority 
Events?

WAIT for an 
Event

POLL for an 
Event

Was there an 
Event?

N

N

N

Y

Y

Process 
Event

Y

Terminate?

Have more than x
seconds passed since 

the last redraw?

N

Low Priority 
Events?

N

Process 1 
Low Priority 

Event

Y

POLL for an 
Event

N

Was there an 
Event?

Y

Animation?

Only Cursor 
Movement?

env.drawGL()

N

N

N

Y

Y

Y

END

Y

Y

N

Figure 5.8: Flowchart for the Event Loop

119



5.2. Cruiser Core CHAPTER 5. DESIGN

it means that background tasks, such as the thread that handles the loading and converting
images from disk, is given the maximum CPU time available. It is also relevant for a
long-running application that might permanently operate as a coffee table, for example.
When there is no activity, no processing occurs, thus saving power, generating less heat
and extending component lifetime.

Games need to redraw continuously to reflect dynamic environments. Cruiser does
provide animations, but these are typically of finite duration, particularly if we are
mimicking a physical tabletop. More importantly, we want to keep the interface responsive
while performing background tasks. Games and most other 3D applications will block
throughout the time in which textures are preprocessed and loaded into texture memory.
But Cruiser does not have loading screens. When a camera or a removable drive containing
images is inserted, or when a new image is captured using the Frame, the interface should
still be responsive, and pre-processing textures in a concurrent thread is able to achieve
this responsiveness.

However, there is still one unavoidable restriction on the concurrency of the application.
Simply put, any tasks that require use of the graphics card are not re-entrant and are not
able to be processed concurrently. This includes rendering a screen image and the copying
of textures (after our pre-processing) from system RAM into the graphics card’s texture
memory. It is not possible for the graphics card to render an image in the midst of giving
it a texture to render into the image. So there is still a slight delay that occurs after an
image is preprocessed into a texture and before that image can be drawn, during which no
visual feedback can be rendered. The length of delay depends on the amount of image data
to transfer – Cruiser’s cache (which uses pre-compressed textures), or reducing texture
quality can minimise the delay. However, it is typically brief anyway, ranging from almost
instantaneous up to about 250ms for uncompressed textures at maximum quality.15

5.2.7.1 User Events, “Future” Events

The Event framework manges input provided by the operating system (e.g. keyboard and
mouse events), drawing of the screen using OpenGL, plugin-provided input events16 (see
§5.3.3), and user events. The open source SDL library provides a cross-platform and
thread-safe interface for creating these events and retrieving them off the event queue.

Because only the main thread is able to perform some operations, background threads
need a way to communicate with the main thread. For this, Cruiser has augmented the
user event facilities provided by SDL with its own event infrastructure. The root of this
facility is the Event class, with a trigger member function, which may simply be pushed
into the main thread’s event queue, from any thread. Templatised overloads then provide
an easy way to call any static function, possibly taking an argument, in the main thread
(without the need for deriving your own Event).

Future Events In an interactive environment, it is also sometimes desirable to queue
events that should trigger at some time in the future. For example, to give feedback when
objects have been attached, the background of the Resource to which we attach will flash
green for half a second. Cruiser’s event infrastructure is able to manage future events,
which use timers provided by the operating system to manage a priority queue of events to
execute at some point in the future.

However, excessive use of timers can put an unnecessary burden on kernel resources.
Cruiser uses an intelligent implementation that creates timers only when a new future
event would occur before the next future event in the priority queue. Otherwise, the timer

15Using the system described in §6.4.2.
16These are actually a form of user event.

120



CHAPTER 5. DESIGN 5.2. Cruiser Core

that activates for the next event is reused for the event that follows it in the queue (unless
it already has a timer that will activate for it).

Member functions In a multi-threaded environment, there is a particular issue with
determining the validity of events still waiting in the event queue. For example, when a
Resource is removed from the Environment: any events relying on the presence of this
Resource must be treated with care. This is where the reference-counting implementation
of Resource (§5.2.1) is particularly useful. The Event framework leverages this and makes
it easy to queue member functions of Resources, with a single function call. These may
also optionally be queued to trigger in the future, or with an argument.

5.2.8 Core Raster Processing (core/ras)

Cruiser encapsulates functions that operate on raster image data in the raster (ras)
subsystem.

5.2.8.1 Mipmap Processing

Mipmap processing has previously been discussed (§3.5.5.1 on page 53) and it is used
most often to implement the load functionality of the Image class (§5.2.4.1). The resizing
functions in the ras subsystem are also used, for example, to change the aspect ratio of
screen grabs before saving them as a JPEG (§5.2.5.2), and to build partial mipmaps for
interactive framebuffer images (§5.5.9) and video “images” (§5.4.3). Exposing them in
the core allows the plugins providing these special Resources to reuse the resizing and
mipmapping functions.

The functions are thread- and exception-safe. Thread safety allows the functions to
be called in any number of background threads. Exception safety is especially important
because these functions may request large amounts of memory to store intermediate images.
If memory becomes exhausted, these functions exit without leaking additional memory,
and allow the caller to show a message on screen to the user. The user may then delete
unused Resources and retry.

A function to arbitrarily scale an image to new dimensions, and a more efficient
function for halving the dimensions of an image is also provided. These are used for
mipmap processing of arbitrary input images, such as users’ photographs. First, the nearest
dimensions to the original image that are powers of two are determined – dimensions for
OpenGL textures must be powers of two for efficient rendering17. Once the image has
been rescaled to have dimensions that are powers of two, the image is successively halved
until an image with dimensions 1× 1 (being the average of all the pixels in the image) is
determined. This full sequence of images with power-of-2 dimensions are the mipmaps18.

Cruiser abstracts these mipmaps in a linked list of structures representing function calls
to the glTexImage2D function, where they may be later called in the main thread. Cruiser
also detects whether the graphics implementation supports compressed textures, which
are automatically used unless disabled by a configuration parameter. These compressed
textures may also be retrieved from the graphics card at the point of calling, so they may
be cached in a database and later used by the loading helpers (§5.2.4.1 on page 105).

17Very recently – since 2007 – graphics card vendors have been exposing interfaces that allow textures to
be loaded directly from pixmaps of arbitrary dimensions, without mipmaps. However, these functions are
often unavailable and have reduced rendering performance, particularly when textures are shown at sizes
much smaller than the source image.

18W ith mip coming from the Latin phrase multum in parvo, meaning “much in a small space”.

121



5.2. Cruiser Core CHAPTER 5. DESIGN

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

"Elastic"
"Back"

1

Figure 5.9: Overshooting Tweening Functions

5.2.8.2 Texture Handle

Once mipmaps are loaded on the graphics card, the system memory used during their
processing stages can be freed. The (compressed) textures are now stored on the graphics
card memory, and identified by a texture identifier (an integer) provided by OpenGL.
Cruiser provides a reference-counting handle to this identifier so that they may be shared
amongst Resources. When the texture is no longer referenced, a request is pushed onto
the main thread’s event queue to free the texture from the graphics card (unless the last
reference was deleted in the main thread, in which case it is removed immediately).

5.2.9 Core Animation Framework (core/ani)

Animations in Cruiser are primarily used for providing feedback, such as when object
layout occurs (e.g. when objects are attached) and when new images are created. Where
we have the option of making an object jump from one state to another, in most cases we
instead use an animation to transition it between states, using a tweening function.

5.2.9.1 Tweening Functions

Tweening functions provide a way of warping a linear animation so that it takes the same
time, but accelerates, decelerates or overshoots at different points during the movement.
The tweening functions available in Cruiser are shown in Figures 5.9 and 5.10. Time is the
horizontal axis and, for these charts the start and end values are chosen to be 0 and 1,
shown on the vertical (Figure 5.9 shows overshooting functions, so the displayed range is
actually greater than 1). When used in practise these will be the current and target values
to animate, such as a target location on screen, object size, object angle, etc.

122



CHAPTER 5. DESIGN 5.2. Cruiser Core

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

"Linear"
"Quad"
"Cubic"
"Quart"
"Quint"

1

(a) Polynomial tweening functions

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

"Expo"
"Sine"

"Bounce"
"Circ"

1

(b) Exponential, Sine, Bounce and Circle tweening functions

Figure 5.10: Tweening Functions

123



5.2. Cruiser Core CHAPTER 5. DESIGN

Animation

ResourceAnim

HighlightFlash

LinearScale

Momentum Path Spin

PathScale

CameraLoad

LinearPath LinearSpin

Figure 5.11: Animation class hierarchy

Tween functions are provided via virtual member functions of classes derived from the
Tween class. Constructors for Elastic and Back tweeners include additional arguments –
Elastic may have an amplitude and period specified, while Back may be configured with
an overshoot amount. Default arguments are provided.

The mathematics behind the tweening classes is derived from a Macromedia ActionScript
implementation in [Penner, 2002], distributed under a BSD-style license19.

The choice of tweener affects the realism of the animation. By default, the Back tweener
is used for most animations in Cruiser. It has the effect of accelerating quickly towards the
target, then overshooting slightly, to reverse direction and decelerate back to the target.
This has the useful property of giving most feedback around the final destination, while
maintaining a realistic acceleration. A facility is provided to easily change the default
tweener, and each animation created also has the choice of a non-default tweener. For
example, the developer of the Blackjack plugin chose the Sine tweener to deal out playing
cards (§6.2.2).

5.2.9.2 Core Animations

A set of animations in core provide techniques to manipulate the properties of Resources in
the Environment. The Animation class hierarchy is shown in Figure 5.11. Classes derived
from Animation simply provide a function that accepts a time (in milliseconds, relative to
when the animation began) and returns true if the Animation is complete and should be
removed. An Animation does not have to manipulate a Resource, but applications so far
have only needed to animate Resources.

Path, Scale and Spin animations smoothly transition the position, size and rotation
of Resources, respectively. A special combination of Path and Scale is used to animate
objects loaded onto a wall-sized display (§6.3). These all optionally accept tweening
functions. HighlightFlash is an Animation provided as part of a plugin (§6.2.2 Blackjack),
which highlights a player turn by cycling the alpha channel of a transparent resource.
Momentum is a more complex, interruptible animation, and is described from the user
view in Subsection 4.2.3. One continuation of momentum allows objects to be transferred
to remote displays, described in Subsection 4.4.3.1, with additional detail given here.

19http://www.robertpenner.com/easing/ verified 2008-03-17.

124

http://www.robertpenner.com/easing/


CHAPTER 5. DESIGN 5.2. Cruiser Core

Momentum

ResourceAnim

Animation

unsigned

lastms

start

RefT

r

R

r

static float &

DEFAULT_COEFF

P3< int >

clickPos

int

user

x
y
z

P3

< int >

T

x
y
z

float

ly0
lyd
lx0
lxd

lastdt
y0
x0
yv
xv

bool

sent
killselect

const float

decel

Figure 5.12: Collaboration diagram for a Momentum object

5.2.9.3 Flicking to remote displays

We maintain, in a Momentum object (Figure 5.12), along with position, velocity and
acceleration vectors, a pointer to the object that has been flicked (Ref<T> r). Each time
the position of the object is updated, we check whether it lies in a screen hot spot, such as a
particular border of the screen. If it does, we call the routine that sends the file (from disk)
to the remote interface corresponding to that hot-spot, over a communication medium
such as a Transmission Control Protocol (TCP) networking socket. We send data sufficient
to display this object on the remote computer.

On the remote computer, a server listens for connections and loads any objects it receives
over the networking socket. In one implementation, the remote computer maintains a
start position for each computer that may connect to it. When the object is loaded, it
animates from that start position to indicate which interface it came from. In addition,
these start positions may be related to the location in the physical world of the hot-spot
on the interface, such that an impression of physical movement from the hot-spot, to a
new location on the remote computer can be given to the user.

Flicking to the edges of the display will leave the objects at the edge. Another mode also
allows the remote display to be informed when objects are removed from the edge of the
table, after being flicked there. For this, we request a reply from the remote computer that
serves to identify the object recently received on the remote computer. This identifier is
stored as metadata within the virtual Resource. When this flicked Resource is subsequently
selected, we check to see whether it has a remote instance identifier recorded. If it does, we
send a small message to the server on the remote computer, containing this identifier and a
code that indicates to the remote computer that the remote instance should be deactivated
(e.g. removed from a slideshow).

5.2.10 Core Gesture Framework (core/ges)

Cruiser’s Gesture framework provides an infrastructure to convert input events into actions
in the interface. It is linked with the Event framework (§5.2.7), which maintains a current
Gesture for each user. When user input is received, the user it corresponds to is determined
and the input data is passed to the update virtual function for that user’s current gesture.

125



5.2. Cruiser Core CHAPTER 5. DESIGN

Gesture

MoveTracker

BBGesture

ResourceGesture

Flipper Mover RemoteCursor Rosizer Writer

Copier BlackjackWriter

Figure 5.13: Gesture class hierarchy

This function returns a new Gesture, which may simply be a reference to itself, or a gesture
that has evolved from the user input.

For example, the Writer gesture (which renders strokes on the background – see §5.2.4.3)
evolves to a Mover gesture as soon as an object is selected. The Mover may, in turn, evolve
to the Rosizer gesture if the object is selected in a photo corner, or a Flipper if selected
in a flipping widget (see §4.2.4 Rosize and §4.2.5 Flip). Derived Resources are also given
the opportunity to provide their own specialisations of Gestures (§5.2.1 on page 101).
For example, interactive VNC Images can evolve the Mover into a RemoteCursor, that
manipulates the cursor on the remote framebuffer.

This gesture evolution could also provide the necessary context in a multi-touch system
that does not provide user identification. For example, a newly detected second touch
point might evolve differently depending whether the new point selects the same image
that the gesture is currently manipulating, or a different image (which it might assume is
a second user).

RemoteCursor is an example of a gesture that is fed into the input framework via a
derived Resource in the rfb plugin (§5.5.9). Using the abstract factory design pattern,
plugins can also override the default, background plugins by providing a new GestureFactory
to the event framework. An example is the BlackjackWriter from the Blackjack Cruiser
application (§6.2.2) that accepts simple hit and stand stroke gestures (§2.2.2.1), drawn on
the background with stoke feedback that disappears once the stroke is completed.

Multi-touch gestures may also be supported. An example is the Copier, which tracks
two touch points during a move and, if the points become separated by a configured
threshold, the object is copied, with each touch point moving its own copy. See §7.1.6.2
for an evaluation of this gesture. Due to lack of available hardware, multi-touch gestures
have not been fully explored. However, Cruiser is specifically designed with the flexibility
to support a diverse set of interoperable gestures, including multi-touch, which may be
incorporated via plugins and plugin libraries.

126



CHAPTER 5. DESIGN 5.2. Cruiser Core

5.2.11 Other Core Components

The remaining submodules forming the Cruiser core, and listed in Table 5.1 on page 97,
will be discussed briefly.

5.2.11.1 Preliminary Network Interaction

Network operation is not one of Cruiser’s goals. Cruiser is specifically targeted at multi-user
collocated use. However, Cruiser a very versatile framework and, during its evolution, some
aspects of networking operation have become incorporated.

Datawall The datawall submodule implements a TCP server that listens on a network
socket for connections and receives files to load onto the tabletop. Details of the application
are in Section 6.3, and the application could easily be removed from core to become a
plugin. However, the networking operations for sending and receiving files over networking
sockets have proven useful in other parts of the framework, so this functionality remains in
core.

Audiobox The audiobox submodule, like datawall, was introduced to fulfil a specific
application but found other uses so was left in core so that it could be reused. Audiobox
introduced the idea of PeerCommand – a command that could be sent to a remote computer.
PeerCommands may be bound with particular Resources in the Environment so that the
command is activated upon manipulations of the object on screen. It is used to interact
with the Magic Mirror to synchronised audio objects. See Section 6.3.

5.2.11.2 Streaming Screen Capture

The jpegstream submodule provides a facility to stream the contents of the OpenGL
framebuffer to a series of JPEG files. These may then be used to obtain high-quality
screen-shots of the application in action, or combined using a tool such as transcode20 into
a video clip (e.g. an AVI). One could also achieve this externally from the application with
a commercial program such as Fraps21, or in a plugin, but an efficient implementation in
core has added benefits.

When enabled, jpegstream is closely linked with the event loop and is able to smoothly
output a series of frames by reusing facilities already provided by the Capture imple-
mentation (§5.2.5.2). This can be accomplished without interrupting the application
responsiveness. Cruiser’s multi-threading allows the JPEG encoding and writing to occur
in a background thread (preferably on a second CPU core), and the Multimedia Extensions
(MMX) optimised JPEG library can consistently obtain a stream of 30 frames per second
at 1024× 768.

5.2.11.3 Input Primitive

The input primitive that Gestures use as “the” input is decoupled into a single header.
Currently it supports multiple users and multi-touch using a bounding-box representation
including fields for the user, action type and generic flags. This is similar to that provided
by the multi-touch DiamondTouch hardware (§2.1.1). It is also compatible with stroke data
from multiple-stylus input, and mouse cursor input (where a user ID can be emulated with
mouse buttons). Flags are used, for example, when a stylus input also provides buttons
that may be pressed on the stylus.

20http://www.transcoding.org verified 2008-03-18.
21http://www.fraps.com/ verified 2008-03-18.

127

http://www.transcoding.org
http://www.fraps.com/


5.3. Utility Libraries CHAPTER 5. DESIGN

Utility SLOC† Files

taptaudio 3794 taptaudio-pimpl, sample, streaming, taptaudio.h,
backend-portaudio, backend-jack, backend-generic,
backend-disabled, resample

strokereader 763 strokereader, mimiolinux, mimiodefines, schedlock, packet.h

rxstring 597 rxstring, myregex

threadman 534 threadman, semwaiter

sdl-server 509 sdl-server

mimiowarp 469 mimiocal

top-dir 288 scripts: cross-compile, bootstrap, branching, dependencies

libminxml 261 minxml.cpp, minxml.h

handle 130 handle.h

TOTAL 7 345

Table 5.2: Cruiser Utility Libraries
†SLOC: Source Lines of Code

In future this could be replaced with a more complex representation, and new Gestures
created that can process the additional fields introduced. The bounding box implementation
provides a simple common ground for application writers that might not require a more
complex representation of input.

5.3 Utility Libraries

The utility libraries summarised in Table 5.2 were written specifically for Cruiser, but have
generic applicability and have been decoupled from the Cruiser core. Cruiser is designed
to work with these facilities, and their functionality is available to assist the development
of plugins.

5.3.1 Audio Subsystem

For providing feedback and recording stories, Cruiser and the PhoTable application needed
a flexible, cross-platform audio library. One prime requirement not provided by any library
was the ability to manage multiple, simultaneous recordings and playing samples, without
the need for multiple audio cards. Varying levels of support for mixing audio output exist,
but none provided the versatility or level of abstraction desired for Cruiser.

For recording, it may sound strange to allow multiple simultaneous recordings, given
that in our applications there is still a single microphone. However, it is useful to allow
a background recording that can later be split into stories, as well as provide the facility
to record explicit stories that can be replayed for immediate feedback. For playback, we
also wanted to determine a volume level for each sample playing, rather than a combined
level, so that feedback could be indicated over the photograph that the audio is attached
to. Thus, multiple playing samples are mixed into the output, but we track the volume
level that each sample contributes.

Audio libraries also tend to separate themselves from the loading, decoding, encoding
and saving of files to and from disk – a library either handles files, or audible output, with

128



CHAPTER 5. DESIGN 5.3. Utility Libraries

no links between. For example, portaudio22 provides low-level access to the raw Pulse
Code Modulation (PCM) data in the operating system’s sound buffer, but no facilities for
loading and saving files. Libsndfile23 provides facilities for decoding and encoding a wide
range of audio formats, but no facilities for actual playback or recording. Cruiser’s audio
subsystem combines these two libraries and provides an elegant C++ API that protects
application writers from the low level details of audio decoding, encoding and playback.

Streaming Another facility not provided by typical audio libraries is support for audio
streaming. When a sample to playback is long, or when a continuous recording is being
made, it is not feasible to store all the sound data for the audio sample in memory. The
raw PCM data that is eventually loaded into the operating system audio buffer is large –
typically 176.4 kB for each second of audio, or over 10MB per minute.

Streaming involves using a background thread to fill a fixed-size buffer in system memory
with audio data. Meanwhile the interrupt-level function that fills the operating-system’s
audio buffer just copies data from the stream buffer into the audio buffer. This setup is
necessary as it is not possible to read or write to disk (nor allocate more memory) in an
interrupt-level function.

Cruiser’s audio subsystem hides this complexity from the programmer. When a sample
is loaded off disk (e.g. from a WAV file), or a recording started, one simply sets the stream
flag, and subsequent use of that sample is streamed to or from disk.

Streaming is optional as it can create additional lag. For providing brief user feedback,
such as beeps and clicks, keeping the whole sample in memory gives minimal lag and
also allows the same sample to be mixed multiple times into the output stream without
maintaining multiple open file handles for the same audio file.

Language-Independent The audio API has been designed in a way that not only
supports multiple platforms flexibly, but also allows bindings to be created for programming
languages other than C++. Swig24, the Simplified Wrapper and Interface Generator, is able
to use the C++ header file directly to generate bindings for all its supported languages,
including Python, Java, Ruby and others. This allowed the intelligence behind the digital
photo album creation in the PhoTable application to be implemented in Python; using the
splitting and audio filtering algorithms implemented as part of Cruiser’s audio subsystem.

Resampling and encoding Through libsndfile, we gain support for reading and writing
an extensive range of audio formats. This includes support for the Adaptive Differential
Pulse Code Modulation (ADPCM) formats used by most digital still cameras that have
support for adding an audio recording at the time of capture. Libsndfile has an elegant C
API for encoding to and from the PCM format required for audio buffers. Cruiser adds a
C++ API to encapsulate the encoding and decoding processes, and coordinate the mixing
and recording of audio to and from the sound card. It also checks the sample rate of
each loaded file, and automatically resamples it if required, so that it matches the format
required by the sound card. This is important if we are to mix recordings from multiple
sources, such as different cameras, which we cannot assume record audio at a particular
sample rate.

5.3.2 Thread Management

Cruiser integrates the use of concurrent programming techniques to leverage the benefits of
modern multi-core systems, and to simplify the task of making the main thread responsive,

22portaudio - http://www.portaudio.com, verified 2008-03-19.
23libsndfile - http://www.mega-nerd.com/libsndfile/, verified 2008-03-19.
24http://www.swig.org verified 2008-03-18.

129

http://www.portaudio.com
http://www.mega-nerd.com/libsndfile/
http://www.swig.org


5.3. Utility Libraries CHAPTER 5. DESIGN

which is responsible for accepting user input and drawing the display. However, concurrency
can add some confusion. There are many cross-platform libraries for threading – Cruiser
uses the API provided by SDL – but most libraries simply provide a wrapper around the
threading API provided by the operating platform.

One particular problem is thread cleanup. It is often desirable to simply make a function
call as normal, but have it execute in a different thread. Threading libraries generally
require a function used to start a thread to meet a particular function prototype declaration
– this is made more flexible in Cruiser by using C++ templates. A harder problem is that the
parent thread must also clean up the thread’s execution stack when it completes, otherwise
it becomes a zombie thread and will leak memory.

Cruiser provides a thread manager that checks whether threads it has started are ready
for cleanup, and cleans them up automatically. For each request, it can also operate in a
mode that serialises calls of the same function. So when the main thread makes 20 requests
to run the load_image() function (each with a path argument) in a single iteration, rather
than trying to execute all 20 requests in parallel, Cruiser’s thread manager will execute
them in serial. Thus each function type started through the thread manager is treated as
a background task, with requests to perform the task being queued if another request is
already processing.

Combined with the event framework (§5.2.7), which can easily enqueue operations
to be executed in the main thread, Cruiser is able to pick execution threads that a task
should be run on. This is typically without additional work from the programmer – after
writing a function or member function, the name of the function and its arguments (or the
object on which to execute the member function) are passed as arguments to the thread
manager, as if it was a regular function call.

5.3.3 Input Device Framework and Calibration (strokereader)

To satisfy the goal of creating a tabletop interface, Cruiser must have support for novel
hardware. In addition, because hardware independence is one of the goals of Cruiser, a
flexible way to introduce inputs from new and unforeseen hardware was needed. Traditional
mouse and keyboard are supported internally using SDL, and an emulation layer converts
these events into the more flexible input primitive (§5.2.11.3) that is used to interpret
Gestures (§5.2.10).

For other inputs, including those currently supported, the input primitive is introduced
into the main thread’s event queue from a plugin. This decouples the Cruiser framework
and application linkage from any dependencies introduced in supporting a particular piece
of hardware. The plugin’s job is to receive hardware input in the hardware’s preferred
format, and translate it into Cruiser’s input primitive. One such plugin is bundled with
Cruiser; this converts input from Cruiser’s strokereader library.

Strokereader provides screen calibration and reading of hardware input from TCP
networking sockets, as well as Linux input event device nodes. This provides support
for Mimio and SMARTBoards on Linux (and potentially many more, where the device
supports the Human Interface Device (HID) class protocol [USB Implementers’ Forum,
2001]). It also provides support for access to Mimio stroke events in Windows (beyond
what Mimio’s mouse emulation can provide).

5.3.3.1 TCP-Based Stroke Reading

In the event that library linkage is not possible, or device-node access is not provided, it
may be necessary to use IPC mechanisms to communicate input to Cruiser. One very
flexible mechanism is to use TCP networking sockets. This allows the process generating

130



CHAPTER 5. DESIGN 5.3. Utility Libraries

input events to optionally run on a different computer to the Cruiser application, balancing
load.

To support Mimio in Windows, a plugin was written for the Merlot application that
converts Mimio stroke data, including the pen ID25, to a simple structure that is transferred
over TCP in Mimio’s internal coordinate system. To avoid having to pre-configure this
plugin with an Internet Protocol (IP) address to send the data to, the plugin operates as a
server that listens for connections. It begins transferring stroke data once a connection is
made.

Other hardware could also interface with Cruiser’s strokereader over TCP simply by
using the same protocol. The coordinate system used does not matter – strokereader has
built-in calibration (see below).

5.3.3.2 Linux Input Events for Mimio and SMARTBoard

On Linux, hardware input is considerably simpler than on Windows. When the strokereader
library is initialised it simply tries to open every file of the form /dev/input/event*26,
and begins reading from them. Those already reserved for input for the windowing system
(e.g. the mouse) will be inaccessible – these events will be received via SDL instead.

Data read from these files has a known structure, which strokereader will parse, looking
for patterns. If the pattern does not look like a stroke-input device (e.g. extra keyboards),
it will be ignored. Otherwise, a fallback mechanism picks a handler. Mimio has some
peculiarities that must be dealt with, otherwise a generic HID converter is used, which
handles e.g. SMARTBoard.

These input events will use a coordinate system that is hardware-dependent.
Strokereader’s calibrator converts them to screen coordinates.

5.3.3.3 Calibration

Strokereader provides screen calibration by translating a hardware device’s native coordinate
system into screen pixel coordinates, using a radial basis function neural network [Park and
Sandberg, 1991]. Using a neural network may sound excessive, but Radial Basis Function
(RBF) neural networks have some properties that are well-suited to screen calibration, and
solve particular issues with calibrating projected displays.

Projected displays can be subjected to keystoning, stretching and warping (e.g. due to
reflection off a mirror). In the ideal situation, a projector would be chosen for a particular
table, positioned carefully and fixed with scaffolding so that it projects a rectangular image
with perfectly square pixels. In the real world, however, this is simply not the case. If
we want to quickly bring tabletop interfaces into peoples’ homes (e.g. by using a regular
white table and a mirror attached to a home theatre projector), we can’t rely on consumers
employing theatre professionals to set up their interactive coffee table. Tiled projected
displays can also introduce a discontinuity where they join.

Another problem is the relation of the input device to the display. Ideally, they would
be perfectly orthogonal and use the same origin. But this might not be possible due to
seating arrangements, table shape, or a desire to reposition the device off the table surface
to avoid interference. Such repositioning of the input device introduces further problems of
rotation and translation, or possibly arbitrary warping, that need to be solved.

The goal of screen calibration is to convert points from one coordinate system to
another:

25This is unavailable using mouse emulation.
26Specific file(s) or a range can be specified in Cruiser’s configuration file.

131



5.3. Utility Libraries CHAPTER 5. DESIGN

f(xd, yd) = (xs, ys)
f : <2 → <2

The task, then, is to determine f . RBF Neural networks provide universal approximation
[Park and Sandberg, 1991], and so can approximate this function from training examples.
Three examples is the minimum for linear interpolation of points in two dimensions. More
examples allow the function to be approximated more accurately. Any number of training
examples can be used. By default, Cruiser uses eight.

Solving the network merely involves solving two sets of simultaneous linear equations –
there is a set for each of two dimensions each with one equation for each training example.
The RBF equations are of the form:

y(x1) = w1e
‖x1−x1‖2

2σ + w2e
‖x1−x2‖2

2σ + · · ·+ wke
‖x1−xk‖2

2σ

y(x2) = w1e
‖x2−x1‖2

2σ + w2e
‖x2−x2‖2

2σ + · · ·+ wke
‖x2−xk‖2

2σ

...

y(xk) = w1e
‖xk−x1‖2

2σ + w2e
‖xk−x2‖2

2σ + · · ·+ wke
‖xk−xk‖2

2σ

Where the xk ∈ <2 are the training examples, in the input device’s native coordinate
system. One set of equations is solved for the x screen coordinate, and one set for the y
screen coordinate, resulting in two weight vectors.

The lapack27 Fortran library is used to rapidly solve these sets of equations to
determine the weight vectors in the calibrator program. This takes a fraction of a second.
Once solved, the weight vectors are saved to a file, which is later loaded by the strokereader
library into a read only neural network, that can’t learn new examples. A straightforward
function substitution is able to smoothly interpolate points between the training examples,
so lapack does not need to be used in strokereader itself. This makes the operation that
converts the coordinates during regular operation very fast28.

5.3.4 Calibrator Program

The calibrator program is an application separate from Cruiser, used to calibrate the
strokereader library. It starts showing a test pattern, filling the screen, so that a projector
may synchronise with the video signal accurately. It also shows the first calibration target.

When input is received, it is calibrated with each target in turn. By default, 8 targets
are shown in succession around the screen, but any number of points may be calibrated. A
divide and conquer algorithm determines where each point should be placed on the screen.

During calibration, a reverse-substitution of points, along with a linear mapping of
the coordinate system to screen coordinates, gives feedback for the calibration. A square
lattice of points is fed through the neural network to show the calibration mesh on screen.
If there is severe distortion in the mesh, it may indicate that extraneous input was received
(that may have been calibrated with the incorrect target), or perhaps that the input device
is positioned so that some of the display is out of its operational range.

27http://www.netlib.org/lapack/ verified 2008-03-20.
28In one test using 8 training examples, without optimisations, 500 000 coordinates could be converted in

less than 1 second; when the test program is compiled with the -O3 -ffast-math optimisations, this increased
to 1.5million. Since a typical maximum real rate is 60 coordinates per user per second, speed of the neural
network is clearly not an issue. See §6.4.2 for machine specifications.

132

http://www.netlib.org/lapack/


CHAPTER 5. DESIGN 5.4. Plugin Libraries

Utility SLOC† Files

libfolder 1276 filedir, folder, image-search

libdb 834 metadb

libvideo 589 video, tcprobe.h

plug 390 plugin-init, plugin.h, debug-init, servers-init

libbrowser 307 browser, sft-layout, browser-attachment

libframe 271 framepic, anotoimage

libslider 236 sliderpic

toplevel 62 main.cpp

TOTAL 3 965

Table 5.3: Cruiser Plugin Libraries
†SLOC: Source Lines of Code

5.3.5 Other Utilities

A range of other utilities provide functionality that assists the development of plugins.

5.3.5.1 Cross-Platform TCP Servers

This is a threaded TCP server, similar to that provided by the GNU Common C++ and
POCO29 libraries, but built using SDL_net for its cross-platform implementation of TCP
sockets. It allows the simple creation of a TCP server, that listens on a specified port.
When a connection is made, a new thread is automatically started, which calls the handle
function specified when the server is defined.

5.3.5.2 Reference-Counting Handle

The Handle class provides a reference-counted handle to a pointer, similar to Boost’s
shared_ptr. It allows an object allocated with new to be automatically deleted when the
last reference to it disappears (goes out of scope). It additionally provides an automatic
dynamic_cast that throws an exception on failure. C++ name demangling is used to
improve the format of the exception error message.

5.3.5.3 “Minimal” XML Library

A non-validating (but syntax-checking) XML parser is provided. This has a simple 250-line
implementation and a clean interface that effectively tokenises the XML file into tags
(with attributes) and character data. It is provided for some plugins which store their
configuration in an XML file.

5.4 Plugin Libraries

Plugin libraries are modules coupled to the Cruiser Core that provide functionality shared
between one more more plugins. These libraries are summarised in Table 5.3.

29C++ Portable Containers (POCO) http://www.appinf.com/poco/, verified 2008-03-20.

133

http://www.appinf.com/poco/


5.4. Plugin Libraries CHAPTER 5. DESIGN

5.4.1 Cross Platform File Search (libfolder)

One part of this library is a cross-platform interface to a Folder, or directory, on disk.
This part is loosely coupled with Cruiser; taking advantage of its debugging and RxString
libraries. The contents of a Folder can be retrieved, and the directory tree can be walked
depth-first or breadth-first, to retrieve the contents.

The ImageSearch capabilities are more tightly coupled with Cruiser. This provides
a facility that uses Folder to search for potential images to load into the interface. The
capabilities are activated when the imagesearch plugin is present.

The Folder library is also used by the browser and fsviewer plugins, as well as the libdb
plugin library. But, like all plugin libraries, it is not required to compile the Cruiser core.

5.4.2 Database Access (libdb)

The libdb plugin module provides to plugins the concept of metadata associated with each
Resource. It is backed by an SQLite30 database, but one of the goals is to hide this database
access from plugins that use it. Instead, access is through the Meta class, which is created
for a Resource on request by querying the database for additional information that has
previously been saved in the database.

When a Meta object is created for a Resource for the first time, or it has been modified
since the database was last updated, information about the file is refreshed and stored in
the database. Plugins can add update callbacks that are called whenever a file’s metadata
is updated in the database. This is how, for example, the Exif plugin is informed that it
should process a file’s Exif header and cache it in the database (see §5.5.2).

One task of the database library is to detect when database accesses occur in a new
thread. Each thread needs its own database connection, so when a request is made for
metadata for the first time in a thread, a new handle is created and stored in a lookup.
The library also emits a warning with a backtrace to indicate how it occurred – threads
that take out database handles should close or reuse their database handle. Generally
threads that use the database will be synchronised tasks, managed by the thread manager
(§5.3.2).

5.4.3 Video Images (libvideo)

Libvideo provides an implementation of the Video Resource. This is a class derived from
Image that continuously updates its content. Usually, it plays a video file on disk, such as
a clip recorded by a digital camera. However, it interfaces with the mplayer31 program
through a First In First Out (FIFO) socket so that it is able to render any video format
that the mplayer program is able to handle.

Mplayer runs on Windows, OSX and Linux (also ARM, PlayStation and others), and
it has support for over 20 input formats, and all major audio and video codecs. Interfacing
through a FIFO socket allows Cruiser to decouple itself from the complexities of video
decoding. Mplayer outputs a stream of frames in YUV format, that is received through
the socket by libvideo, which converts these frames to RGB. The RGB frames are then
converted into textures, suitable for the video card to render at any size and orientation.

This is a processing-intensive task, but not prohibitively so. Video decoding is already
very demanding and converting each frame to a texture roughly doubles the CPU load.
However, Cruiser’s use of concurrency allows this processing all to occur in a background
thread – possibly running on a second CPU core – thus keeping the main interface responsive.

30http://www.sqlite.org verified 2008-03-28.
31http://www.mplayerhq.hu verified 2008-03-20.

134

http://www.sqlite.org
http://www.mplayerhq.hu


CHAPTER 5. DESIGN 5.4. Plugin Libraries

Mplayer, too, does not interfere with Cruiser’s responsiveness because it is a separate
process.

For processing any audio associated with the video clip, there is a simple solution.
Mplayer’s video is redirected from the screen to the FIFO socket so we can process it, but
there is no need for us to process the audio. The command that starts mplayer simply
asks it to play the audio as it would normally – directly to the sound card’s mixer.

Mplayer does not only play video files on disk. Merely by specifying the video “file” as
a streaming video from an Internet URL, a webcam attached to the computer, or a TV
capture card, we can easily have streaming or live video from these locations.

We also retain control of mplayer, through a pipe (using popen). So, the commands
such as pause, seek, etc. that would normally be sent via keyboard to the mplayer process,
can now be sent over the pipe. At present, libvideo registers a callback with Environment
that requests keypresses when a Video Resource is selected and sends these keypresses over
the pipe for mplayer to process. In future, on-screen video controls can avoid using the
keyboard.

5.4.4 Plugin utility and program initialisation (plug)

This is not really a library, so much as a repository for plugin-related housekeeping. The
header file – plugin.h – gives plugins a set of macros to define the hook functions they need
to operate with Cruiser. Template files for plugins, and a new_plugin script, make creating
your own plugin even simpler.

This module also contains definitions of the functions that the actual application
statically links to create the executable file. It includes the infrastructure to find and
initialise plugins, initiate servers, install signal handlers (or SEH), and initialise debugging
utilities (e.g. mcheck, for checking memory accesses).

5.4.5 Browsing Containers (libbrowser)

This library provides new Resources – BrowseContainer and BrowserAttachment – that
are used to group collections of related Resources in the Environment. BrowseContainer
implements the common parts of the Photocopier, StorageBin, Browser and SubBrowser.
BrowserAttachment implements the common parts of CopyImage and Thumbnail, which
become attached to Photocopier and Browsers, respectively. These relationships are shown
in Figure 5.2 on page 99. Because each of the derived classes are defined in plugins, putting
the common parts in a plugin library allows them to be shared.

This submodule also provides the shared, space-filling thumbnails Layout (§5.2.4.2, and
SFTLayout in Figure 5.3 on page 107). This is the default layout used for arranging items
in BrowseContainer and its derived classes. The operation of the layout is discussed in
Subsection 4.5.6.

5.4.6 Slider Widget (libslider)

The slider widget is an example of a screen element for providing control input to the
interface. It is inspired by sliders from traditional WIMP interfaces, e.g. those used for
controlling volume. A Slider is an object much longer than it is wide, with a button that
can be moved over its length to alter an underlying value. The raw position of the slider
is always stored as a real number between 0 and 1. However, a range can be specified to
alter observed values. This value can also be displayed in text, drawn in the centre of the
slider button.

The observer design pattern is used to inform objects of state changes to the slider.
Like the factories used for creating Resources (§5.2.2.1 on page 103), C++ templates are

135



5.4. Plugin Libraries CHAPTER 5. DESIGN

used to simplify the process of subscribing to state changes. The Slider’s observe member
function takes a functor argument – any function or callable object that will be passed
the new value of the slider whenever it is changed. A Boolean is also passed, indicating
whether the slider is still being manipulated, or whether it has been released. Any number
of observers can observe a single Slider.

The implementation of the Slider is derived from Image, and overrides the detailed_
_intersection member function in order to determine which part of the Slider was selected.
If the button was selected, subsequent move requests from a Gesture will move the button
along the slider’s track. Otherwise the Slider can behave like a regular Image, and be
moved, rotated and resized (depending whether it was selected near one of its endpoints).

A Slider can also operate in a fixed mode, with user-initiated move, rotate and resize
disabled. In this mode, a Slider is typically attached to a parent Resource by making it
PositionDependant using the PDAdapter (§5.2.4.2 on page 106). For example, a Slider is
attached to a clustered Browser to change the number of clusters formed. When the slider
value changes, an observer function triggers a recluster operation.

5.4.7 main()

The entry point to the application is the main function defined in main.cpp. Its primary
purpose is initialisation. The following tasks are performed (mostly indirectly, using
functionality in §5.4.4):

1. debugging functions are initialised (§5.2.6.3),

2. the command line processed (e.g. to specify an alternative plugin search path),

3. plugins are found in the search paths and they are opened with lt_dlopen,

4. the plugin configuration hooks are executed (§5.2.6.1)

• this is the optional tell_rc_variables symbol that plugins export,

5. the configuration file is parsed (§5.2.6.1),

6. TCP servers are initialised (§5.3.5.1),

7. the AudioSystem is initialised (§5.3.1),

8. the Environment is created and initialised (§5.2.2),

9. the EventHandler is created (§5.2.7),

10. all plugins are loaded into the Environment (in alphabetical order32)

• this is the load_and_register symbol that plugins must export,

11. the EventHandler’s mainLoop is executed

• this runs until the application is exited, then

12. all plugins are unloaded, in reverse order

• this is the deregister_unload symbol that plugins must export,

13. the AudioSystem is stopped, then the EventHandler, Environment and AudioSystem
are destroyed, and finally

14. the process exits.
32A numerical prefix can enforce a particular load order.

136



CHAPTER 5. DESIGN 5.5. Plugins

Utility SLOC† Files

rfb 1541 rfbprotopp, vncimage, rfbdrag, rectangle-update, remotecursor

browser 1001 browser-plugin, photocopy, thumbnail

men 877 flowmenu, menulayout, menuframe, menuitem, menusystem,
menulocal

fsviewer* 926 fsclient, fsimage, historylayout, historybrowser, fsviewer

disk 561 w32-drive-detect, dbus-drive-detect, osx-drive-detect,
dummy-drive-detect, imagesearch-plugin, drive-event

res 431 smartframe, frame

people 323 audioman, person

exif 290 exif

vu-widget 261 vu-widget

net 142 listener

metadata 139 metadata

storagebin 120 storagebin-plugin

input 117 mimio2dt, dummy-dt-handler

ges 88 recogniser

audiodump 50 audiodump

video 33 video-plugin

local 24 local

TOTAL 6 924

Table 5.4: Cruiser Plugins
†SLOC: Source Lines of Code
*fsviewer is a contributed plugin, now packaged with Cruiser (see §6.2.1)

5.5 Plugins

Cruiser Plugins are self-contained parcels of compiled code linked against the core and
any number of plugin or utility libraries (but not other plugins). Plugins packaged with
Cruiser are summarised in Table 5.4.

The audience for the Cruiser core library and plugin libraries primarily consists of
developers. By comparison, plugins are typically aimed at providing some part of the
end-user functionality of an application. As such, most of the plugins listed in Table 5.4 will
be cross-referenced here and described in Chapter 4: User View. However, some plugins
do provide some back-end functionality that is not visible in the interface. These plugins
will be described in this section.

5.5.1 Removable Storage Detection, Media Search (disk)

The detection of drive insertion (e.g. to detect when a digital camera or removable storage33

is plugged into the computer) is a good example of a task that is highly platform-dependent.
33Like a camera flash memory card or USB thumb drive.

137



5.5. Plugins CHAPTER 5. DESIGN

All three major desktop platforms – OSX, Windows and Linux – support notifying an
application when a removable drive appears and is ready for use, but differ widely in their
method.

By encapsulating this functionality in a plugin, we isolate the rest of the application
from changes dependent on the platform, such as additional libraries that need to be
linked in. It also makes it trivial to disable when this functionality is not required by an
application.

The drivedetect plugin currently has implementations for drive detection on Windows
and Linux, and OSX. The strategies used by each platform are summarised in Figure 5.14,
with the number of Source Lines Of Code (SLOC) used to implement the platform-specific
parts of the plugin.

Upon being notified of the presence of a new drive or a drive’s ejection, a named callback
managed by Environment is triggered. The Environment tells us how many observers have
subscribed to this callback. If there are none, the default behaviour of the drivedetect
plugin is to search for media and add all recognised files to the Environment, using the
utility library (§5.4.1). When the Browser plugin is present (§5.5.10), this behaviour is
overridden with more intelligent interface elements for browsing through the contents of
the added media.

In implementing the OSX flavour, we see another compelling argument for the use of
plugins. The OSX Cocoa API that allows us to observe drive insertion is implemented
in Objective C, which can not be used directly by C++ code. We can, however, compile
our OSX plugin using Objective C++, and make C++ calls to functionality provided by the
Cruiser core. Thus, the implementation of the drivedetect plugin for OSX has a mix of
Objective C to talk to OSX, C++ to talk to Cruiser, and regular C to export the module
entry points for dynamic loading. Implementing as a plugin encapsulates this complexity
and isolates the Objective C code from the rest of the application.

5.5.2 Exif JPEG Metadata Parsing (exif)

Exif is a standard [Technical Standardization Committee on AV & IT Storage Systems
and Equipment, 2002] for encoding metadata within a JPEG or TIFF image file, or within
a RIFF WAVE form audio file. It is a format designed to support digital still cameras, and
it leverages fields already provided by the container format standard, so that the files may
still be read by existing applications. For example, the JPEG standard (ISO/IEC 10918-1)
already contains a mechanism for inserting metadata via application marker segments.
The Exif standard defines the internal format of these segments, used when encoding its
metadata.

The metadata Exif records includes (Exif) version information, image properties, a
reduced-size image thumbnail, Global Positioning System (GPS) information and a large
number of tags. Tags are categorised in the standard according to whether they relate to:

1. Versioning (e.g. Exif and Flashpix versions),

2. Colourspace (e.g. RGB),

3. Image Configuration (e.g. dimensions, pixel components, orientation),

4. User Information (e.g. notes and comments),

5. Related Files (e.g. associated WAVE files),

6. Date and Time (e.g. capture time, digitised time, etc.),

7. Picture Taking Conditions

138



CHAPTER 5. DESIGN 5.5. Plugins

Windows

Windows emits a WM_DEVICECHANGE message to an application’s lpfnWndProc function
when a message received by GetMessage is processed with DispatchMessage. The applica-
tion must previously subscribe to these messages by calling RegisterDeviceNotification,
with the dbcc_classguid field of the DEV_BROADCAST_DEVICEINTERFACE set to the Glob-
ally Unique IDentifier (GUID) {A5DCBF10L–6530–11D2-90–1F–00–C0–4F–B9–51–ED},
the GUID for USB devices. The message received contains a 32-bit field which is a bit-mask
for the drive that appeared – the lowest 26 bits correspond to the drive letters A–Z. 227
C++ SLOC.

Linux

On Linux, the DBUS system messagebus and HAL (Hardware Abstraction Layer) provides
a clean interface to disseminate these messages to applications – a callback function pointer
is passed to the libhal_ctx_set_device_property_modified function, which is notified
whenever device properties are modified. The callback is given an identifier for the device,
and querying the PROP_MOUNTPOINT property of the device gives the location where the
volume may be accessed. 169 C++ SLOC.

OSX

In OSX, an Objective-C observer is added for the NSWorkspaceDidMountNotification
event, which receives an instance of an NSNotification with an entry for the key
“NSDevicePath” holding the mount point where the volume may be accessed. 82 Objective-
C++ SLOC.

Figure 5.14: Comparing techniques for Drive Detection on different platforms

• 40 in total, including exposure time, flash mode, shutter speed, etc., or

8. Others (e.g. image unique ID).

Each tag is optional. For Cruiser, we are most interested in the low-resolution thumbnail,
and tags concerning the capture time of the photograph. The important image configuration
tags are mirrored in the JPEG header and processed by the image loader.

The Exif plugin subscribes to notifications about new and modified files via the database
plugin library (§5.4.2). When a notification is triggered, an additional table for storing
Exif data in the database is updated. The open source libexif library is used to parse the
Exif tags for the date and time of capture, and the thumbnail data, which are then inserted
into the table as a cache. The capture time also becomes a property of the Image object
(e.g. for clustering).

The Exif plugin also installs a thumbnail_helper (see §5.2.4.1 on page 105), that the
image loader checks when loading an image. If a thumbnail is suitable, the helper checks
the database for a cached thumbnail and loads it into memory, readable as an image for
the image loader.

5.5.3 Metadata Cache (metadata)

Most database interaction is handled by the libdb plugin library (§5.4.2), but in some
cases updating the metadata is not necessary, or may be costly. It is trivial to disable
the metadata plugin for applications that do not require it. The metadata plugin is
what activates the callback in the Environment that checks for metadata each time a new

139



5.5. Plugins CHAPTER 5. DESIGN

Resource is added. If the Resource added has a corresponding file on disk, its modification
time is checked and the database is updated if the file is new or has changed.

When enabled in the configuration, the metadata plugin also installs the texture cache.
This installs the texture_helper, which checks the database for cached, pre-compressed
and mipmapped textures to shortcut the loading process, avoiding the JPEG decoding
altogether (see §5.2.4.1 on page 105). The texture_saver works in concert with this,
saving to the database the compressed mipmaps that were retrieved from the graphics
card immediately after loading. The compressed textures are stored temporarily in system
memory and placed in a queue for the texture_saver to write to the database in a
background thread.

5.5.4 People Objects (people)

The people plugin provides a new type of Image Resource that notionally represents a
person. It usually displays a portrait of that person, and supports special interactions for
communicating with a messaging server. Person was implemented to operate with the
Keep In Touch (KiT) messaging system [Assad et al., 2005].

Rather than storing information about the people to load locally, the messaging server
is queried for the people available and their portrait images. These are then loaded over
the network, and the identifier of the person on the messaging server is retained. Existing
audio messages for each person are also retrieved at this stage.

A server is established that listens for new audio messages from the messaging server,
which are received in WAV format and attached to the back of the Person images. The
portrait may then be flipped in order to play the messages. Attaching new audio to a
Person is possible by dwelling on their portrait. This audio will then be transmitted back
to the messaging server and disseminated to all other KiT communication devices in the
network.

5.5.5 Audio Dumper

The audiodump plugin is one of the simplest plugins34, implemented in about 20 lines of
SLOC. The relevant code is shown in Listing 5.2. Here, the plugin will be discussed briefly
to show an example plugin, and an example use of Cruiser’s audio system.

The plugin’s task is to stream the entire recorded dialogue during the application’s
runtime to disk. The audio system (taptaudio.h described in §5.3.1) supports multiple
simultaneous recordings, so this does not interrupt the operation of explicit recordings.
The record options specify to use the ADPCM encoding (which defaults to use a WAV
container). This encoding is well-suited to speech, and has wide application support.

The determination of the output file is not shown in the listing – the time of the
recording and the tick offset (used to synchronise with the logfile messages) are encoded
in the filename via the strftime library function. A path prefix is specified in Cruiser’s
configuration file.

The plugin’s unload function simply stops the recording, by passing the recording
handle back to the audio system. The audio is constantly streaming to disk, so the filename
is ignored here, but explicit stopping ensures the file is flushed and the correct WAV headers
are written.

5.5.6 Input Plugins

Input plugins were discussed in the context of the input device framework utility library in
Subsection 5.3.3. The input device framework talks to hardware and provides a calibration

34Another, larger example plugin is discussed in §6.4.1.

140



CHAPTER 5. DESIGN 5.5. Plugins

# include "taptaudio.h"
# include "utl/crudebug/debug.h"
namespace {

/// Recording handle for the background audio streamer
5 ASSample *rechandle = 0;

/// Record options for the background audio stream -to - disk
RecordOptions STREAM_OPTS(AF_ENC_ADPCM);

}

10 extern "C" {
PLUGIN_LOAD_FUNCTION(audiodump) {

AudioSystem *as = AudioSystem ::get();
if (as)

as->streamRec(output_file , STREAM_OPTS , 0, &rechandle);
15 else

DODEBUG(ALWAYS , ("[AD] No AudioSystem - NOT dumping audio"));
}
PLUGIN_UNLOAD_FUNCTION(audiodump) {

if (rechandle)
20 AudioSystem ::get()->stopRec("", rechandle);

}
}

Listing 5.2: The audiodump plugin (determination of output_file is not shown)

of points from the hardware’s coordinate system into screen coordinates. An input plugin is
provided that passes a callback function to the framework that is to receive the calibrated
input.

This input plugin works for Mimio, SMARTBoard and potentially other hardware that
supports the USB HID standard [USB Implementers’ Forum, 2001]. The callback function
converts the stroke event information into the internal input primitive used by Cruiser
(§5.2.11.3) and immediately pushes it onto the SDL event queue as a user event (§5.2.7.1).

The implementation of this plugin is small and simple – less that 100 Source Lines Of
Code (SLOC). Supporting other hardware should be similarly straightforward, particularly
if it provides its own calibration. If the hardware does not, the input device framework is a
reusable alternative for calibrating input (e.g. input could be provided over TCP sockets).
This strategy which would also allow the existing input plugin to reused.

The plugin architecture also provides tangible benefits here. The input plugins can be
compiled in isolation from the Cruiser source code – only the headers are needed. Then,
supporting new hardware is as simple as compiling the input plugin and placing it in the
plugin directory. There is no need to recompile the Cruiser-built application to support
new hardware. Decoupling the input hardware from the application binary in this way also
means that they can be distributed separately. For example, if a new plugin is provided to
support a particular piece of hardware all Cruiser applications can immediately benefit
from it without recompiling.

5.5.7 VU (Volume Meter) Widgets (vu_widget)

A VUWidget is an example of a non-interactive Resource. It inherits from Circle for its
appearance (see Figure 5.2), and is overlaid on the centre of another Resource, its position
is dependent and fixed (§5.2.4.2). When a VUWidget is created, it bound to an ASSample
– a handle to a recording or playing sample in the audio system – and the size and colour
of the rendered circle gives feedback for the volume level for that handle.

The plugin is activated by an Environment callback that triggers on dwell events on
Resources. Each Resource maintains a map of activities which VUWidget manipulates to
retain state and determine whether a record or play activity has begun for that Resource.

141



5.5. Plugins CHAPTER 5. DESIGN

When any VUWidget is active, a recurring future user event (§5.2.7.1) is used to redraw
the display at an interval that smoothly updates the VUWidgets. The actual volume level
is calculated by the audio system and queried whenever the VUWidget is redrawn. If the
audio sample has stopped, the VUWidget is deactivated.

5.5.8 Capture Frame Plugin

The Frame was discussed from the user view in Section 4.3.2. It is a special image, shown
in Figure 4.4, that takes a snapshot of the area beneath it. This section will describe the
implementation, which is hidden from the user view by the Frame’s simple appearance.

In the first iteration of the tool, capture was achieved by copying the (orthogonally
aligned) rectangular block of pixels within the bounding box of the Frame from the graphics
frame buffer and loading it in as a new image. The new image slides in from the corner of
the table to attract attention.

The implementation is a bit more complicated than the description above would imply.
When the capture action is triggered (by holding a pen/finger stationary on the frame for
> 1 second – a dwell), a capture event is placed onto the event queue. When the scene is
next redrawn (usually within a few milliseconds), it is drawn without non-capture objects
(e.g. image decorations, personal space polygons and menus). When the Frame itself would
have been drawn, we instead calculate the bounding box of the Frame, copy pixels within
the (partially drawn) framebuffer to system memory and enqueue two events – one (full)
redraw to the event queue and a save-capture event, which is executed in a synchronised
background thread.

The background thread receives the semaphore post and the event which points to
the copied framebuffer data. We first perform the texture pre-processing steps on the
framebuffer data – scaling it to have dimensions that are the closest powers of two to the
original (width, height) and generating mipmaps – which are kept (for now) in system
memory. The foreground thread is notified that the textures are ready, and the foreground
thread transfers textures to the graphics card, similar to the techniques for regular photos
(§3.5.5.1). An Animation object is created that moves the new Image into the centre of
the table.

After notifying the foreground thread, the background thread begins converting the
captured pixels into a JPEG image. First we flip it35, and then convert it using the open
source libjpeg library. The image is saved to disk with a time stamp and an identifier for
the user who initiated the frame capture. None of this requires access to the graphics card,
and so while this occurs we continue to process input events and redraw the scene. Once
the capture is saved, control of the background thread returns to the thread manager which
waits for the next capture event.

The process above (using a bounding box and the display’s framebuffer) has some
quality and accuracy problems. The framebuffer pixels do not contain all the detail that
might be obtained from the image data, and we do not orient the pixels to reflect the
orientation of the Frame. There are three techniques now used, in what has been called
the SmartFrame.

5.5.8.1 Virtual Camera Reorient Technique

We improve on the old method, with minimal computation impact, by changing the
viewport to wholly encompass the Frame, before the first redraw. That is, Dwelling on
the SmartFrame repositions the 3D camera (thus rotation is preserved); captures; saves
a composited, full-screen image to disk; and loads it (without actually redrawing the

35The origin for screen coordinates is lower-left while for images it is upper-left, so we must flip the pixels.

142



CHAPTER 5. DESIGN 5.5. Plugins

display, so the camera repositioning is not seen by the user). Because the orientation is
now important, the representation of the SmartFrame includes an arrow to indicate up.

Dwelling on the SmartFrame repositions the 3D camera (thus rotation is preserved);
captures; saves a composited, full-screen image to disk; and loads it. This is accomplished
without redrawing the display, so the camera repositioning is not seen by the user.

This solves the orientation problem and improves image quality when the Frame is
small. It also requires very little additional computational overhead, and will produce
images the same size as the screen (e.g. 1024 × 768) to save on disk. However, at this
stage, we still do not use the full detail obtainable from the original file, which might be
important for a “zoom-in” action. This takes longer (see below) whereas the capture from
the framebuffer is quick and allows almost immediate feedback to be given for the user.

Improving on this is more complex. Detail beyond a 1024× 1024 texture36 is discarded
when the original file is loaded. Hence, for greater detail, we must return to the original
file on disk. Furthermore, we can no longer use the graphics card for the clipping, scaling,
rotating and compositing of the images that compose the area beneath the Frame object.
Instead, we use the program convert from the open source ImageMagick toolkit to perform
these tasks by manipulating the files on disk.

Listing A.5.2 shows the technique used to reposition the camera, given the position,
scale, orientation and aspect ratio of the SmartFrame.

5.5.8.2 Texture Offsets Technique

Processing the original file is slow, so we offer an alternative that does not require a new
image to be created. It functions similar to a zooming method on textures. Computation
and memory-usage is improved over the camera-reorient technique, but it cannot be used
for all captures. First we must determine this technique is possible for a given capture.

We detect whether the SmartFrame is wholly contained in another Image (i.e. we
are performing a crop of a single image). If it is not, we keep the 3D-camera-reposition
image created, load it into texture memory and continue with slow file processing in the
background (if enabled). Otherwise, if the Frame is wholly contained, we still keep the
framebuffer capture and save it to disk (as it is a low-quality version of the eventual result),
but we perform alternative processing for the texture loaded onto the display.

To detect containment, we determine whether the same image is located at the centre,
and all four corners of the Frame by selecting the object at those pixels, ignoring the Frame
itself. At the same time, we determine where (what offsets) in the image the corners are,
thus determining offsets into that image’s texture. Now, instead of loading the screen-grab
(which is still saved to disk), we instead load a special Resource that shares the texture of
the target image, but uses the texture offsets previously found. To display this new image,
we create a display list that shares the texture with the image captured but, rather than
binding points (0,0), (0,1), (1,1), (1,0) of the texture, we bind the points of the corners of
the Capture Frame, translated onto the image that is being captured.

Detail Listing A.5.3 shows the technique used to determine the texture offsets required.
In summary, the procedure returns a Boolean indicating whether the creator Frame is

wholly within the Image source. If it is, the object coordinates for source that correspond to
where the corners of the creator lie are returned to the caller in the first argument – these
may then easily be translated into texture offsets for the source texture. First, we create
object coordinates for the corners of the creator, relative to the creator – these are simply
the four points (±a

2 ,±
1
2), where a is the aspect ratio of the creator (Frame). We convert

these to world coordinates, using the cached transformation matrices used to position
36Or 2048× 2048 in high quality mode.

143



5.5. Plugins CHAPTER 5. DESIGN

creator in the environment, then convert them to source-object coordinates using the
inverse of the transformation matrices used to position source in the virtual environment.
If any of these transformed points is outside the bounds of the object coordinates for the
source (i.e. outside (±a

2 ,±
1
2), with a the aspect of the source) we know that the corners of

creator are not wholly contained within source.
Once we have these points, they are used to bind the corresponding points of the

existing texture in source to the corners of a newly created referenced Image, that we load
at the same position as the SmartFrame, with an alternative animation (to indicate a crop).
This animation causes the cropped area to grow out of the source image.

5.5.8.3 File Manipulations for the “perfect” crop

If, in addition to the containment requirement above, we have access to the image file on
disk, then after loading the referenced Image, we formulate a 3-step transformation for the
convert program from ImageMagick, as alluded to above. This has three stages: a crop
to the bounding box of the rotation (to speed up stage 2); a rotation; and a second crop.
This results in a new file on disk, made from the original image – that is, the best data
available. Once the operation completes, we reload the newly created image off disk, as it
will either contain more pixel data than the original; or it will contain less pixel data but
with equivalent quality, and thereby be more space-efficient.

Detail Listing A.5.4 shows the technique used to determine the set of transformations
required to carry out on the file on disk, using the convert program.

The stages are outlined in the listing. Notably, we crop twice – crop is a much faster
operation to perform than rotate, and so we perform an initial crop to reduce to the
minimum number of pixels that are required to perform the rotate. The result has waste
where rotated parts now lie outside the final crop, which are subsequently removed by the
second crop.

The values off[0].x, off[0].y ... off[3].x, off[3].y are the texture offsets (each in the range
[0.0, 1.0]) that were found from the Texture Offsets calculation in Section 5.5.8.2.

5.5.8.4 libframe Plugin Library

This section describes two frames: the original Frame, that takes orthogonal regions
from the display framebuffer, and the multi-faceted SmartFrame. Clearly, some of the
functionality can be shared. However, calling code between plugins is typically poor practice
– there is no guarantee that the other plugin has been loaded – and some platforms37 have
a limited dynamic library implementation that does not support this (backreferences).

To share the implementation, and potentially make capturing functionality available
to other plugins, common parts of the frame implementations are reached using a plugin
library – libframe. Then, separate plugins encapsulate specifics and allow each type of
frame to coexist, or be readily disabled.

5.5.9 Remote Frame Buffer (rfb)

This plugin implements an interactive image that uses the VNC protocol to update a
framebuffer and communicate cursor events to a remote computer screen. It is described
from the user view in §4.4.1. This section gives further detail.

The interactive image is an object that can be moved, rotated and resized just like
any other object on the table, except that the image displayed on it shows the contents
of a remote computer screen, and its contents are updated whenever the contents of that

37i.e. Windows.

144



CHAPTER 5. DESIGN 5.5. Plugins

screen are changed. These objects currently have two ways of becoming interactive. One
method involves either using a different stylus/pen to interact (or by interacting with the
same stylus/pen/cursor whilst holding down a button); the other requires the framebuffer
image to be flipped (§4.2.5). When interactive, manipulations of the framebuffer image
that would otherwise move it will now move the mouse cursor on the remote display.

These cursor updates need to be translated into the screen coordinate system of the
remote display, taking into account the scale, rotation and position of the framebuffer
object. In addition, they need to be clipped to the remote display, if the interaction point
leaves the boundary of the displayed object.

In order to transfer objects from this remote display, a separate program must be
running on the computer. This program creates four 1-pixel-wide windows along each
of the edges of the screen. Dragging an icon from any other application on this remote
computer (e.g. from Windows [File] Explorer), to the edge of the screen allows the filename
of that icon to be retrieved from the operating system using Object Linking and Embedding
(OLE).

Once an icon is dragged over one of the 1-pixel windows on the remote computer (i.e.
via the interactive framebuffer image) the file corresponding to the icon being dragged is
read from disk and sent over a communication medium (e.g. a TCP networking socket) to
the local interface. In one version, the location on the remote screen at which the icon was
first dragged on to one of the 1-pixel border windows was sent back to the local computer
and used to determine the position at which to load the object. In another (better) solution,
the most recently received interaction position on the local display (now on the edge, or
off the framebuffer object) was used as the centre point at which to load the media item
received over the communications socket. Loading in this manner causes the whole process
to appear to the user as if the icon is being converted into a viewable media item and
loaded onto the table as a new object when it crosses the boundary around the framebuffer
image.

So that the 1-pixel-window application knows where to send the media items, another
step is involved. When a framebuffer object is created and successfully connects to (any)
VNC server running on the remote computer, a message is sent to the 1-pixel application
as well. Future icon drags are sent to the most recent computer that sent this register
message (until an attempted send fails).

5.5.10 End-User Plugins

These “End-User” plugins were described from the user view in Chapter 4. Brief descriptions
and cross-references are provided here for completeness, with reference to Table 5.4.

Browsing Images and Folders (browser) This plugin provides the hierarchical and
clustered browsers that are critical for photo sharing with authentic collections of
digital photographs, used in the PhoTable application. Common parts are a plugin
library (§5.4.5), Browsers are discussed briefly in §4.3.7 and the clustered browsers
are explored in the context of photo sharing in §4.5.5.

Storage Bins (storagebin) Storage bins also leverage common parts of the BrowseContainer
implementation (§5.4.5). Storage bins are described in §4.3.9.

Video Loader The video loader plugin provides a means to load an initial set of Video
images (§5.4.3) into the interface. Video images are described further in §4.4.2.

145



5.6. Feature Highlights CHAPTER 5. DESIGN

5.6 Feature Highlights
Here, the focus is on features newly implemented in Cruiser, rather than those provided by
software libraries external to Cruiser (specified in italics with the name of the library in
bold italics). Also, the focus is features of the Cruiser framework – features from the user
view (i.e. application features) are discussed in Chapter 4 and those most relevant to the
PhoTable application were discussed in Section 4.5. The features listed will be elaborated
in the System Overview (§5.1), here is provided a summary of the features considered
when designing the Cruiser framework:

• Highly concurrent and thread-safe operation.

• A responsive main(), drawing and input-processing thread able to maintain 60fps
(save some exceptional circumstances), with other processing managed in separate
threads, involving:

– caching of transformation matrices;
– separate threads for intensive (or potentially blocking) tasks such as:

∗ loading and decoding images from disk,
∗ pre-processing images into mipmapped textures,
∗ saving (or streaming) sound recordings to disk.

• Efficient layout of on-screen collections of objects, involving:

– transformation inheritance for dependent objects;
– layouts provided for fixed, relative, “flow”, and space-filling layouts;
– a framework whereby plugins may implement their own layout, and hooks to

apply this layout to managed collections of objects.

• Efficient input handling, involving:

– a versatile framework for interfacing with arbitrary input hardware (via a
plugin);

– coordinate system conversion and calibration, supporting arbitrary scaling,
keystone, shear, offsets and other warping;

– ability to receive input over TCP;
– a flexible gesture framework for interpreting input as manipulations;
– support for multi-touch, user-identification, and multiple simultaneous inputs;
– conversion of mouse cursor inputs from the windowing system into gestures (e.g.

for debugging).

• A versatile audio framework, with support for:

– loading and saving various sound formats for prompts and annotations (e.g.
formats encoded for efficient use of space when recording voice);

– streaming audio to or from disk (encoding or decoding on-the-fly);
– sample rate conversion of loaded audio where necessary;
– managing multiple simultaneous recordings;
– mixing multiple simultaneous sound samples;

146



CHAPTER 5. DESIGN 5.7. Chapter Summary

– providing feedback for play and record levels of any currently playing sample
(or the record level);

– bindings for Python, Ruby, and other languages,
∗ this allowed album creation to be implemented in Python, for example.

• A range of media support:

– Image formats via SDL_Image38 (JPEG, PNG, GIF, TIFF, MP, LBM, PCX,
PNM, TGA, XCF, XPM, XV):

∗ loaded from disk or network socket as an Image Resource in Cruiser that
may be manipulated,

∗ also support for saving Frame captures and streaming screenshots (for video)
in JPEG format;

– Sound formats via libsndfile39 (WAV, AIFF, AU, PAF, IFF, VOC, MAT,
PVF, CAF, OGG, FLAC, others):

∗ also various encodings via libsndfile (PCM, ADPCM, µ-law, A-law, Vorbis,
others),

∗ loaded from disk or network socket as an AudioCircle object that may be
manipulated and attached to objects in Cruiser,

∗ also support for saving explicit or background recordings (e.g. from a
microphone) as PCM or ADPCM WAV in Cruiser;

– Video formats and encodings via mplayer40 (AVI, MPEG, MOV, WMV, OGV,
MKV, VOB, others):

∗ also streaming formats such as RTSP, TV (via a tuner card), or a webcam,
∗ loaded into a Video Resource that may be manipulated in Cruiser via a

named socket communicating with mplayer;
– Remote framebuffer encodings via built-in VNC Client:

∗ 3DES password authentication via librfb library,
∗ RAW, RRE, CoRRE and copyrect encodings are implemented in Cruiser’s
“rfb” plugin,

∗ remote desktop is updated into a mipmapped texture for rapid rendering in
OpenGL;

– Exif metadata via libexif 41 library:
∗ JPEGExif thumbnail is extracted for rapid thumbnail loading when browsing

photos,
∗ photo capture time (and other metadata) is read and saved to an SQLite
database cache for accurate sorting and clustering.

5.7 Chapter Summary
The Cruiser framework is decoupled in three main parts, which have been discussed in this
chapter. The core provides key tabletop interaction functionality and the framework for
allowing new functionality to be added while maximising reuse of existing parts. Plugin

38http://www.libsdl.org/projects/SDL_image/
39http://www.mega-nerd.com/libsndfile/
40http://www.mplayerhq.hu/design7/info.html
41http://libexif.sourceforge.net/

147

http://www.libsdl.org/projects/SDL_image/
http://www.mega-nerd.com/libsndfile/
http://www.mplayerhq.hu/design7/info.html
http://libexif.sourceforge.net/


5.7. Chapter Summary CHAPTER 5. DESIGN

libraries introduce new functionality, not needed by all tabletop applications, in a way
that allows it to be shared amongst multiple plugins. Plugins introduce new features and
interface elements that build on the core and plugin libraries to realise new interfaces
that leverage the Cruiser framework to provide a mostly complete application. Another
layer – utility libraries – encapsulates reusable, general purpose tools that were created
specifically for Cruiser. Throughout development, the drivers for design (§3.5) influenced
the implementation approach, with a focus on stability, flexibility, cohesion, platform and
input hardware independence, and performance.

148



Chapter 6
System Evaluation

Because of the dual goals of this thesis, there are necessarily two components to the
evaluation. For the framework design, this chapter presents the evaluation of the Cruiser
framework; that is, how Cruiser provides an effective architecture for the development of
highly immersive and pervasive interactive tabletop applications. The following chapter
will present our evaluations of the user interface – its learnability and usability – and how
PhoTable is able to facilitate natural storytelling around personal digital photographs and
the automatic capture of those stories to create an annotated digital photo album. These
two components are related – the effectiveness of Cruiser is critical as the means to create
a useful PhoTable.

One aspect of evaluation is usability, but usability evaluations are not always appropriate,
and they cannot be used to evaluate all components of the system. This thesis addresses
usability as part of the interface evaluation in Chapter 7. For this chapter, Greenberg and
Buxton [2008] offer some alternatives for how a novel system should be evaluated, where
a usability evaluation might not be appropriate. Examples include: a design rationale,
a vision of what could be, expected scenarios of use, reflections, case studies and design
critique. In this thesis, these are not subjects for a single chapter, but are instead drawn
from all parts of this thesis.

Chapter 1.2 presented the photo sharing vision and the scenario of use within which
we framed the problem, but also introduced the necessity of a framework for realising
this vision. In Chapter 3 we gave our design rationale, based on guidelines derived from
best practices in user interface research and identified usability problems that might arise.
Chapter 4 presented the user view with a number of case studies, and reflected upon our
design choices, including several avenues that were explored but were not included in the
final version of PhoTable. In addition, Chapter 7, to follow, explores usability and reflects
upon some other design choices that were discontinued. The focus of this chapter will be a
systems-oriented evaluation of the Cruiser framework.

6.1 Introduction

In this thesis, the Cruiser framework is key to address the research problem outlined in
Section 1.2. Cruiser is a system for building applications, so evaluation has been designed
following best practice for systems. Olsen [2007] has recommended that systems evaluation
should be based upon “study of use,” meaning a study of the system as people would
actually use it. This is the approach we follow.

Importantly, Olsen discusses a number of evaluation errors that may cause damage
to this research field. One of these is the usability trap. Usability metrics such as task
completion time, learnability and error minimisation are important for interactive systems.

149



6.1. Introduction CHAPTER 6. SYSTEM EVALUATION

PhoTable is an interactive system with a design that has been driven in part by a goal of
optimising these measures. However, being a new system, there is no suitable system that
we may compare with PhoTable. Any attempt to find a comparative system would detract
from the novelty that PhoTable provides. Being, also, a complex system, these usability
metrics are difficult to measure, since authentic use involves significant creative user input
and social interaction as they tell stories. This is the usability trap: research should not be
limited to what is trivially measurable, in order that we may effect significant change.

Olsen [2007] suggests alternative methods to evaluate systems, and to demonstrate evid-
ence of the claims made about the system. This includes putting the system in appropriate
context, in terms of Situations, Tasks and Users (STU); demonstrating importance; showing
(e.g. for a tool) that it addresses a problem not previously solved; showing generality; and
ensuring that it scales up to realistic problems. Another important attribute is reduction
of the effort required to iterate on many possible solutions, or to reduce solution viscosity
which can be done in terms of flexibility, expressive leverage and expressive match.

Olsen also discusses effectiveness in terms of power in combination, which includes
inductive combination (e.g. combining primitive design components into more complex
designs), simplifying interconnection (e.g. by implementing a standard interface to allow
integration with all existing components), and ease of combination (i.e. making interconnec-
tion simple and straightforward). Context, importance and novelty were initially covered
in Sections 1.2 and 2.3, with details in Chapter 4; Cruiser’s framework approach (outlined
in Chapter 5) is key to satisfying many of the other requirements, and will be discussed
further in this chapter.

Greenberg and Buxton [2008] have also observed that, some of the time, usability
evaluation can be considered harmful. If applied incorrectly, usability evaluation can
“quash potentially valuable ideas early in the design process, incorrectly promote poor
ideas, misdirect developers into solving minor vs. major problems, or ignore (or incorrectly
suggest) how a design would be adopted and used in everyday practice.” For example, an
existence proof could be used to show that PhoTable allows people to share their digital
photographs faster or with fewer errors than some other state-of-the-art system. But this
would be misguided. Not only is efficiency meaningless for such a task (where increased
time may even be an indication of enjoyment and engagement), but there exists no existing
system in the state of the art that could be used for a meaningful comparison. Furthermore,
the task would have to be artificially constrained in order to be evaluated. We would, in
effect, be designing our interface to suit the evaluation, rather than addressing the research
problem; that of sharing photographs (§1.2).

Usability evaluations of the user interface are still important and this thesis explores
them in Chapter 7. Part of what this chapter explores might be described as a usefulness
evaluation in relation to the Cruiser framework. Indeed, it has been said that the trouble
with computers is not that they are too hard to use, but they do too little that is useful
[Landauer, 1995]. To show that the Cruiser framework is useful, we show how it has been
used by other system builders to create new tabletop applications. To provide effective
interaction, the Cruiser framework must also have sufficient performance to be responsive
for the kinds of tasks for which it was designed – we will show that it does.

In summary, this chapter evaluates the Cruiser framework from a systems perspective.
To do this, we first report its use, by others, demonstrating its power and flexibility in
terms of the ease of creating new plugins. We then discuss performance of the framework in
terms of rendering efficiency, resource usage and scalability. The summary revisits evidence
for the usefulness of the Cruiser framework, which is drawn from many chapters of this
thesis.

150



CHAPTER 6. SYSTEM EVALUATION 6.2. Contributed Plugins

Plugin
Name

Code
size in
SLOC

Author(s) Time
Cost in
man-months

Context

fsviewer 926 Anthony Collins
(final year

undergraduate)

4* Undergraduate Honours’
thesis project, 1 semester
load, includes writing thesis
and evaluation studies
(July 2006)

blackjack 3 171 Rainer Wasinger
(postdoctoral
researcher),

Anthony Collins

3 Industry research project, 3
months including some other
duties, client interaction
(July 2007)

map
tagger

553 Glen Whitaker
(final year

undergraduate)

4 Undergraduate Honours’
thesis project (as above)
(July 2006)

brainstorm 601 Gregory Darke,
James Bunton

(3rd-year
undergraduates)

3 Undergraduate summer re-
search scholarship, 2 months
on multiple projects (Janu-
ary 2008)

menu
system

877 Hugh MacReady
(recent Bachelors’

graduate)

2 Industry research, 2 month
summer employment (Febru-
ary 2005)

*Time to develop the “OnTop” version of the fsviewer plugin, which is continuing into
postgraduate study as “Focus”

Table 6.1: Summary of Contributed Plugins, built using Cruiser

6.2 Contributed Plugins

All elements of Cruiser presented in Chapters 4 and 5 have been implemented by myself.
However, through the plugin application framework, Cruiser’s design lends itself well to
experimentation by others. The flexible API provides a high degree of utility to create new
tools to realise novel tabletop “applications”, implemented through the use of plugins. In
this way, as an application framework, Cruiser assumes much of the burden of application
development. To experiment with new functionality, developers need only implement a
plugin, rather than a new application.

This section will describe plugins contributed by other developers. Table 6.1 is a
summary of the plugins that will be presented, showing the size in Source Lines Of Code
(SLOC), the authors involved, an estimate of the development cost in man-months, and
the development context. The author and context columns are provided to give a sense of
the expertise and time-commitment of the plugin authors.

Assistance was provided by myself, mostly in the early stages, to familiarise the author
with the framework – typically by using a simple plugin (such as the storage bin) as a worked
example and starting point for the new plugin skeleton. After this initial familiarisation,
my own role in the development of each plugin was minimal – mostly limited to answering
questions and giving advice on how to best leverage the functionality already present in the
Cruiser framework (where my role differed, details will be given in the relevant subsection).

Each subsection below presents a plugin and its application context and includes the
following:

151



6.2. Contributed Plugins CHAPTER 6. SYSTEM EVALUATION

Figure 6.1: Screenshot of the OnTop associative search Cruiser application [Collins et al.,
2007]

• an overview of added functionality and a discussion of the evaluation or usage scenario
of the new application,

• the main aspects provided by the Cruiser framework that were leveraged to provide
this functionality,

• a description of the new code and how it extended upon components in Cruiser,

• evaluation of ease of creation in terms of effort (lines of code) to implement the
application,

• evaluation of ease of creation in terms of developer time taken to implement the
application, and

• a summary of what each plugin demonstrates about the power, flexibility and
extensibility of Cruiser.

6.2.1 Associative File System Search (fsviewer)

An interface for an associative file system browser on the tabletop, leveraging OSX Spotlight
on one or more remote computers, was implemented as a 4th-year Honours project by
Anthony Collins in 2006. The associative search application is called OnTop. It is the
subject of a full conference paper [Collins et al., 2007] presented at TableTop [2007]. The
system is described in [Collins, 2006], undergraduate research that earned second place in
the CHI2007 student research competition.

OnTop is a novel associative access approach to file system interaction, where users
navigate multiple file systems by selecting focus files. The fsviewer plugin connects to one
or more OnTop servers (e.g. running on users’ laptops), which make the files in selected
paths available for associative search and presentation on the tabletop interface. When the
initial connection is made, a starting set of files is loaded onto the table. A screenshot is
shown in Figure 6.1. The plugin also provides a HistoryBrowser Resource, shown at the
top of Figure 6.1, with a blue reset button to return to the initial file view. Breadcrumbs
in the HistoryBrowser allow users to return to recent search views.

152



CHAPTER 6. SYSTEM EVALUATION 6.2. Contributed Plugins

File navigation is based on the concept of focus files. A user chooses a file displayed,
and associated files are retrieved from all connected computers. Association is determined
by a set of tunable parameters that calculate relevance based on a set of 11 metadata
attributes, including full text content of documents, extracted with the assistance of Apple
Spotlight. Selecting new focus items clears files that are not relevant. When files are
loaded, their relevance to the focus item affects their initial size. If files are moved, their
position is recalled if the file is ever reloaded in another search.

Collins et al. [2007] compares OnTop to the hierarchical approach made available by
Cruiser’s Browser (§4.3.7). A qualitative evaluation of the two approaches was performed
with 10 participants, asking pairs of participants to perform a collaborative search task.
OnTop’s approach to finding files was readily accepted and learnt by the participants. A
key observation was that the associative search technique engendered richer collaboration
between participants as it is able to present amalgamated search results from both file
systems. Clutter was highlighted as a problem for the Browser, which led in part to
the exploration of techniques to reduce clutter in PhoTable, when browsing photographs
(§4.5.5).

Collins and Kay [2008] extend OnTop by adding methods to search through email
documents in a system called Focus. Focus deals specifically with the task of Personal
Information Management (PIM), and supports a scenario of a user checking their email in
the morning. The power of the associative search is used to quickly find documents related
to the subject matter of each email.

The Cruiser framework supports OnTop and Focus by providing the means to efficiently
load and manipulate digital documents. Cruiser provides effective support for collaboration
on tasks that involve viewing files from multiple users’ machines. The extensibility and
reusability of the Cruiser framework has allowed interface elements such as OnTop’s
HistoryBrowser to be implemented as an extension of existing techniques (it is essentially
a specialised form of the Browser in §5.4.5).

The investment of effort to implement OnTop is summarised in Table 6.1 – the
majority of the 926 SLOC implements the client-side of the network protocol used for
retrieving remote files. The main constituents of the remainder extend and adapt Cruiser’s
functionality for new interface elements and implement callbacks. It was developed by
a single developer – new to Cruiser and tabletop interfaces – with a time investment of
approximately 4 months, which included time to conduct evaluations and write an honours
thesis. Furthermore, significant development time was spent implementing the OnTop
server, which is not counted here.

6.2.2 Blackjack

A blackjack card game was implemented to explore a proof-of-concept application for a
commercial partner1 to my PhD sponsoring organisation2. Development was led by Rainer
Wasinger, a postdoctoral fellow, with assistance from Anthony Collins. A photograph of
the interface in use is shown in Figure 6.2.

Blackjack is substantially built from existing Cruiser functionality. For example, cards
and the betting chips are derived from Cruiser’s Image class, with an added alpha channel
to achieve the circular appearance. Cards are not interactive, but animate when being
dealt from the shoe, using Cruiser’s animation framework (§5.2.9). The betting chips are
interactive (but they cannot be resized), and they will be automatically laid out when
placed in your own, or another player’s, betting box, through leverage of Cruiser’s existing
layout algorithms, but with the extension that alike denominations will be stacked in the
layout.

1Their identity must be kept confidential.
2This is the Smart Internet Technology Cooperative Research Centre (CRC).

153



6.2. Contributed Plugins CHAPTER 6. SYSTEM EVALUATION

Note that the foreground has been given increased contrast.

Figure 6.2: The Blackjack application in use

Extensions to the framework include a special chip manager, which detects when nearby
chips should be stacked and increases the z position appropriately. Because all Cruiser
applications use a perspective transform (rather than orthogonal) for rendering in OpenGL,
this stacking is given a three-dimensional appearance in the interface. A Stacked Layout
was also implemented; this stacks chips of the same denomination inside the same betting
box into individual piles. Selecting a stack and dragging will select and move the topmost
chip in the pile.

Cruiser’s Bounds framework (§5.2.5.1) gives each player a region for their own betting
chips, so that flicking (§4.2.3) chips across the table will automatically place them into that
player’s betting box. Game logic retrieves a collection of chips attached to each betting box
from their layouts (§5.2.4.2) to determine the current bet for each player. This game logic
and the special chip, card and betting box objects are encapsulated within the Blackjack
plugin and the plugin operates with the regular Cruiser core libraries, to ease maintenance.

Blackjack was implemented and tested in a time frame of only 3 months, by a newly
employed developer who initially was completely unfamiliar with the Cruiser framework.
Cruiser’s design meant that the core used for Blackjack is the same core for all other
applications built with Cruiser, and the plugin architecture meant that a fresh slate could
be given for visual aspects of the Blackjack interface, which is quite different from that
used for sharing photographs.

Of the 3 171 SLOC, approximately 1 580 are dedicated to game logic (e.g. the rules of
blackjack), managing betting (e.g. users’ winnings and current balances), and representing
the deck of cards (e.g. shuffling, dealing). The remaining ∼1591 lines relate more closely
with the Cruiser framework, and include extensions to the resource framework (chip,
card, background, highlight, countdown timer, notification and betting box), extensions
to the gesture framework (hit and stand gestures), and an extension to Cruiser’s layout
mechanisms (betting box layout). A final significant component, at 219 SLOC, was the
chip manager, described above.

6.2.3 Map and Photograph Tagging Application

An application for tagging images with labels, pinning items to locations on a map, and
tagging areas of a map with labels was explored as a 4th-year Honours project by Glen

154



CHAPTER 6. SYSTEM EVALUATION 6.2. Contributed Plugins

The Sculpture tag is moved over a flipped image without being released – as soon as its
position overlaps a flipped image, the tag is copied onto that image as an attachment

(which my be later moved off).

Figure 6.3: Tagging a flipped image with a swipe gesture

Whitaker in 2006. Dwelling on an image over a map pinned the image to the location
on the map directly beneath the touch point. Dwelling on an area marker over a map
image demarcated the region of the map by copying the marker and attaching it to the
map, fixed at that location. Dwelling on a tag over an area marker attaches that tag to all
images whose pins are contained within the area marker.

The method, using maps and repeated dwells, was effective when tags are logically
correlated with a map region. An alternative method involves flipping an image and a
new, swipe gesture to tag that image. This is shown in Figure 6.3. An image to tag is
flipped over, then the user can move one or more tags over the image, causing each tag to
be copied as an attachment to the back of the image; these tags may later be removed.

Again, this application is simply a plugin to the Cruiser framework. The unnecessary
components were simply omitted, while also being able to leverage the functionality provided
by existing plugins – if an application designer wants a particular tool (e.g. a capture
frame), they simply place this plugin in Cruiser’s plugin folder. Cruiser’s extensibility was
also leveraged for this application. For example, the transparent tool that marked areas of
maps was a special version of the Capture Frame (§4.3.2) – dwelling on it whilst it was
positioned over a map coloured-in the area that was highlighted rather than performing a
capture.

6.2.4 Brainstorming Plugin

A brainstorming application was created as a summer project by two undergraduate students
– Gregory Darke and James Bunton. The task was to support groups of simultaneous users
in both phases of brainstorming – idea generation and idea selection. Rietzschel et al.
[2006] found that separating the two phases has a positive effect on the number of ideas
generated.

The task of the idea generation phase is to produce a large number of ideas, which
should be recorded verbatim. Thus, for maximum productivity, each user is given a
keyboard. With the addition of (multiple) keyboards, the task is a departure from the
common goals of a pervasive computing interface, but they are necessary for efficient input

155



6.2. Contributed Plugins CHAPTER 6. SYSTEM EVALUATION

  

New concepts

Input frame

The background is shown here in white for clarity – usually it is projected black.

Figure 6.4: Brainstorming application part way though selection and grouping phase

of ideas. Notably it is critical for reliable simultaneous input when the tabletop hardware
available supports only single touch.

An exploratory user study was conducted with people brainstorming with this plugin
for Cruiser. A total of 12 participants, in 4 groups of 3, were asked to brainstorm about
two subjects: first-year programming, or about concepts for a Unix course (these were
chosen in order to be familiar and motivating to all participants of the study). Unix
brainstorming was conducted in the traditional brainstorming fashion, using a whiteboard,
and participants were asked to compare this strategy with Cruiser’s.

Cruiser supports idea generation at the tabletop by providing each attached keyboard3

with virtual notepaper, or an input frame, as shown in Figure 6.4. This is a movable,
resizable and rotatable image that can be positioned in front of each user, regardless of
how they are seated around the tabletop. As ideas are typed, simultaneously, at each
keyboard, each user receives input feedback in their personal input frame. A user presses a
key combination such as Shift+Enter to add their idea to the shared collection of ideas that
accumulates in a spiral in the centre of the table. They are also given a fresh sheet of virtual
notepaper, and the idea is saved to disk in a text file. A screenshot of the brainstorming
application part way through a brainstorming session is shown in Figure 6.4.

The ability to concurrently enter ideas removes the blocking that typically occurs when
brainstorming with a scribe [Diehl and Stroebe, 1991] – users may forget ideas while they
wait for the scribe to finish writing others’ ideas, or they may hesitate to interrupt with
their idea [Nijstad et al., 2003]. Ideas, once added, are anonymous. However, loading
new ideas into a shared space allows all participants to be aware of the ideas, to help
avoid duplication and to stimulate thoughts about new ideas if the user reaches a block.
Sitting as a group around a table also has the potential to improve the discussion for
the generation of new ideas. Everyone can easily make eye contact, whereas traditional

3Any number of keyboards is supported. User studies involved 3.

156



CHAPTER 6. SYSTEM EVALUATION 6.2. Contributed Plugins

brainstorming strategies may involve a scribe standing at a whiteboard and others all
seated, facing towards only the scribe4.

Cruiser and the brainstorming plugin support the idea selection phase of brainstorming
too. All ideas created may be manipulated like regular images in Cruiser – moved, and
resized either smaller to compact, or larger make the idea easier to read. As shown in
Figure 6.4, the Black Hole (§4.3.1) is also present to enable users to quickly delete unwanted
or duplicate ideas. Strategies for grouping the ideas can then proceed in a number of ways –
participants in our evaluation were free to choose and groups used different strategies. Ideas
can be moved into piles, as in Figure 6.4, attached to the back of a flipped image (which
might be a new idea created that is actually the name of the category), or positioned over
the front of a category idea that has been made large. Some participants were observed to
make categorised ideas smaller, to indicate their status and reduce clutter.

The results of the user study were mainly qualitative. For example, only 1 participant
indicated that they found it easier to enter ideas concurrently at the whiteboard (and this
user held the pen at the whiteboard). Most users indicated that they felt that brainstorming
at the table was “intuitive”.

What is interesting for this thesis, and the system evaluation of Cruiser, is that this
plugin was implemented over the course of a brief summer project by two students who had
not previously used the Cruiser framework. They had a total of 3 man-months and were
able to develop their prototype with minimal assistance and perform a user study within
that time. The same Cruiser core was used without modification – simply omitting all
other Cruiser plugins gave a blank slate for the realisation of the brainstorming application.

The extensibility and reusability of the Cruiser framework also helped reduce the
coding effort required to implement the plugin. A new NotePaper resource was derived
from Image and given a fixed image texture. This took 162 SLOC. The majority of the
remaining coding effort was directed at detecting new keyboards5, and managing the input
from multiple keyboard sources; registering callbacks with the operating system for the
keystrokes, mapping the keystrokes to letters6, and ensuring that the input appears in the
correct input frame.

The heavy use of text in the brainstorming application, for representing ideas, highlighted
an opportunity to improve performance of text rendering in the Cruiser framework. Text
is rendered using polygons in Cruiser so that individual characters may be selected, rather
than requiring them to be placed on a canvas (see §5.2.4.3). Polygons were initially
re-constructed for each letter, but brainstorming prompted the optimisation whereby each
font glyph will be cached as an OpenGL display list the first time each character drawn.
Text is deliberately avoided in most of our other tabletop applications, or else kept to a
minimum (e.g. because of the goal to support multiple usersat different orientations), so
there was previously no evidence to suggest this optimisation was necessary.

Text rendering is no longer a bottleneck for the brainstorming application (see Load
Testing in §6.4.1 later in this chapter), and well over 1000 notepaper objects can be
present before responsiveness begins to be a problem. Furthermore, because of Cruiser’s
framework design, all Cruiser applications were quickly able to benefit from the optimised
font rendering introduced into the core library. The decoupling of plugins means that
implementing application-specific code does not cause any application to become heavily
dependent on particular behaviour of the core library, thus making updates straightforward.

4Lack of the non-verbal social cues that are used in regular conversation means that it is sometimes
necessary for people to put up their hands in these situations, when they wish to speak.

5Even some of this was borrowed from Cruiser’s drive detection plugin (§5.5.1) – detecting a USB
keyboard is not very different from detecting a USB drive.

6This task is usually accomplished by the windowing system which must be bypassed as there is currently
none with support for distinguishing multiple keyboards.

157



6.3. Applications CHAPTER 6. SYSTEM EVALUATION

When an item is highlighted by the touch point, it grows. The items clockwise from top
left are Align (highlighted), Delete, Snap to Grid, Hide, Copy and [attach] Audio.

Figure 6.5: A Pie Menu Activation

In cases such as these, where the exposed core library headers do not change, the plugins
need not even be recompiled.

6.2.5 Context Pie-Menu System (men)

A context-activated pie-menu system was implemented as a summer project by Hugh
MacReady. Pie menus were activated by dwelling on a Resource, or on the background
for an apply to all menu. Dragging the touch point to a menu item would give feedback
to show it was selected by growing it, and a release would activate the item. Commands
were bound to menu items using Cruiser’s command subsystem (§5.2.5.3), and menus
activated through the Environment dwell callbacks. An example of a pie menu activation
on a photograph is shown in Figure 6.5.

Note that this menu system does not appear in other parts of this thesis. It is presented
here as an example of the potential of the Cruiser framework, but its use largely goes
against our interface guidelines (§3.1). For example, there is currently no way of knowing
which direction to orient the menu for the user that activates it, the text is hard to read,
and activating a menu item in this way is unable to give continuous feedback linked to
user input (as it is for the Black Hole and Photocopier, for example).

6.3 Applications

A Cruiser application is merely a combination of one or more Cruiser plugins that, enabled
together, perform a high-level task. Some plugins provide UI functionality (such as a new
on-screen object), some provide services (such as a database cache or Exif parsing), and
others provide input mechanisms (such as Mimio). Clearly there will be overlap. It is a
strength of the plugin framework that allows this “N:M” relationship between plugins and
applications.

The following list summarises the kinds of applications that have been built with the
Cruiser framework. Applications are described in terms of their functionality, as provided
by their constituent plugins, which have been described previously in Sections 5.5 and 6.2.

158



CHAPTER 6. SYSTEM EVALUATION 6.4. Cruiser Performance

Input plugins are not listed here as there is not necessarily a correlation between the input
plugin chosen and an application – the same application can typically be used with different
input hardware, and an application can be configured with support for a number of input
plugins.

PhoTable is the application for sharing digital photographs and is a focus of this thesis,
motivating much of the development of the Cruiser framework. Its core functionality
is described from the user view in Section 4.5, and evaluated in Section 7.3. For
this, it will be configured with the following plugins enabled: metadata, audiodump,
browser, drivedetect, imagesearch, photocopy, capture frame, storage bin, Exif.

Cruiser Demonstrator For demonstrations of our tabletop interface, a collection of
compatible plugins are used to showcase a subset of the facilities provided by the
Cruiser framework and its plugins. It is typically configured the same as the PhoTable
application, but with the following plugins added: interactive images (rfb), video
support, explicit audio attachment (vu_widget). Because the demonstrator may be
running continuously, the audiodump plugin is usually disabled – there is no need to
capture all the audio.

Datawall Display The datawall display runs Cruiser in the DATAWALL mode. This
disables interaction and (optionally) enables a stereoscopic Camera view for displaying
depth-perception on a large, datawall, with the aid of 3D goggles. It also operates on
a regular, wall-projected display.
No plugins are enabled. Instead, Cruiser’s network control socket listens for con-
nections from a Cruiser tabletop. Events triggered, e.g. by the flick to edge action
(§4.4.3.1), may send objects from the tabletop to the wall display. With an appro-
priately configured 3D stereoscopic display, the object is rendered to fly from the
approximate location of the tabletop, up to the wall.

Magic Mirror The magic mirror application enables the Person Image and servers that
interact with the KiT messaging system [Assad et al., 2005]. A generic “local” plugin
is configured to connect to the Magic Mirror server when the application starts. This
loads the set of Person images (see Figure 4.2 on page 68) that interact with the
messaging system.

File System Access For the OnTop and Focus applications, the fsviewer plugin contrib-
uted by Anthony Collins is enabled. For testing, most other plugins are disabled.
However, most PhoTable plugins are compatible. So, for example, storage bins or
the capture frame can be enabled to add these facilities to the application.

Photo Tagger For this application, the map and photograph tagging plugin contributed
by Glen Whitaker is enabled in a setup similar to that used for the file system access
application.

Brainstorming This application has a specific task, so only the brainstorming and input
plugins are enabled. This helps to minimise clutter and distractions.

Blackjack Again, the application is very specific. Blackjack uses only the blackjack plugin
and any number of input plugins.

6.4 Cruiser Performance
Performance and responsiveness were identified as design guidelines in Section 3.5.1.
Furthermore, we did not want applications built with Cruiser to require special hardware.

159



6.4. Cruiser Performance CHAPTER 6. SYSTEM EVALUATION

The performance of Cruiser must be sufficient to keep the interface responsive when running
on commodity hardware.

Cruiser addresses this goal in a number of ways. For example, Cruiser’s model of
concurrency includes abstractions to offload processor-intensive tasks to spare processors7

(§5.3.2), and a novel approach to rendering gives these background tasks maximum available
processor time (§5.4.7). However, to draw the screen, all objects must be rendered. OpenGL
and Cruiser’s mipmapping (§5.2.8.1) was designed to ensure that generating a very high-
quality display, showing many high-resolution photographs, is very efficient. In addition,
offloading and caching the mipmapping (§5.2.4.1) process helps responsiveness.

For the kinds of tasks Cruiser has been used, the rendering efficiency has always
been sufficient for effective and responsive user interaction. Qualitatively, efficiency and
responsiveness have never been commented upon negatively in any of our user studies or
demonstrations8. However, by measuring the rate at which we can update the display, we
can also analyse Cruiser’s performance quantitatively.

Cruiser’s display generation, and therefore the responsiveness perceived by users, is
consistently able to maintain the equivalent9 of 60 frames per second. This is at the limit at
which most LCD and projected displays may be updated, so is not worth improving upon.
In addition, it is well beyond the human flicker fusion threshold, which is generally taken
as 16Hz [Landis, 1954]. Only under artificial load can we explore the limits of Cruiser’s
performance, and the framework allows us to easily accomplish this, through the use of a
special plugin, which we now describe.

6.4.1 Load Testing Plugin

To test Cruiser performance, and to demonstrate the simplicity of introducing new func-
tionality into Cruiser, the loadtest plugin was developed. Development took less than an
hour, and the complete source is shown in Listing 6.1.

Listing 6.1: The complete C++implementation of a Cruiser plugin for testing load
/* $Id: loadtest . cpp 2112 2008 -03 -07 06:44:31 Z tapted $ */
/* *\ file loadtest .cpp

3 * loadtest Plugin
* \ author Trent Apted <tapted@it . usyd .edu .au >
* $Rev : 2112 $
* $Date : 2008 -03 -07 17:44:31 +1100 (Fri , 07 Mar 2008) $
*/

8 # include "plug/plugin.h"
# include "environment.h"
# include "event/event_hand.h"
# include "utl/threadman/threadman.h"

13 namespace {
// /( cfg ) false disables the loadtest plugin even if the plugin is present
bool ENABLE_LOADTEST = true;
// /( cfg ) A message printed to the screen when the plugin is loaded
std:: string LOADTEST_GREET = "loadtest Loading";

18
unsigned INITIAL_LOADTEST_WAIT = 2000; // /<( cfg) wait time before testing
unsigned LOADTEST_CREATE_DELAY = 100; // /<( cfg) delay between new items
bool running = true; ///< stop when false

23 int testthread(void* penv) {
unsigned letter = 0;
Environment *env = static_cast <Environment *>(penv);

7Or low-priority threads on a machine with a single processor.
8This may be a case of no news is good news since, due to Cruiser’s novelty and immersive interaction,

users have nothing to compare it to except, perhaps, real physical interaction (which is generally hard to
beat in terms of responsiveness).

9Importantly, Cruiser does not render 60 frames each second if it does not need to, so that background
tasks receive more processor time.

160



CHAPTER 6. SYSTEM EVALUATION 6.4. Cruiser Performance

SDL_Delay(INITIAL_LOADTEST_WAIT);
for (; running; ++ letter) {

28 env ->keyPress(letter % 26 + ’A’);
env ->keyPress(’\n’ | KEYSYM_MODSHIFT);
SDL_Delay(LOADTEST_CREATE_DELAY);

}
}

33 }

extern "C" {
PLUGIN_TELL_FUNCTION(loadtest) {

/* Tell the the ’readable configuration file ’ parser what to look for */
38 RCFILE_TELLMACRO(ENABLE_LOADTEST);

RCFILE_TELLMACRO(LOADTEST_GREET);
RCFILE_TELLMACRO(INITIAL_LOADTEST_WAIT);
RCFILE_TELLMACRO(LOADTEST_CREATE_DELAY);

}
43 PLUGIN_LOAD_FUNCTION(loadtest) {

PLUGIN_LOADMESSAGE("$Id: loadtest.cpp 2112 2008 -03 -07 06:44:31Z tapted $");
if (! ENABLE_LOADTEST) {

DODEBUG(WARNING , ("[X] The %s plugin is disabled", "loadtest"));
return;

48 }
/* write the greeting to screen ( NOT to stderr ) */
env ->fwrite("%s", LOADTEST_GREET.c_str());
/* start the testing thread */
ThreadMan ::srun(&testthread , env);

53 }
PLUGIN_UNLOAD_FUNCTION(loadtest) {

running = false;
}

}

This plugin, when present in the plugins folder and enabled, continuously sends keyboard
press events to the application. For load testing, the Brainstorming plugin is also loaded,
so that these keyboard events create NotePaper Resources, each containing a letter of the
alphabet on a 512× 512 textured background, drawn with a border. NotePaper objects are
partially transparent so that occluded objects cannot be ignored. When each NotePaper is
created, it is loaded with an animation into a spiral placed at the centre of the screen. The
animation lasts for a duration of 4 seconds for each NotePaper.

To create the plugin, the only modification to the build process is the addition of the
following Automake file:

Listing 6.2: Automake file for the loadtest plugin
## $Id : Makefile .am 2112 2008 -03 -07 06:44:31 Z tapted $
include $(top_srcdir)/config/Make -rules

3
plugin_LTLIBRARIES = loadtest.la
loadtest_la_SOURCES = loadtest.cpp
loadtest_la_LDFLAGS = -module -avoid -version -no-undefined

8 loadtest_la_LIBADD = $(top_builddir)/src/core/libsharepiccore.la \
$(top_builddir)/src/core/utl/crudebug/libcrudebug.la \
@SDL_LIBS_NOMAIN@

AM_CPPFLAGS += @SDL_CFLAGS@

The SOURCES expression on line 5 lists the files compiled together for this plugin (in
this case there is just one file), and LIBADD (line 8) lists the library dependencies (in this
case, Cruiser’s core and debugging libraries). To have this plugin loaded, it is simply
compiled and copied to the plugins folder. No changes to the build and link process for
the application are required. Note also that if the plugin incorporates additional, external
library dependencies, they need only be listed here; if the dependencies break, then only
the plugin fails to load rather than the whole application. This is a significant advantage
of the framework approach to development.

161



6.4. Cruiser Performance CHAPTER 6. SYSTEM EVALUATION

6.4.2 Rendering Speed

When generating new objects every 100ms as shown in Listing 6.1, 40 simultaneous
animations will be running whilst new objects are continuously being created and added
to the Environment. Tests were run on a 3.0GHz Pentium D computer with 2GB RAM
and an nvidia GeForce 8600GT10 video card running at a resolution of 1024× 768 – the
native resolution of our data projector.

At maximum quality, with 16x anti-aliasing and 16x anisotropic texture filtering, the
frame rate of the 40 animations dropped below 30fps after approximately 700 distinct
NotePaper objects were loaded into the environment. With no anti-aliasing or texture
filtering, over 1600 objects were created before frame rates dropped below 30fps. The
interface remained interactive (and responsive) through the duration of the tests.

Because Cruiser does not use a continuous render loop, it is not meaningful to measure
frame rate without load. In these tests, animations impose a desired minimum frame rate.
However, if Cruiser could redraw faster than that, it would instead wait, so that concurrent
tasks may utilise the CPU time.

Seven hundred objects is far beyond what would be used in any of Cruiser’s current
applications. Clutter is typically a problem with any more than about 50 items with our
current table size11, unless a layout technique is used to manage them, such as Browsers
(§4.3.7). In addition, for this test, the load tester is able to reuse the memory because all
the textures are the same; with distinct objects, memory limits will be reached sooner (see
the following subsection). Therefore, it is rare that Cruiser would need to render this many
objects. NotePaper objects in this test also each include a letter in a rendered font, which
is a complex polygon – 1600 of these is significant load for the GPU.

Cruiser avoids rendering complex parts of objects in some cases. For example, large
numbers of items may sometimes be managed in a layout on a Browser. Thumbnails of
objects attached to Browsers is made simpler by skipping the step that renders borders.
The only valid action for an object on a Browser is to copy it off, so the rotate/resize
widgets are not required. All objects in this test were drawn with full border decorations.

Because of the number of variables, possible changes in hardware configuration, and
adjustable quality settings, rendering performance comparisons between systems (and
particularly research systems) is not meaningful. The conclusion that can be made,
concerning Cruiser, is that rendering performance in any of the current applications is more
than acceptable. Interaction is highly responsive, even under the unrealistically high load
generated for this test. Cruiser also leaves CPU cycles to spare for concurrent background
tasks. However, in a multi-core system, this is less of an issue because background tasks
have, in effect, a dedicated CPU.

Another important concern for performance is lag from the input device. Even if events
can be reported by the device at 60Hz, a lag of 50ms or more is common for devices
based on touch or stylus interaction. In this example, the event stream received by the
application would be 3 events behind what the user is physically doing. Unfortunately,
we cannot improve upon this in application software – it is up to the hardware, operating
system and device drivers to minimise lag. Cruiser is cross-platform, and suporting new
hardware is easy, so we retain the flexibility to optimse lag where possible.

6.4.3 Memory Load

One performance metric that is easy to measure is memory load. In Cruiser, the only
aspects of the interface with a significant memory footprint are textures. Cruiser is flexible
in this respect and has a number of techniques to maximise available memory, including

10This is a “budget” video card bought in February 2008 for AU$140.
11Even a very large table would be well within these limits.

162



CHAPTER 6. SYSTEM EVALUATION 6.4. Cruiser Performance

both graphics and system memory. For example, metadata is backed by an SQLite database
so does not need to reside in memory, and textures can be compressed as they are moved to
the graphics card memory – freeing up system memory and efficiently using the available
texture memory.

Other memory aspects are dwarfed by the requirements of texture processing: Cruiser
typically uses a maximum of 100MB for other tasks. Fortunately, the requirements for
texture processing are both easy to measure and easy to tune in Cruiser.

An overview of the need for texture processing is in Subsection 3.5.5.1 on page 53. At
the highest quality setting supported in commodity graphics cards, each texture might
occupy 12MiB of texture memory, but texture compression gives an almost unnoticeable
drop in quality while reducing the memory required to approximately 3MiB. Modern
commodity graphics cards typically come with 256MiB or more texture memory, so nearly
100 maximum quality images can be supported. This is well beyond the limit where clutter
becomes a problem. In addition, making images smaller, to reduce clutter, allows the
graphics card to swap the larger mipmap versions of the image into system memory.

However, Cruiser provides more flexibility than this. If the graphics card is more limited
in texture memory, or if more full quality images need to be loaded, a setting can reduce
the texture quality. At the next best configured limit, the 1024× 1024 compressed textures
occupy less than 1MiB. Successive reductions in quality reduce the memory requirements
by a factor of 4.

In addition, Cruiser does not load full-quality textures for images still attached to
Browser objects (see §4.3.7 and §5.2.4.1). The thumbnail texture size is much smaller –
typically 128× 128. Compressed, these occupy less than 32KiB – thousands of distinct
thumbnails can be on-screen simultaneously. When images are copies, or derived from an
existing image using the capture Frame, the texture is shared; using no additional texture
memory.

To create the texture from an image source, such as a digital photograph, the original
photograph must first be loaded into system memory. This is done before it can be
processed into a texture memory and transferred to the graphics card, but once transferred,
the system memory is freed for other uses.

When a thumbnail is requested, this is efficient as the Exif thumbnail is always a limited,
low-resolution image. However, when the full-quality image is requested, the only option is
to load the entire photograph into memory. The memory used here depends on the number
of megapixels in the photograph – simply multiply by three for the memory required, in
megabytes. For example, loading a photo from a 10-megapixel camera temporarily requires
30MB of system memory, until it is processed into a texture.

Cruiser limits the concurrency of image loading to one, until it becomes a texture. This
is important because we cannot anticipate or tune quality at this step, and it allows us to
reuse the memory for subsequent photo processing. Then, textures still in system memory
are placed in a queue until they can be transferred to the graphics card, between screen
redraws. However, at this stage they are a known size with an upper limit determined
from the configurable quality setting.

6.4.4 Platform Independence

One design goal for our framework was to be cross-platform (§3.5.1). The Cruiser framework
achieves platform independence by using open standards such as ISO C++, OpenGL and
Exif, cross-platform libraries such as SDL and SQLite, and using portable programming
practices (see Chapter 5 and §A.1 for details).

Because Cruiser is a programming framework, it must also support cross-platform
development. This is achieved by using GNU Autotools – an open source build system
that is supported natively on POSIX-compliant systems such as GNU/Linux and Mac

163



6.4. Cruiser Performance CHAPTER 6. SYSTEM EVALUATION

OSX, and supported on Microsoft Windows via the free MinGW12 libraries and associated
MSYS13 environment.

Some functionality is necessarily platform-specific, because it has no open standard for
accomplishing it. One example, is the detection of the insertion (and removal) of removable
drives and USB cameras (§5.5.1). While the Cruiser core is fully cross-platform, its provision
of a plugin framework gives developers the flexibility to introduce new, platform-specific
functionality, like drive detection, without introducing additional complexity or instability.
This is exactly what was done for drive detection – a Windows version was implemented
first, followed by the (much simpler) GNU/Linux and Mac OSX versions (see Figure 5.14
on page 139).

The drive detection case study is part of how we evaluate Cruiser’s flexibility to
provide platform independence, while also giving it the power to leverage platform-specific
functionality. Releases of the Cruiser plugin framework and demonstrator application (see
§6.3) are provided in binary form for Windows, Linux and OSX, and the application is
not diminished by being compiled for a particular platform. Developers using Cruiser
have been able to user their preferred platform for development, which includes Windows
(§6.2.5), OSX (§6.2.1), and Linux (§6.2.4), or even all three at once (§6.2.2).

6.4.5 Hardware Independence

Another design goal for Cruiser was hardware independence (§3.5.1) – Cruiser should be
able to adapt to, and quickly support, new types of tabletop hardware in a flexible manner
and with minimal effort. The precursor to Cruiser was developed using DiamondTouch
hardware from MERL, resulting in an input framework grounded in support for multiple
simultaneous interaction with multiple, identifiable users. Any hardware that does not
support simultaneous interaction, supports only single users, or is unable to identify users,
merely invokes a subset of this input framework.

After DiamondTouch, we moved to using a Mimio stylus and a plugin framework. Thus
the Mimio input plugin (5.5.6) provides support for multiple Mimio styli, corresponding to
multiple identifiable users. When we later introduced support for SmartBoard, most of
the functionality in place to support Mimio (e.g. §5.3.3) could be reused14. An additional
30 lines of code, self-contained in a single file (§A.5.1), introduced support for SmartBoard,
and any other input device that conforms to the USB Human Interface Device (HID) class
protocol [USB Implementers’ Forum, 2001], an open standard.

New types of hardware can be supported in a similar manner. Developers also have the
option of working more closely with the input framework by writing their own input plugin,
and performing their own interpretation of the input primitive (§5.2.11.3) by extending
the gesture framework (§5.2.10).

For debugging, or potentially for a new application designed for a traditional, vertical
display, Cruiser also supports interpreting input events from a regular desktop mouse to
interact with the interface. This has also been used for early testing of tabletop hardware
that provided mouse emulation (e.g. Braccetto table, built by JumboVision, and used in
the Focus user studies [Collins and Kay, 2008]).

12Minimalist GNU for Windows, http://www.mingw.org verified 2008-07-18.
13Minimal SYStem; similar to Cygwin but MSYS builds native applications, whereas some parts of

Cygwin use emulation for better support (e.g. for fork() – a function in the POSIX.1-2001 standard that
has no equivalent on native Windows).

14Note that this does not mean copy & paste – the framework provides hooks to reuse and extend existing
functionality.

164

http://www.mingw.org


CHAPTER 6. SYSTEM EVALUATION 6.5. Chapter Summary

6.5 Chapter Summary
As discussed in the preface to this chapter, system evaluation is, necessarily, touched upon
in a number of chapters in this thesis. This chapter has dealt with aspects that are specific
to the system evaluation, such as rendering performance and studies of use of the Cruiser
framework by other researchers. However, this is not the complete picture.

Much of what makes Cruiser useful is that it is an enabler : The Cruiser framework has
enabled myself and others to explore avenues of research that were not previously possible.
Some of this is evidenced by the descriptions of functionality in Chapter 4 (backed by
the design rationale in Chapter 3), and a reflection of their design and implementation
in Chapter 5. Section 6.2 of this chapter reinforces this, and indicates the ease and
minimal investment of effort required by others in order to introduce both incrementally
new functionality through extensibility and reuse, as well as radically different functionality
(e.g. Blackjack) through flexibility of the Cruiser framework.

Contributions by other researchers are compelling, but when evaluating the framework
(which is a focus of this thesis) one should also consider how it enabled PhoTable. For
example, the end result of PhoTable – the digital photograph album outlined in Section 4.6.2
– is made possible by Cruiser. PhoTable leverages the Cruiser framework for a tabletop
interface that allows users to share their photographs using natural computer interaction
that may be fluidly combined with social aspects of sharing. This enables the capture
of a useful dialogue of photo talk, which may then be combined with a digital trace to
fully automate the creation of the digital album. Without Cruiser, this would have been
impossible.

This chapter has dealt with system evaluation. It shows that Cruiser is flexible,
extensible and reusable. In addition, Cruiser is highly efficient: in terms of its rendering
speed, the memory load, and also the investment of effort required to explore new tabletop
interface functionality. It is also platform independent and adapts quickly to new types of
hardware.

This approach to the evaluation is inspired by recognised best practices for systems
evaluation [Olsen, 2007, Greenberg and Buxton, 2008]. Next, in Chapter 7, we switch focus
to evaluate the user interface.

165



6.5. Chapter Summary CHAPTER 6. SYSTEM EVALUATION

166



Chapter 7
Interface Evaluation

Following from the system evaluation in Chapter 6, this chapter evaluates aspects of
the user interface. One is usability, but we also reflect upon design choices of Cruiser
interface components and discuss a study of use for the PhoTable application. That is,
how PhoTable is able to facilitate natural storytelling around personal digital photographs
and the automatic capture of those stories to create an annotated digital photo album.

Also note that usability is not something evaluated only in our user studies, which is the
focus of this chapter. Our approach to design was driven by guidelines (§3.1) and heuristics
(§4.1.1), resulting in continuous, incremental evaluation throughout development. We also
performed focused user studies (formal and informal) of individual interface components
(e.g. copy [Apted and Kay, 2006a], summarised in §4.3.8.3).

7.1 Usability Evaluation with Elderly Users
Many aspects of the design from an early prototype (called SharePic) were retained when
progress required a new architecture for experimentation (see §3.5 Drivers for Design).
SharePic is the precursor to Cruiser and usability and learnability for SharePic was examined
closely in a structured user experiment with 12 young adult and 12 elderly participants.
Details of the study are available in our full CHI paper [Apted et al., 2006] and a 112-page
technical report [Apted et al., 2005]. A summary of the key elements for design and
usability of PhoTable are presented here.

The SharePic user experiment was conducted with DiamondTouch hardware (see
§2.1.1). The facilities available to participants included select, move, rosize, delete (with
the Black Hole) and Frame capture – these were all ported into the new Cruiser framework
with few modifications (§4.2). Elderly users were chosen because of the important role
photo sharing plays in all stages of life, and the great deal of life experience our elders have
to share. In addition, due to the effects of ageing (such as losses in vision, cognition and
motor skills), and generally less computing confidence and experience, elderly users are a
very challenging group for user interface designers. Furthermore, designing well for elderly
users can have a positive effect on usability for all demographics.

To assess the effectiveness of our design, we designed an evaluation that would provide
insights into the following aspects of the interface:

performance – could elders successfully perform photograph sharing tasks, with minimal
training?

learnability – could elders learn the core concepts embodied in SharePic from a combin-
ation of being explicitly told about elements, being encouraged to infer elements and
being able to explore and discover other elements?

167



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

affect – overall, did elders find SharePic pleasing for photo sharing activities?

We ran two sets of trials, one with young adults and one with elders. We considered it
critical to study SharePic’s learnability for elders. This aspect could be affected strongly
by a user’s ability to learn and remember new facts, as well as their confidence in exploring.
We took care to minimise the number of interface elements and to ensure consistency
among them. We wanted the evaluation to provide insight into how well elderly first-time
users could learn about SharePic’s core elements, as well as how well they could infer and
explore.

Finally, we wanted to learn how elders would regard their SharePic experience. Clearly,
this is closely related to the other aspects of SharePic’s usability but it also includes the
elders’ response to such an unfamiliar interface.

The study broadly gave participants the task of creating a postcard, consisting of a
collage of digital photographs, following an introductory tutorial.

7.1.1 Method

When presenting a completely new interface for a user trial, it is common for researchers to
participate in an interactive training session with the participants (e.g. [Everitt et al., 2004,
Ryall et al., 2004, Wu and Balakrishnan, 2003]) and ignore data from early trials to discount
learning effects (e.g. Ringel et al. [2004]). In this study, we wished to examine learning
effects and in particular, analyse whether attempts to minimise the number of new concepts
and make action invocation easy to remember was supported. Furthermore, we considered
the needs of our elderly users in formulating the evaluation. For example, difficulty in
remembering new concepts suggests the need for a reference that the participant could
refer back to in the trial.

Thus, in our evaluation we presented participants with a printed tutorial script rather
than providing an interactive training session. We believed that our user interface was
easy enough to learn that a one- to two-page tutorial would be sufficient. We used a
natural think-aloud evaluation [Preece et al., 1994], with pairs of participants making use of
SharePic; making it natural for them to speak about any problems and explain what they
were doing and thinking. All experiments were conducted by a single observer (myself).
We videotaped the experiment from two angles, each focused on one of the users as well as
the touch surface. We recorded audio from each camera.

The nature of a tabletop interface makes it very natural to use in a social setting with
two or more people. We designed the evaluation to give insight into the way learning may
be supported and influenced by working with a partner; also a novice. The experimental
session had three parts:

0. A tutorial task to introduce functionality;

1. Task 1, which provides more familiarisation without the load of decision making (i.e.
practice); and

2. Task 2, which is a more authentic photo sharing activity, designed in light of our
earlier ethnographic study [Risborg and Quigley, 2003].

7.1.1.1 Tutorial Task

The printed tutorial introduction was approximately one and a half A4 pages in 12-point
font. It had seven, clearly numbered steps. Participants were able to refer back to the
printed materials during the subsequent tasks. Indeed, some did just this.

The tutorial was designed for active learning, with participants asked to try things
as they progressed through the steps and also asking them to experiment to discover

168



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

The triangles in the top left and bottom right show each user’s personal space.

Figure 7.1: Initial state for Task 1

other aspects. For some elements, participants were asked to write down what they
discovered into spaces in the document. To keep the tutorial short, we carefully chose
some concepts that were introduced, either explicitly or in discovery activities. This meant
that there were concepts left for participants to infer as they performed subsequent tasks.
We expected participants to be able to deduce these untaught concepts by generalising
from the behaviour of interface objects and from concepts they learnt about in the tutorial.
This design was intended to indicate the ease of predicting functionality of SharePic.

When considering the special needs of our elderly participants, the printed tutorial
seemed better than a demonstration. A demonstration might pose problems for participants
with any hearing loss, a problem to be expected within this population. Furthermore, we
wanted each participant to be able to take the tutorial at their own pace. This seemed
particularly important with the participants working in pairs; we were concerned that if
one member of the pair did not understand part of the demonstration when their partner
did, the former may have felt uncomfortable about slowing things down. Finally, we were
conscious of the possibility that elders may have some difficulty remembering elements
they had recently met for the first time in an interface as unfamiliar as SharePic.

Each of the tutorial’s seven steps introduced one aspect:
1. the idea of personal space;

2. exploring it in relation to another person’s space;

3. how to shrink, enlarge and rotate photos;

4. copying an image;

5. making an image float on top of other photos;

6. Black Hole and experimentation with it;

7. Frame and experimentation with it.
For the tutorial, the interface was setup as in Figure 7.1. The “photos” are all simple line
drawings, each with a large, clear number in the centre for easy identification.

At the end of the tutorial period, the printed materials asked for general comments on
the positive and negative aspects of SharePic. Most users preferred to do this verbally, so
these comments were extracted from the video transcripts. This stage also served partly as
a graceful opportunity for a slower participant to catch up with their partner. Once both
participants were satisfied that they had completed the tutorial, they commenced Task 1.

169



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

7.1.1.2 Task 1

This task had two parts: making a defined postcard, then cleaning up the table. At the
beginning of the task, the table was reset to the same layout as at the beginning of the
tutorial. The printed instructions presented an image of the precise appearance of the
postcard that each person was to make.

The two participants were each asked to create different postcards from three images.
One of the images was needed for both postcards, so participants needed to create an extra
copy of this. The printed material for this task showed an image of the target postcard
and coached participants to do the task, suggesting that they:

• take a copy (if necessary) of all the pictures they need;

• put these into their personal space;

• capture the postcard with the Frame;

• put the resulting image in their personal space;

• reminding them that the newly created image would slide in after a second or two;

• pointing out to participants that their partner would also need the Frame.

The design of this task deserves some explanation. Firstly, it tests whether participants
learnt the main elements from the tutorial. Secondly, we removed creative aspects from
the postcard creation task: involving very stylised images; specifying exactly what the
postcard should look like; and involving exactly the same images and initial setup as in the
tutorial. This allowed participants to avoid the potential distraction and cognitive load of
deciding what pictures to choose and how to arrange them.

Creating the postcard required all participants to move and rotate photographs as well
as to make use of the Frame. Although the instructions encouraged participants to make
copies of photos, it was quite possible that one member of the pair could make the copy
that was essential for both participants to complete the task. The task also called upon
participants to show understanding of the notion of personal space; to move images into
and out of it, as instructed.

The second part of Task 1 asked participants to clean up, moving the Frame out of
their personal space if it was there, their postcard into their personal space and all other
images into the Black Hole. This part enabled participants to demonstrate awareness of
the concept of the personal space and the ability to use the Black Hole to dispose of images.
Once Task 1 was complete, participants commenced Task 2.

7.1.1.3 Task 2

This was a more authentic task using high-quality digital photographs. It was impractical
in this experiment for users to provide their own photographs, so the images were sourced
from a volunteered collection from a holiday. Each participant was asked to pretend that
they were making a postcard for a friend. In the case of Participant A, this friend was
interested in sculpture; for Participant B, the friend was interested in architecture. At the
beginning of this task, the table was initialised with a collection of 15 photographs. Of
these, at least four were clearly sculptures and a different set of four were architectural.

This was the main experimental task, relying upon participants having learnt several
of the main elements of the SharePic interface from the tutorial and Task 1. It required
participants to resize and rotate images, make effective use of the Frame to capture the
postcards and the Black Hole to clean up. It did not require any copying. Once complete,
participants were encouraged to make general comments about the interface. This was the
final stage of the experiment.

170



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

Confidence Cumulative Experience

N
ot

C
on

fid
en
t

C
on

fid
en
t

Ex
pe

rt

Li
tt
le

or
N
on

e

D
ay
s

W
ee
ks

M
on

th
s

Ye
ar
s

Y1A X X

Y1B X X

Y2A X X

Y2B X X

Y3A X X

Y3B X X

Young Y4A X X

Y4B X X

Y5A X X

Y5B X X

Y6A X X

Y6B X X

Table 7.1: Young Participant self-assessment of computing confidence and experience

7.1.1.4 Participants

The first set of trials involved six pairs of young users. These were secondary school and
university students, mostly undertaking an Arts or (fewer) a Computer Science degree and
aged between 18 and 24.

Our elderly participants were another six pairs, all members of the Port Hacking Probus
Club, a Rotary club for retired professionals and businesspeople. Members were aged
between 63 and 81. From Tables 7.1 and 7.2, we can see how each participant assessed their
own computing experience and confidence – note that only 1 young participant considered
themselves “not confident”, compared to 7 of our elderly participants. Note that our elders
considered themselves as having less experience with computers, but not considerably less,
perhaps due to their professional backgrounds.

7.1.1.5 Physical Setting

The evaluations involving the young participants were conducted in our laboratory. The
elderly user tests were conducted in the common room of the South Cronulla Bowling
Club, where the Probus group meets. For these tests, no computers, keyboards, monitors
or mice were visible to the users. Although the cameras and various cables were visible,
participants appeared to quickly become unaware of these. One of the pairs is shown in
Figure 7.2.

Participants sat at the long edges of the DiamondTouch, which had been placed on a
table 80cm high. The LCD projector and an angled mirror were used, suspended from a
ceiling rafter, to project onto the surface of the DiamondTouch. The observer sat to the
side of the table and the table was placed in the centre of the common room, away from
the glass walls and direct sunlight. Only indirect natural lighting was used.

171



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

Confidence Cumulative Experience

N
ot

C
on

fid
en
t

C
on

fid
en
t

Ex
pe

rt

Li
tt
le

or
N
on

e

D
ay

s

W
ee
ks

M
on

th
s

Ye
ar
s

E1A X X

E1B X X

E2A X X

E2B X X

E3A X X

E3B X X

Elderly E4A X X

E4B X X

E5A X X

E5B X X

E6A X X

E6B X X

Table 7.2: Elderly Participant self-assessment of computing confidence and experience

Figure 7.2: A pair of our elderly participants using the interface during Task 2

172



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

21:30

6:29

3:44

6:42

12:54

1:56 2:21

4:35

0:00

5:00

10:00

15:00

20:00

25:00

Tutorial Task 1 - Layout Task 1 - Total Task 2 - Total

Ti
m

e 
Ta

ke
n 

(m
:s

s)

Elderly Average
Young Average

error bars show a 90% confidence interval for the true average

Figure 7.3: Task Times for Elderly and Young Participants

7.1.2 Results

The videos from the experiment provided a rich source of data about the way participants
used SharePic and how they learn about its interface elements. The evaluation method
was goal-based. By asking participants to perform a series of sub-tasks before tackling a
main task that combined them, we analysed whether participants were able to successfully
complete the tasks and how participants learnt and used the novel interaction methods they
were presented with. Completion times and efficiency were not the focus of our analysis,
but the times were recorded and they indicate whether a sub-task was learnt at the time it
was first introduced.

However, to give an overall impression of how our elderly users coped with the task, we
recorded the average duration of the tasks for our elderly versus our young participants.
Note that participants were encouraged to feel relaxed and welcome to make comments.
Participants were not put under any time pressure. This means that all timing data must
be interpreted cautiously. Allowing for this, there are interesting observations for the time
participants took to complete each phase of the evaluation.

Figure 7.3 shows average completion times for young and elderly participants. Units
are in minutes and seconds. It is clear that, on average, the younger participants completed
each stage considerably faster than the elders. For example, the first column shows the
young users completed the tutorial in approximately thirteen minutes, while the elders took
twenty one and a half minutes, on average. This is in line with observations by Coyne and
Nielsen [2002] where senior citizens took roughly twice as long to complete a web usability
task. It is promising that the time difference was reduced for Task 2, perhaps indicating
learning and increased confidence, but at a slower pace than the young participants. The
nature of the evaluation means further analysis of times is not meaningful.

7.1.3 Task Completion

We express the goal of this aspect of the evaluation in terms of the question: could
elders successfully perform photograph manipulation and the postcard creation task using
SharePic, with minimal training? For our evaluation, we interpret this in relation to
participants’ success in working through the tutorial and Task 1 to complete Task 2, as
specified. In these terms, all participants succeeded. For Task 1, two pairs did not complete
the task – one because the trial was taking too long and the other because one of the
pair became frustrated with trying to understand the Frame. Despite this, both groups

173



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

Concept: Rosize Copy Black Hole Frame
Group 1 2 3 1 2 0 1 2 3 4 0 1 2

E1 A • †
B

E2 A • •
B

E3 A
B

E4 A
B 8 † †

E5 A • • 8
B • • 8

E6 A † 8 †
B † † 8

A blank cell indicates that the participant did learn the concept, during the appropriate stage of the tutorial.
• learnt during tutorial, but not at the stage that dealt with it;

† learnt concept during either Task 1 or Task 2; and
8 did not show evidence of learning the concept at any time.

Table 7.3: Difficulties with Concept Learning (Elderly)

completed Task 2 without difficulty, and the frustrated participant came to understand
the Frame once given the fresh context of Task 2 and the opportunity to observe her
co-participant.

7.1.4 Novel Interface Elements

Here we examine performance and reaction of our elderly participants to the novel interface
elements we tested. We identified features we could extract from the actions of participants
where they demonstrate understanding (e.g. deliberate use) of an aspect of one of the
novel user interface elements. Each user interface element has a number of behaviours,
which are enumerated in the columns of Table 7.3 and we recorded the time at which
the behaviour was first understood for each participant. Note that a blank in Table 7.3
indicates success. That is, the participant demonstrated understanding of the concept
when they were first introduced to it; in the tutorial. Overall, most participants mastered
most aspects, including some subtle elements that were never explicitly taught.

The rosize operation was well understood by all participants. To conclude that a user
had mastered this interface element we required that they could:

1. identify and use the photo corners,

2. resize a photo, and

3. rotate a photo.

From Figure 7.3 (under Rosize), only one participant had a delayed understanding of the
rotate operation, because they initially chose only to resize the photograph and did not
try to rotate it. It was not until later in the tutorial, when asked to experiment with the
frame, that they demonstrated understanding of the rotate behaviour of rosize.

The copy operation proved to be difficult for our elderly participants, while our younger
participants encountered no difficulty. Here the requirements for Copy in Figure 7.3 were
whether the copy gesture could:

1. be started, and

174



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

2. successfully completed.

From the table, it can be seen that three participants had initial difficulty, but the real
difficulty for our elderly participants came when they were required to re-use the copy
gesture in subsequent tasks (this is not evident in Table 7.3). Some elderly participants
had difficulty remembering how the copy gesture was performed and many were hesitant
to interact with a second finger or hand. In most cases, a struggling participant could refer
back to the tutorial, re-learn the gesture using the initial instructions and subsequently
carry it out successfully.

Generally, the Black Hole was well understood by all participants, and even enjoyed by
some. The Black Hole has a complicated function, and hence many behaviours. Despite
this, users took to the basic functionality very quickly and were able to re-use it as needed
later, without retraining. The requirements for Black Hole in Table 7.3 were for participants
to observe:

0. which object is the Black Hole (i.e. identify it),

1. that photos become hidden when dragged into the Black Hole,

2. that the Black Hole may be moved,

3. that the Black Hole may be rotated and resized, and

4. that the Black Hole may not be copied.

Difficulty with the last behaviour is often due to preceding difficulty with the copy operation.
For the last group (E6), they simply did not try it. This was also the case with rosize
the Black Hole, which they did not attempt until the tutorial was over and the tasks had
begun.

The Frame, too, was generally well understood. The requirements for the Frame in
Table 7.3 were for participants to:

0. identify the Frame,

1. perform the dwell action, and

2. observe that the Frame creates new photos that slide in from the corner of the table.

Understanding of the Frame’s basic operation was critical to task completion. Hence, the
few participants who did not understand it initially were required to learn it in order to
complete Task 1. Participant B of elderly group E4 in particular, had difficulty with the
Frame and subsequently become frustrated with Task 1. However, by observing her partner,
the participant was able to learn the Frame’s use and completed Task 2 successfully.

7.1.5 Affective Analysis

Strong observations were that all participants enjoyed the interface, perhaps impressed by
its novelty and being pleased to easily master it. This was reflected in comments by our
elderly participants such as these from our affective analysis:

E1B: “Now swivel [the Frame]. Yeah, I love doing that, that’s great.”

E3A: “It was fun, I enjoyed it. Normally when I’m using the computer, I get a little
up-tight, whereas this one. . . ”

E4A: “This is like a game you’d play at home, once you got the knack of it all. It’s like a
board game.”

175



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

E5B: “That was good fun. A lot of fun, is that.”

E6A: “I’m disappointed it’s ended. It was just getting interesting.”

E4A: “I like these big screens. Small computers now are so hard on your eyes. This is
much more comfortable to see; flat on the table.”

E3B: “It’s definitely more user-friendly than a computer. You need two minutes training
to use it.”

E2B: “Would be handy, have a black hole instead of the garbage disposal.” E2A moves
some images into the Black Hole and B observes, “Well that immediately makes sense
with what we know of black holes.”

Comments such as these are consistent with informal comments made about the Cruiser
interface throughout its lifetime (§7.2).

7.1.6 Reflections on SharePic

The basic interactions for select, move, rotate and resize were preserved in the move to the
Cruiser framework, retaining the high level of usability and learnability that was observed
in this study. The interactions for using the Frame, which were well understood by both
young and elderly participants, are the same as those used for the current Capture Frame,
but the underlying implementation has been improved for added efficiency and quality. In
addition, new edge hotspots (§4.3.2.2) allow the new Frame to have its aspect modified,
which was a common request in demonstrations of the interface. The Black Hole, too, was
retained for the Cruiser framework, largely unchanged.

SharePic also included some other facilities, still available to plugin developers in Cruiser,
but that were not carried across to PhoTable application, and not enabled by default in
Cruiser. These were float, a two-handed copy gesture and fixed-sized personal spaces. They
are not discussed in Section 4.2 and their evaluation at this stage of development informed
the design of Cruiser/PhoTable, so these removed features are now discussed.

7.1.6.1 Float

Float was an operation activated by dwelling (§4.2.6) on any regular photograph for more
than one second. We wanted to give users some control over the vertical ordering of objects,
as it might be necessary for them to keep a particular photo above others to achieve a
desired postcard layout. Usually, the current selection will always be raised above all other
photographs.

For feedback, an animation over the photo occurred and it was then locked to the top
of the drawing pile (see §5.2.5), until it was dwelled on again. That is, newly selected
photos would not be raised above any photos that were floated. Whilst a photo was locked
it was drawn with a white border. Float, however, had some problems.

Particularly amongst the elderly, we were hampered by terminology when explaining
the float procedure. The physical, “stack of photos” metaphor favours top/bottom not
front/back. However, top/bottom was too easily interpreted as above/below on the
horizontal plane (i.e. further away or closer to the edge of the table); confusing the users.

We suspect that there were also more conceptual problems with the elderly. Such an
environment is commonly referred to as “21

2D”. That is, two horizontal dimensions and
a depth dimension consisting only of the Z-order. Explaining this in layman’s terms is
difficult as there is conflict between the terms float, front/back, top/bottom, above/below,
over/under, before/after, dwell, overlap, lock, Z-order. Furthermore, we suspect that

176



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

cognitive associations for these terms with the application domain were difficult for those
who were infrequent computer users.

There were also issues when giving feedback for the float action. Unless other images
overlap the image and those are already floated, there is no obvious consequence of floating
an image. This is because in order to dwell, you need to select, which immediately places
that image in front of any unfloated images, before any floating occurs. Even then, moving
a floated image around seems to behave no differently from moving an unfloated image.
In order to notice the effect, one must (try to) move an unfloated image over the floated
image to observe that the unfloated image gets obscured. Often, by this stage, the user
has forgotten about their float and is simply confused by what they see.

Another problematic property of float is that it is a mode. Our guidelines argue against
modal behaviour (G1f in §3.1) – the nature of tabletop interaction makes it difficult to give
appropriate feedback. The problems we observed users having with float is strong evidence
for the value of this guideline.

The dwell operation on photograph Resources has since been re-purposed to other
operations – recording audio (§4.3.5) and context menus (§6.2.5). Cruiser also provides
plugin developers with a facility to provide their own function for a dwell activation (see
§5.2.1).

7.1.6.2 2-Handed Copy Gesture

Copy is one of our key design elements for tabletop interaction, and we argue for it in
Section 3.3.4. We decided to explore a special copy action that was invoked using a
two-finger gesture. The gesture is based upon the idea that one should simply try to move
a photo to two places at once; using two fingers.

We implemented copy as follows. Once an image is touched/selected with one finger, a
second finger is placed on the image (close to the first finger) and moved away. All the
time, both fingers are in contact with the surface. When the second finger has moved
beyond a configurable threshold, a duplicate of the image is produced beneath that finger.
Thus each finger is now able to translate their own copies of the original picture. Once
both fingers are released, the two images behave as if they were separate images. This
behaviour is shown in Figure 7.4.

In the SharePic study, we used DiamondTouch and there are some peculiarities of the
hardware that sometimes introduce complications. When a user touches in two places, it is
not possible to determine whether the two points are (x1, y1), (x2, y2) or (x1, y2), (x2, y1),
so a bounding box is given, represented by the top-left and bottom-right corners of the
selected area. This is due to a property of the hardware – if the touch surface has a
resolution of, say, 128 × 96 touch points there are not 12 228 touch receptors, but 128
column receptors (aligned vertically) and 96 row receptors (aligned horizontally) in a lattice
[Dietz and Leigh, 2001]. See Section A.3.1 of the appendix for more details.

For our copy gesture, the provision that one (either) finger remain fixed while the other
finger moves away allows our implementation to work around this limitation. If both fingers
moved during a copy gesture, the two images may appear at corners of the bounding box
adjacent to those where the fingers actually lie. Note that we could also stipulate that
the first finger indicates one corner of the bounding box and the second finger is always
opposite. However, this strategy may fail if the line between the fingers is orthogonal to an
edge of the display at any time during the gesture.

Our workaround was effective, and our young adult participants were all able to master
the copy gesture quickly. However, our elderly participants struggled with the gesture.
The major problem encountered was that when asked to copy objects in the postcard
tasks, our elderly participants could not remember how to perform the copy gesture. Some
elderly participants were also observed favouring a particular hand for most interactions

177



7.1. Usability with Elderly CHAPTER 7. INTERFACE EVALUATION

½½ 1

2

The original image is on the left and remains stationary through the gesture. In step À,
fingers from both the left and right hands are placed on the original image. The right hand
is then moved away and a duplicate image (on the right) appears beneath it. This image
remains under the finger on the right hand as it moves, further, to the position at step Á.

Figure 7.4: The copy gesture

and having to reposition their posture in order to use the second hand for the copy gesture.
We suspect special care must be taken when designing multi-touch gestures to ensure they
are learnable.

Our copy gesture also only partially met our feedback guideline (G1e in §3.1). Because
of the requirement for a configured threshold – a distance between the fingers upon which
a copy would be initiated (over a regular move) – there is an unavoidable area in which
feedback is unable to be given. Copy could not give the immediate feedback that objects
such as the Black Hole are able to provide, perhaps suggesting to users that they were not
performing the gesture correctly. For our more confident participants, this is less of an
issue – they have the confidence to continue without immediate feedback – but our elderly
participants were typically less confident (Table 7.2). Future work could explore improving
the feedback, perhaps by creating a transparent (ethereal) copy at an additional lower
threshold that disappears upon release, if the gesture does not continue past the second
threshold.

7.1.6.3 Fixed Personal Spaces

A tabletop has the natural concept of personal space – the area close to you in which only
you can work – and other work has motivated and explored the idea of personal space at
the tabletop interface [Scott, 2005]. With a digital interface we can enforce this by ignoring
actions one user makes in another user’s private area. In SharePic personal spaces were
coloured triangular elements drawn on the display, which demarcate the exclusive area for
each user. Figure 7.5 shows two users interacting with Cruiser, set up with two personal
spaces; a screenshot of the interface set up for four personal spaces is shown in Figure 4.2
on page 68.

Once the centre point of a photo is contained within a user’s personal space, no other
user may select that photo. In addition, users are not permitted to move other photographs

178



CHAPTER 7. INTERFACE EVALUATION 7.1. Usability with Elderly

Figure 7.5: Cruiser in use, showing 2 static personal spaces – the large triangles close to
each user

into another user’s personal space – the photo is instead moved to the closest point not in
that personal space. DiamondTouch allowed these permissions to be enforced.

However, a static personal space can interfere with other items on the table, detracting
from the goal to appear like physical photographs placed on the table [Pinhanez and
Podlaseck, 2005]. In particular, having the personal space demarcated as a triangular area
at the edge of the projected display frames the display area, making it look more like a
computer.

Later, we implemented another mode with a dynamic personal space; in the form of a
photographic portrait of each user. As the photo is moved, rotated and resized, the regions
that each user has access to are updated. A user could also claim other photos they own
as extensions of their personal space (e.g. as additional private storage). Their private
space, and the restricted area for other users, becomes the union of the area occupied by all
the claimed photographs. This feature remains, but the claim command is rarely used (it
exists as a context menu option, but our design tries to avoid menus and they are usually
disabled).

For PhoTable, we decided not to include personal spaces. Enforcing ownership detracts
from the sharing aspect, and social protocols [Morris et al., 2004b] are typically sufficient
in informal scenarios such as photo sharing. Another, pragmatic reason is that hardware
support for user identification is limited, and this is needed if the interface is to enforce
personal spaces.

However, the notion of a region of screen/table area in which we restrict the movement of
other objects under certain conditions is useful for contexts other than enforcing ownership.
The framework that implements these dynamic regions of table space is made available in
Cruiser (§5.2.5). For example, it restricts thumbnail previews of photographs to the Browser
holding them (see §5.4.5). With user identification, such as that provided by DiamondTouch,
Cruiser could support a facility for private Browsers, whereby only particular users have

179



7.2. Interface Demonstrations CHAPTER 7. INTERFACE EVALUATION

permission to copy photos out of a Browser.

7.2 Interface Demonstrations

One core goal for the design of Cruiser was a provision for a stable code base with flexibility
to rapidly experiment with and incorporate new features (§3.5.1). Realising this goal not
only meant that Cruiser was continually available to give demonstrations of our tabletop
interface, but also that the software demonstrated was able to readily evolve over time as
new, experimental features were incorporated into the set used for demonstrations.

This availability meant that Cruiser was demonstrated frequently1 from 2006 onwards.
A list of notable demonstrations is shown in Appendix B.3, but demonstrations are
readily given to visitors to the lab: university students, school groups, invited speakers,
collaborators and other guests. Some of these demonstrations generated interest in pervasive
computing and HCI, as well as fostering some collaborations between research groups. The
steady evolution of the demonstration meant that repeat visitors were able to experience
new features, and some commented on this. Feedback from demonstrations also partly fed
into refinements of the interface.

A pragmatic approach to tabletop hardware also meant that our system was readily
transportable. We use a regular white table with a data projector and stand. Early versions
were run using a laptop2, which was later upgraded to a consumer-level system with a
more powerful graphics card. For input, we use Mimio [Virtual Ink Inc., 2006], which folds
up to easily fit in a briefcase. This transportability meant that Cruiser was demonstrated
at locations other than our lab, including the Australian Museum, a range of open days,
and at the IEEE TableTop Conference in Newport, Rhode Island, USA [Tab, 2007].

7.2.1 Exhibitions

In August 2005, Cruiser was demonstrated for the Science in the City3 exhibition at the
Australian Museum. This was not a formal user study but provided insight into whether
the interaction techniques we provided were natural, as well as whether the interface was
well-liked. Science in the City is a 2-day program targeted at school students (K-12). Thus,
over the course of 2 days, Cruiser was exposed to hundreds of novice users ranging in age
from 5–18 years old. Its location in the museum also attracted general public, including
infants who, under their parents’ supervision, were invited to pick up a pen and interact.

Findings from exhibitions like these are necessarily general. Recording audio and video
of children in such a situation is disallowed by law, and conducting evaluations was never
the intent anyway. Main observations included the robustness of the interface – certainly
it lasted through both days with only occasional downtime for recalibration (e.g. if the
projector stand was bumped). The interface was very approachable – students walking
past would often sit down in groups to interact and were quickly able to demonstrate
an understanding of the interaction. The interface was also well-liked, with people often
returning for further experimentation, e.g. at quieter periods during the exhibition.

One stand-out observation – from this exhibition as well as the Australian CeBit and
various open days, showcases and demonstrations for visitors – is the enjoyment and
understanding surrounding the Black Hole. Its function is always quickly grasped and
it is usually a highlight of a demonstration. Its interactivity is also often a source of
enjoyment. Furthermore, there is recurring evidence that its function and utility is also

1Sometimes multiple times per week, but every couple of weeks, on average.
2A laptop is still used for overseas demonstrations.
3http://www.scienceinthecity.net/, verified 2008-06-21.

180

http://www.scienceinthecity.net/


CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

easily remembered – not only do people know how to delete after being introduced to the
Black Hole, but are also readily prepared to use it, and use it without prompting whenever
clutter becomes a problem or the focus of their task changes.

7.3 PhoTable Experiment

We now describe the systematic experiments designed to gain the broad insights needed to
evaluate the PhoTable application. The primary goals of these experiments were to assess
how effectively PhoTable could support storytelling based on digital photographs, and to
gain an understanding of how PhoTable was used to automatically produce a digital photo
album composed of the photos shared, plus the story that users had told about each one.

As a prelude to this, we had conducted a series of smaller, informal usability-focused
evaluations of the individual interface elements such as the capture frame, photocopier,
and browser [Apted and Kay, 2006a]. Other work [Collins et al., 2007] explored an early
version of the browser in depth. We also conducted preliminary trials of the experiment.
These preliminaries informed usability improvements and refinement of the experiment. In
addition, previous work (§7.1 and [Apted et al., 2006]) demonstrated the ease of use and
learnability of the basic Cruiser functions for movement, rotation, resizing, the Black Hole
and the Frame.

So this evaluation was designed to assess how effective the functions available in
PhoTable are for storytelling about digital photographs, in order to automatically produce
a digital photo album augmented with audio stories, and the potential usefulness of the
album so constructed.

7.3.1 User Study

This was the first formal evaluation of some of the newer interface elements, particularly
those available in PhoTable for clustering and browsing photographs. It was conducted
in March 2007, with participants from around the laboratory. None had previously used
the system for sharing their own photographs and the majority had not used PhoTable at
all. Participants were taken individually, and shared a collection of their own photographs
with the experimenter.

7.3.1.1 Free-form Storytelling

For the core task of this study, we instructed participants to tell three stories. Although we
strove to ensure that the storytelling should be natural and comfortable, the request for
three stories was intended to influence participants’ approach at this stage of evaluation.
Without this, we expected the behaviour would be more exploratory – they may have simply
started at the first photo and worked steadily through, talking about them. Our design
was intended to motivate searching behaviours, so testing the effectiveness of the clustering
and the ability of the Browser to support finding particular photographs. Moreover, it
simulates the situation where the storyteller, or the listener, has limited time and so the
storyteller needs to choose the stories to tell.

In addition, while participants were told that their sharing was being recorded, they
were not told that it would be used as a means to automatically create a digital photograph
album until the debriefing, after the experiment. This was important. At this stage of
development, we wanted data that would allow us to assess the feasibility of the automated
construction of a digital photo album. This helps to verify the claim that users need not
think about creating the digital album artifact. Rather, it is derived simply as a side-effect
of the storytelling experience.

181



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

7.3.1.2 Recruitment

For this study, unlike our study with elders, our focus is on a study of use style of evaluation.
This is not a usability study. We wanted to study how people would actually use the
system in a realistic scenario. Part of this means it was important to use participants’
own collection of photographs; so many performance metrics analysing usability are not
meaningful as the results cannot be reliably compared between participants. It also means
that each user will have progressed beyond being a novice, so results concerning learnability
also lose their meaning. With this in mind, we wanted users to be comfortable with their
storytelling because, in a realistic scenario, they would be expert. Thus we decided that our
participants would tell their stories to the experimenter, who was also present to observe,
and that participants should know the experimenter well enough for it to be natural to tell
personal stories.

Using this approach, we are best able to answer the question of whether PhoTable is
able to provide a natural interface for storytelling around photographs that allows the
user to concentrate on the social interaction, rather than the interaction with a computer.
Increasing the formality of the study could create an unrealistic environment that would
not occur in an authentic usage scenario4.

We recruited eight participants, who each brought a set of their digital photographs,
from a recent holiday or event. We asked participants not to pre-filter their photographs
and to aim for about 300 sequential, unsorted and unlabelled photographs.

7.3.2 Participant Arrangement

Our table for this experiment was circular, with the display projected in a rectangle enclosed
within it. This is shown in the photograph that appears in Figure 1.1 on page 4. Note
that some of the table surface does not have an image projected onto it. This allows users
to lean on the table or place items, such as the tutorial sheet, without having a concern
that they might be blocking the display.

Storyteller and listener were seated at opposite sides of the table. This allowed them to
make eye contact more easily as part of their storytelling. It also provided more freedom for
gesturing and interaction than a side-by-side arrangement would have. We did also consider
our arrangement to be more natural – when two people meet to discuss something they
would typically position themselves opposite one another to converse effectively. However,
there may be cultural influences, and we chose not to explore seating arrangements further.
Certainly, a full investigation of seating arrangements is beyond the scope of this thesis.

With participants arranged opposite one another, we were also able to explore the ability
of the tabletop interface (both in general and our software in particular) to support multiple
users interacting at different orientations. Users seated opposite at a table generalises
better to larger sharing scenarios such as a group of friends seated around a coffee table
(where there is simply insufficient room to have all users along one edge). Cruiser has been
designed to be independent of screen orientation (§3.1).

7.3.3 Interface Setup

Only plugins core to the storytelling task were enabled. This was to reduce clutter and
distractions, allowing the evaluation to concentrate on storytelling. The Clustered Browser
(§5.5.10, §4.3.7), the Frame (§5.5.8, §4.3.2), the Black Hole (§4.3.1), the Photocopier
(§4.3.8) and a storage bin (§4.3.9) were present on the interface. If more storage bins were
needed, they could be created with the Photocopier.

4Even so, one participant noted in the general comments, “The enjoyability was somewhat diminished
by the fact that I was telling the story in a lab setting . . . [and] there seems to be a slight nervousness in
the stories.”

182



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

The Clustered Browser shows the participant’s collection of photographs or the sample
set, during the tutorial stage. Cruiser optionally provides a slider (§5.4.6), bound to a
Browser, that is able to alter the number of clusters created at runtime. However, we chose
to disable this for a number of reasons.

While clustering (and re-clustering) is quick (§4.5.4), and we had implemented a feature
for changing the target clusters in demonstrations, we considered this a distraction from
the storytelling. In particular, we wanted the clusters that were available in the experiment
to be reproduced as a navigation option in the digital photo album. If clusters changed in
the experiment, it would not be consistent with the album version created.

We also wished clusters to remain constant during the experiment. This was to assist
the repeated finding of photos, where it makes the most sense to change the number of
clusters only once. We did not want participants to be tempted to re-cluster their collection,
as it would change the location of photos they may have previously identified. Because
re-clustering is not core to the photo sharing task, we are able to omit it.

7.3.4 Method

Each experimental trial had four parts. First, the participant was briefed about the
experiment and that they were being recorded on video, audio and by an audit trail in the
interface itself. Secondly, participants worked through a tutorial sheet which introduced
each of the interface elements: this also served as a reference for later tasks. For this
stage, the table was loaded with one pre-extracted sample photo for them to experiment
with, and a small collection of pre-determined photographs in a Browser (not part of the
participant’s collection).

Once participants were comfortable with the interface elements, they moved to the
third (core) stage. The participant’s collection was loaded, and they were asked to tell
stories based around their own photographs. In the final stage, participants completed a
printed questionnaire and were asked questions about the interface, and their experience
using it, in a short interview.

7.3.4.1 Briefing

Users were given the participant information sheet and consent form in accordance with
the University ethics approval. These are reproduced in Appendix C.

7.3.4.2 Interactive Tutorial Introduction

Each participant was given a reference sheet of paper, guiding them through all the actions
that are available on the interface. Using a set of the author’s photographs, participants
were given time to practise with the interface. A duration of 10 minutes was suggested, or
until the participants felt comfortable.

While learning about the interface was an important goal of this stage, it was also
necessary to overcome the novelty factor. Cruiser is an immersive interface that encourages
play and exploration. We had observed in past evaluations, and particularly demonstrations,
a period of excitement where novel features of the interface were explored with some level
of enjoyment. We did not wish our participants storytelling to be interrupted with “play”
time.

The experimenter did not instruct the participant or use the interface during the
tutorial; but was there to answer questions. Although the tutorial was designed to take the
participants through each interface element, the experimenter did not demonstrate telling
their own story. This aspect of the evaluation design is important: we wanted to avoid
influencing the participants’ storytelling behaviour so that we could observe users’ natural

183



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

storytelling behaviours based on their own strategy. So, for example, the instruction in the
first part of the tutorial was simply “Try moving the photos around”.

The full tutorial sheet is shown in Figures 7.6 and 7.7.

7.3.4.3 Free-form Storytelling

This step is the core task of the experiments. Participants’ own photographs are auto-
matically loaded onto the interface, thumbnailed and clustered into a ClusteredBrowser
(§4.5.4). As the slider was disabled, we were left with the problem of determining how
many clusters to use5.

The space-filling thumbnail technique [Cockburn et al., 2006] we use for the layout of
child objects within the browsers gains maximum efficiency of space and minimal distortion
when the number of children is a perfect square (see §4.5.4). To leverage this, we might
begin by selecting a perfect square as our target number of clusters, that is not so large that
contents become small. However, this was found to affect cluster sizes too dramatically:
fixing at 25 clusters often made episodes too small for effective story telling. So, the target
is instead determined heuristically.

For collections smaller than 300 photographs, we divided the number of photos in the
collection by 12 to reach the target number of clusters. Above 300, we fix at 25 target
clusters so the cluster images are not too small. Above 900, we would consider increasing
this to 36. The number 12 was chosen as it is between two perfect squares (i.e. 9 and 16),
and in the pathological worst case creates clusters of size 34 (12 + 11 + 11), just short of
another perfect square.

7.3.4.4 Interview and Questionnaires

After the experimental task, we asked participants the following questions:

1. Were you able to find photographs relevant to your stories?

2. Were the clusters of photographs in the Browser useful?

3. What did you see as the purpose of the Storage Bins?

4. Do you have any other comments or suggestions for improvements?

The aim of these questions was to assess user perceptions of whether the goals of the study
were met in terms of gestalt (can you perform storytelling with PhoTable), and usefulness
(did you use clusters/storage bins).

Long after the experiment at the tabletop interface, we requested feedback on the
annotated digital photo album we created for them. This was in the form of a questionnaire.

The quality of the stories attached to photos in the online digital album reflect upon the
effectiveness of the tabletop for storytelling. However, we were careful to focus on potential
usefulness, above aesthetics and usability of the album interface. The album is constructed
automatically, based solely on the storytelling session at the tabletop interface. Clearly
this approach will have limits, compared to what could be achieved with an investment
of time and effort to manually tune the photo album; so the resulting album cannot be
expected to always be perfect.

If we can find examples of near-perfection, or achieve a level of quality that has the
potential to be improved with some manual adjustment, then we have demonstrated
the potential of PhoTable as intended. In particular, if we can create an album that is
considered to be enjoyable, has the potential to be shared, and has the potential to be
saved for long-term preservation, then we may conclude that the photo album we create

5Generally, this is an open research problem in the data mining community (see §4.5.4).

184



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

PARTICIPANT INSTRUCTION SHEET
Research Project

Cruiser – Investigating the Tabletop Interface for Digital Photograph Sharing

28th March 2007

Story Telling Around Photographs
Thank you for agreeing to participate in this study. The purpose of this task is to explore design con-
siderations for story telling using digital photographs on interactive tabletops. Our tabletop interface
is called Cruiser and it offers a variety of tools to facilitate the sharing of your photographs.

General Concepts

1

2

Figure 1: Rotate/resize gesture

Please tell the experimenter when you are confortable with each
of these stages.

1. Moving photos

Try moving the photos around.

2. Using the photo-corners to shrink, enlarge and ro-
tate

Select a photo. Note that it has photo corners as shown in
Figure 1. Touch your pen inside one of these triangles and then
slide to see how to enlarge, shrink and rotate the photo. Try it.

Figure 2: The black hole

PhotoCopier Object

This is the object with a stylized background of an office photocopier.
The solid corners indicate rotate/resize corners. Touching anywhere
in these triangles and dragging will rotate and resize the photograph.
Touching elsewhere will move the PhotoCopier. Try it.
Any object moved over the PhotoCopier gets copied into it. When
you then move the attached copy off the PhotoCopier a copy is made.
You can make as many copies as you like. Try it.

The Black Hole

The Black Hole looks like a vortex/spiral and has “blackhole” written
on it as shown in Figure 2.
Try moving an image into it and see what happens.
Now try moving the Black Hole away and see what happens.
Also experiment with doing the normal photo actions on the Black
Hole: try moving it, shrinking it, enlarging it, rotating it.

1

Figure 7.6: Page 1 of the Tutorial Sheet for PhoTable experiments

185



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

The Frame

The Frame is a transparent pink object. Dwelling on the Frame causes a new image to be loaded,
whose content is what lay directly beneath the Frame. That is, the parts of the display that were
shaded pink. You dwell by touching the Frame for one second without moving. Try it.
The Frame behaves differently if you are simply cropping a photo. Try rotating and resizing the Frame,
and another photo, to determine the different behaviour.

Browser Object

The Browser behaves similarly to the PhotoCopier, except its contents are clusters, formed from your
collection of digital photographs. The margin around the photos alllows the Browser to be moved
around, rotated and resized. Try it.
Clusters always have solid, yellow corners when unselected. When you drag a cluster off the Browser
we load the photographs from it into a newly created SubBrowser into thumbnails. Try it.
Try dragging a thumbnail off the SubBrowser. You may notice that the image quality increases when
you do this.
Now try dragging a new cluster off the original Browser. What happens?

Storage Bins

Storage bins are solid in colour and have “Storage Bin” written on them.
Try placing some photographs in a storage bin.
Try taking some photographs out.
Try copying a Storage Bin with the Photocopier. What happens?
Storage bins are important because they will retain photographs that would otherwise be removed
when you open a new cluster. If you wish to tell a story that spans clusters, you may need to use the
storage bins!

Please experiment with the interface until you are comfortable.

The experimenter will instruct you for you next task.

2

Figure 7.7: Page 2 of the Tutorial Sheet for PhoTable experiments

186



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

is useful. Note that these are properties commonly associated with traditional, physical
photo albums.

We considered our participants would better be able to assess the usefulness for long-
term preservation by requesting feedback long after the photo sharing session at the
PhoTable interface took place. So, fifteen months after the experiment, participants were
given a link to their online digital photo album; shared on the Internet behind individual
passwords. Thus participants were also given the opportunity to reminisce on their photos,
and the stories they had told.

We also provided participants with a printed preamble introduction to the questionnaire.
This briefly described how the photo album was produced (from their sharing session),
and outlined the on-screen elements of the photo album and how to navigate it. See
Figure 4.10 on page 92 for an example. The questionnaire then had two parts: questions
about individual photo album pages, and questions about the album as a whole.

7.3.4.5 Questions about individual album pages

About individual album pages, we asked participants to rate, on a 6-point Likert scale
(1:strongly disagree . . . 6:strongly agree), the following statements:

1. This is a photo I would choose to add to a manually-assembled photo album.

2. The audio clip(s) add to my enjoyment of this photo.

3. I would share this photo and its most appropriate clip with friends and/or family.

4. I would archive this photo and appropriate clip(s) for myself and my own future
reminiscing.

5. I would archive this photo and appropriate clip(s) for my descendants (e.g. like a
family photo album).

We also asked participants, “How accurate is the audio segmentation for the most appro-
priate clip?” by indicating one of the following:

N/A: no audio for this photograph page.
P: Perfect splitting.
N: Near-perfect, but no loss to enjoyment.
G: Good, contributes to enjoyment, but split could be better.
C: Close, audio needs to be edited to really make it enjoyable.
B: Bad, album page would be better without the audio.
D: Detracts from enjoyment due to poor splitting of audio clip.
0: there is audio, but it is not a story for this photograph.

Finally, we asked for comments regarding the splitting of audio for this photo, or any
general comments.

Each photo from the collections participants shared was different, along with its inherent
appropriateness for sharing and archival. In addition, each participants’ photo collection
was different and they each approached the storytelling differently. So answers to these
questions will not directly correlate with the effectiveness of PhoTable. However, they do
have the potential to provide examples of cases where PhoTable enabled creation of useful
stories.

Because of this variance, we asked users to answer these questions about a subset of
pages in their digital photo album, but to include at least 5 that have stories associated
with them.

187



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

Participant Presentation / Selection Storytelling
Collection

Size
Moves Rotate/

Resizes
Frame

Captures
storage

bins used
Full-size

Photos Used
Story Time
(minutes)

A 285 185 94 1 3 24 (8%) 15.9
B 130 153 84 0 1 27 (21%) 17.4
C 216 163 162 0 0 21 (10%) 12.9
D 285 132 116 0 0 29 (10%) 16.7
E 150 127 78 0 0 15 (10%) 12.1
F 139 212 184 6 2 33 (24%) 25.2
G 247 119 62 0 2 15 (6%) 13.5
H 548 151 132 3 1 26 (5%) 16.5

Table 7.4: Summary of trace data collected from the interface

7.3.4.6 Questions about the album as a whole

After answering questions about a subset of individual album pages, we asked the following
questions about the album as a whole. We asked participants to rate, on the same 6-point
Likert scale, the following statements:

1. I enjoyed listening back to the stories of my own digital album after 15 months.

2. A digital album like this has the potential to be useful for sharing with friends and
family.

3. A digital album like this has the potential to be useful for reminiscences in the future
for myself.

4. A digital album like this has the potential to be useful for long-term preservation
(e.g. for my descendants).

We also gave space for any general comments.

7.3.5 Results (tabletop interface)

Data sources were the experimenter observations (with video for reference), the detailed
timed log of user actions (e.g. as in Figure A.3 on page 230) and participant answers to
the questions at the end of the trial. Table 7.4 summarises the logged data, just for the
storytelling component of each trial (so excluding activity in the tutorial familiarisation
period). We now discuss it in conjunction with the observations.

The second column of Table 7.4 shows the number of photographs in each participant’s
collection. For 3 participants (A, B, C) this was a recent overseas trip. One participant (F)
used photos they took at a wedding and the other participants used a holiday trip more
than 6 months earlier. The number of photos ranged from 130 to 548.

Participants were readily able to begin their first story and adopt a storytelling persona.
They also told stories tailored to the observer. Once presented with their own photograph
collection, each participant quickly began exploring it, first to choose a story to tell, then
to find the pictures for it and then to arrange them appropriately and begin telling the
story. The level of engagement is reflected in the times users took to tell their 3 stories, in
the last column of Table 7.4. This ranged from around twelve to twenty-five minutes.

The second last column of the table shows the number of photographs participants
used for their stories: this ranged from 15–29 photos, and 5%–24% of the collection. In a

188



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

general sense, the clustering was observed to operate very effectively in aiding participants
to find the right images for their stories.

We now discuss the results in terms of each of the key elements of PhoTable.

7.3.5.1 Cruiser Revisited

Moving, rotating and resizing Photos are foundation elements of Cruiser. Although they
were carefully evaluated previously [Apted et al., 2006], along with an earlier version of the
Frame and Black Hole, this study constituted a new context, with considerable additional
complexity and several new elements. Nonetheless, participants readily learnt and used
these elements. When something unexpected occurred, such as an unintentional placement
in a storage bin or unintended movement near the Black Hole, continuous feedback meant
that the participant was quickly able to recover.

We anticipated that our Frame might be useful to allow participants to select only a
relevant part of a photograph to talk about. Three participants (A, F, H) used the Frame
(see Table 7.4). In each case it was to see details in that part of the photo, by creating a
new, cropped image that could be made even larger. Both versions appear in their digital
photo albums and, if talked about briefly before returning to the original, the cropped
version will be a subimage of the original, otherwise it will be a neighbour of the original
in the timeline.

7.3.5.2 Image removal, clutter and the Black Hole

The Black Hole is needed to clean up the table, getting rid of unwanted objects, reducing
clutter. Clutter has been been identified as a challenge in design for tabletop interaction
[Hartman et al., 2006]. In our previous work [Apted et al., 2006], the Black Hole was
adequate for effective interaction. However, in our preliminary evaluations, we found that
it was insufficient for storytelling interaction due to a distracting and tedious clean up
between stories. Around the same time, evaluations comparing a Browser-like approach
with an associative approach for browsing file systems [Collins and Kay, 2008] were also
finding that the Browser could easily create clutter.

For PhoTable, we refined the design of interaction with SubBrowsers; allowing just a
single SubBrowser, and its photos, at any time. When a new SubBrowser is dragged onto
the table, all other regular photos on the main table disappear. To retain them, users must
place them in a storage bin. In observing participants, we took particular note of their
management of clutter as well as whether this automatic deletion process was effective
in facilitating storytelling. It also reflects upon the effectiveness of the clustering, as the
automatic deletion (and hence the need to use storage bins), will only be an issue if stories
span multiple clusters.

One participant (H) initially used the Black Hole a great deal; putting all photos as well
as the unused SubBrowser into it before dragging off a new cluster. But, on one occasion,
H did not clear up and noticed the behaviour, remembering the note about this in the
tutorial. Subsequently, and for all other participants, the Black Hole was used only to clean
up one or two photos while keeping the current SubBrowser active. For example, if an
image was dragged off to see detail and subsequently deemed irrelevant to the story, it was
often placed in the Black Hole. This strategy was also observed where participants wanted
to examine several similar images to select the right one for the story. No user had trouble
using the Black Hole for hiding unused items. As in our previous work, participants made
spontaneous comments indicating they particularly liked the Black Hole appearance and
operation.

Whether the automatic cleanup to reduce clutter was problematic or irritating could
be linked with what participants saw as the purpose of the storage bins; our third question.

189



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

One purpose is to retain images for stories that span clusters. However, even though this
was explicitly stated on the printed tutorial (see Figure 7.7 on page 186), no participant
gave this purpose in their answer. Indeed, participants did not use storage bins for this
task (see §7.3.5.6 on the facing page), suggesting that the clustering algorithm is effective
for grouping the photos relevant for a single story.

7.3.5.3 Copying images and objects

Images can be copied in PhoTable in two ways: each time an image is dragged from its
SubBrowser, this makes a new copy of it; and the Photocopier object enables any image or
other object to be copied. For storytelling, we did not expect participants to need to copy
photographs but if they needed more than a single storage bin, they would need to create
new ones with the Photocopier.

We anticipated that participants may want to use one or more bins to collate the
photographs for their stories. Three of our participants (A, F, G) used the Photocopier
object in this way. The tutorial had asked participants to copy the storage bin. All three
remembered how to do this when they decided they wanted more than one bin. None
needed to refer to the tutorial sheet and they seemed to find the task natural to do. In two
cases, the storage bin being copied already had items in it and the participants were pleased
to find that a new, empty storage bin was created by the Photocopier, while keeping the
original intact. Overall, using the Photocopier to create new storage bins appeared to work
well in supporting storytelling.

7.3.5.4 The Frame

A form of the Frame was evaluated in earlier work [Apted et al., 2006]. In the context
of storytelling, we anticipated that some participants might find it useful for selecting a
relevant part of a photograph, for example, improving the framing of the image or removing
irrelevant parts. As can be seen from Table 7.4, three of our participants (A, F, H) did this,
with F using it 6 times. In these cases it was to see detail in that part of the photograph
by creating a new, cropped image that could be made even larger. Again, the facility and
activation method was remembered without assistance, from the tutorial.

7.3.5.5 Browsers, SubBrowsers and Clustering

The Browsers, with their underlying clustering, and storage bin are interface elements that
were designed expressly for storytelling. As these elements interact, users need the storage
bins to hold photographs from one SubBrowser while they explore another. The storage
bin is also useful for holding images from a single SubBrowser, allowing users to construct
their story in stages, while filtering images.

Indeed, user activity alternated between an image exploration and selection phase
followed by the storytelling phase. Table 7.4 shows that five participants (A, B, F, G, H)
used storage bins, with A, F and G using more than one, but strategies differed. F used
storage bins to store photos about which stories had been told and for Frame captures,
rather than allowing them to be removed. G stated they might be useful for photos they
decide to print out later (although there was no printing facility). C, D and E did not
have a need for the storage bin; their stories did not span clusters. This indicates the
effectiveness of our clustering. In addition, when G saw the first few SubBrowsers, they
showed surprise and commented positively that their unsorted photograph collection had
been nicely split on event boundaries.

The final stage of questions explored the effectiveness of the clustering. When asked
“Were you able to find photographs relevant to your story?”, 7 of the 8 participants said
yes with 4 (A, E, F, H) stating the clusters were particularly useful as prompts or cues to

190



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

suitable stories to tell. One participant (D) answered “mostly” because one story required
photos across two clusters: this was a canoeing trip which was split because of a long break
with no photos taken.

We also asked, “Were the clusters of photographs useful?” Seven participants said yes,
with 3 (C, E, H) commenting that the clusters did a particularly good job of grouping
related images, allowing the story to extend to nearby images. One participant (F) said
“sometimes” noting there were sometimes irrelevant photos or photos placed in an adjacent
cluster.

This participant’s collection was of photographs taken during a wedding. This poses
an interesting problem for clustering based conceptually on events and associated periods
of time. In this case, there are usually many photos in a short time frame for a single,
overarching event. By comparison, holiday photographs are typically taken at multiple loc-
ations interspersed with travel time between them, helping to indicate potential candidates
for the split between clusters.

7.3.5.6 Storage Bins

The third question posed was, “What did you see as the purpose of the Storage Bins?”
Responses were mixed. Our studies revealed three strategies users took to using the storage
bins. One strategy was simply to ignore them, as was done by 3 participants (C, D, E);
the participants simply had no use for them and stated so on the questionnaire. The
storytelling strategy of these participants did not involve stories that spanned clusters.

Two participants (A, B) chose to “pre-filter” their photographs into the storage bins
before they began storytelling. Participants went through clusters quickly, picking out
photos that would make interesting stories and storing them in one or more storage bins.
The Browsers were then put aside and photos where then taken out of the storage bin
to tell the stories. Interestingly, however, one photograph for participant B served as an
immediate trigger for a related sub-story when taken out, and they wished to retrieve a
photograph of a particular person from another cluster. This was found quickly, but meant
that the original photo was hidden with the loading of a new SubBrowser as it was not
placed back in the storage bin. Despite this occurring previously without comment between
stories, it was a surprise for the participant at this point. The story was later resumed by
returning to the previous cluster.

The remaining participants at some point chose to place photos in a storage bin (or
two) after telling a story about it. One participant (G) stated that they would be useful
“in determining [photos] I might like to print out later,” and used two storage bins; each
with an implicit category. Another participant (F) stored photographs in bins as a general
strategy after telling each story, and also for any Frame captures that were taken. For this
style of sharing, photographs stored in the bins were not subsequently retrieved.

7.3.6 Results (digital photo album)

We received responses to the questionnaire, described in §7.3.4.5, from 7 of the 8 parti-
cipants who had participated in the PhoTable experiment 15 months earlier. Collectively,
participants analysed 43 pages from the digital photo album. Full responses have been
transcribed, and appear in Appendix C.3 on page 242. However, these responses must be
interpreted carefully.

Whether in digital or a more traditional physical form, a photo album is a product of a
highly creative task. Both forms involve creativity in the capture of the original photo,
and in the choice of photograph to include in the album. With our audio-annotated album,
there is further creativity involved in the process of telling stories about the photographs.
These creative steps all imbue an inherent quality and usefulness on each photo and on

191



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

Participant A B C D E F

Perfect 1 1 4 1 1

Near-Perfect 1 4 3 1 4 3

Good: split could be better 3 3 1 1 1 2

Close: needs editing 1 1 1 1 1

Bad: better without 1

Detracts from enjoyment

0: No relevant audio 1 1

N/A: No audio

Sum 5 9 11 5 6 7
Values indicate the number of pages rated with that quality for each participant (blank

indicates 0). In total, 43 album pages were analysed by participants.

Table 7.5: Participant-rated accuracy of automated audio splitting for digital album

each story told, which have nothing to do with the performance of the algorithms used to
segment the audio or to decide whether to include a photograph in the album.

Due to the creative influence, we analyse in terms of potential. Some photographs may
be more suited for immediate sharing, some for one’s own reminiscences in the future,
some for long-term preservation, and some will be candidates for immediate deletion.
Aggregating results may cause this distinction to be lost.

7.3.6.1 Individual album pages

Part of the analysis for individual album pages asked participants to rate the accuracy of
the audio segmentation. The number of album pages rated with each accuracy (defined
for participants in the questionnaire as in §7.3.4.5) is shown in Table 7.5. For the pages
participants chose to analyse, key results are:

• All but one participant rated at least one audio split as perfect.

• For all but two participants (A, D), the majority of splits were rated perfect or
near-perfect.

• No audio clip was rated as detracting from enjoyment, and only one was rated bad.

• Over 80% of clips were rated good or better.

Note that these results were achieved automatically – there was no human intervention to
create the splits. Splits are derived implicitly, based on the interactions participants did,
naturally, during storytelling. Also note that these participants were not aware that the
audio was being captured for this purpose, so that they would not adjust their behaviour
to help the splitting process. The automatic silence filtering helps to improve quality, as a
split made at any point during the appropriate pause in conversation will be automatically
trimmed to include only the story.

Clearly PhoTable has the potential to create high-quality audio clips from a story telling
session, and associate clips with the relevant photograph. When the result is not perfect,
PhoTable is usually able to a find a split that is near-perfect or good, so that a small
manual adjustment could be made (with an appropriate interface), if necessary.

192



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

Would include in album

Adds to enjoyment

Share, archive, or reminisce

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2%

2%

2%

7%

2%

5%

12%

2%

37%

37%

37%

53%

42%

58%

1:Strongly Disagree (none) 2 3:Disagree
4:Agree 5 6:Strongly Agree

Figure 7.8: Summary of participant responses about individual album pages
e.g. participants rated “disagree” for the statement “The audio clip(s) add to my enjoyment” for
7% of album pages that they analysed. No statement for any page was rated “Strongly Disagree”.

The responses for the Likert-style responses for individual pages are summarised in
Figure 7.8 (and reproduced in full in §C.3). When asked whether they “would chose to add
[each photo] to a manually-assembled photo album,” participants agreed that they would
include 96% of the photos analysed, and they agreed strongly that they would include 53%
of them. Of the two photos that participants would not include, participant A said for one
“The main reason I looked at this sign is to remind myself of the name” i.e. to assist in the
telling of a story about another photograph at the tabletop interface. For participant C,
it was a photograph of C’s own hair and, even though the audio clip was given a perfect
rating (and strongly adds to enjoyment), C would not include it in an album, saying in
verbal feedback that they felt the story to be self-indulgent.

When asked whether “the audio clip(s) add to my enjoyment of this photo,” participants
agreed for 91% of the photos they analysed (42% strongly). Participants disagreed for 4
album pages, for which the there was either no relevant audio (1 each for participants C
and D), or the audio was poorly split (2 for participant C).

We also asked participants whether they would share the individual album pages they
analysed, with photo and audio. As we did not ask participants to pre-filter their collection,
there would be many photos in their collection that they would not share. However, because
only photos shared at the tabletop will appear in the digital photo album, we achieve an
initial filtering of photos, essentially “for free” as it is implicit from the earlier sharing
session.

Because different photos and stories may be most appropriate for different types of
sharing, Figure 7.8 shows the maximum rating from the share, reminisce, and archive
questions – the album page is useful it it can be used for at least one type of sharing.
Participants agreed that they would share nearly all of the 43 photos they collectively
analysed – only one photo from one participant (B) was rated ≤ 3 (disagree) for each
question. Participants agreed strongly that they would use 58% of the album pages, and
95% of pages were rated ≥ 5 (between 4:agree and 6:strongly agree) for at least one use.

Again, these results must be interpreted with care. They indicate the potential of
PhoTable and the automatic digital album creation process to create appropriate album
pages that include audio that adds to enjoyment and are appropriate for use; either for
sharing (i.e. in the present), reminiscences by the storyteller in the future, or for archival
(e.g. for the storyteller’s descendants). They do not necessarily indicate the effectiveness

193



7.3. PhoTable Experiment CHAPTER 7. INTERFACE EVALUATION

Enjoyment Would Share Would Reminisce Would Archive

1

2

3

4

5

6Strongly
Agree

Strongly
Agree

Agree

Disagree

Strongly
Disagree

Enjoyment: I enjoyed listening back to the stories of my own digital album after 15 months.
Would share: has the potential to be useful for sharing with friends and family.
Would reminisce: has the potential to be useful for reminiscences in the future for myself.
Would Archive: has the potential to be useful for long-term preservation (e.g. for my descendants).

In the chart, the box highlights the range covered by the mean response ±1 standard deviation, and the line
extends to the minimum (and maximum) response for each statement. See also Figure C.7 on page 245.

Figure 7.9: Participants’ assessment of digital photo album overall

of the current techniques to achieve this, which is difficult to isolate from the creativity
associated with photo album creation.

7.3.6.2 Album as a whole

The responses collected for the album as a whole are summarised in Figure 7.9. The results
show that all participants agree strongly that the digital album “has the potential to be
useful for reminiscences in the future for [the storyteller].” All but participant B (who
rated 5) also agreed strongly that the album “has the potential to be useful for sharing
with friends and family.” Similarly, only participant F (who also rated 5) agreed strongly
that the album “has the potential to be useful for long term preservation.”

For the statement “I enjoyed listening back to the stories of my own digital album after
15 months” there was slightly more variance. Still, 3 participants (C, D, F) agreed strongly
that they did. Participants B and E rated between agree and strongly agree, but did not
state a reason. Participant A rated this only agree, stating:

“The enjoyability was somewhat diminished by the fact that I was telling the
story in a lab setting – I was put on the spot with a camera facing me,so
there seems to be a slight nervousness in the stories. For this reason, I’m not
sure I would share those stories with others. In a real setting, where I am
more relaxed, I would have no problem sharing the stories. For me, I see this
tool more useful for sharing stories with people who can’t be there when you
are telling it. However, after a much longer period of time (e.g. 5 years), I
would enjoy the reminiscing side of it more (currently, after 15 months, it was
enjoyable but not that enjoyable, as it is still quite fresh in my head anyway).”

This indicates that participant A still thought there was potential that they would enjoy
reminiscing in the future, but also points out other uses for the album. Indeed, conducting
a questionnaire on your own photo album is somewhat artificial, but if a future interface

194



CHAPTER 7. INTERFACE EVALUATION 7.3. PhoTable Experiment

for the digital album has the potential to manually adjust the audio clips, it would still be
a good thing if listening back to the clips was enjoyable.

Regarding the nervousness while storytelling, another participant (C) reflected on
this, for an album page corresponding to a point approximately half way through C’s
storytelling at the tabletop. C said, “Sound clip was a little embarrassing, but I can hear
myself relaxing, getting better at storytelling.” This indicates some of the potential for the
PhoTable tabletop interface to provide natural social interaction, while storytelling around
digital photographs.

7.3.6.3 Affective Analysis

General feedback and comments6 indicate that many participants enjoyed reviewing the
photo album created for them. Some participants also commented on the value they
perceive for this tool:

D: “I think the idea is great, as too the ability to capture the happiness
and emotion accompanying the photos, which is made viable through the audio
stream.”

E: “Recording the conversation during photo sharing is a terrific idea,
especially for reminiscences. I like that the audio was automatically and
selectively recording. . . . I probably would get bored very quickly if I were to
listen to the recording of the whole sharing process.”

Participants E and F commented on parts of the album interface that could be improved,
and participant F expressed a desire to include tools allowing manual “tweaking” of the
audio clips, which would be our next step from the current purely automated process.

7.3.7 Discussion

The PhoTable experiment was a study of use by 8 storytellers, telling a total of 24
stories, based on authentic, unfiltered and unsorted collections of several hundred of each
participant’s photos. The set of elements in PhoTable supported storytelling based on an
authentic collection of people’s photos: this means support for exploring the collection,
choosing an episode for the story as well as manipulation of the photos during storytelling.
The core elements of the new interface are the novel clustered “Browser” combined with
the storage bin as the means to support exploration of the photo collection whilst avoiding
clutter. This study points to the Browser’s effectiveness for storytelling and also indicates
that the other elements of the PhoTable interface, previously evaluated in quite different
and simpler contexts, are also effective for storytelling at a tabletop.

By providing users with an interface that facilitated storytelling around their digital
photographs, we were given the opportunity to explore the automated construction of
a digital photograph album, based around the photos they shared and the stories they
told. The only user input for the album construction process is the interactions that
users adopted, naturally, at the tabletop interface whilst sharing their photographs. We
constructed a digital photo album for each participant and, 15 months after the storytelling
(a time long enough to allow participants to reminisce on their stories), we asked them
for feedback on the album. Eight participants collectively assessed the qualities of 43
pages from the digital photo album. This study points to clear potential for our process to
construct pages in a digital photo album annotated with stories that are: interesting from
the view that the photos chosen automatically would be included in a manually constructed
album; useful for tasks such as sharing with friends, personal reminiscences and long-term
archival; and also enjoyable.

6As well as laughter overheard during one review.

195



7.4. Chapter Summary CHAPTER 7. INTERFACE EVALUATION

Key challenges we have overcome include: provision of effective access to the particular
photographs that a person wants to talk about, whilst managing clutter on the tabletop;
natural interaction to access the photographs, to move, reorient, resize and to group
them, in order to tell stories about them. To achieve this we have implemented new
ways to support the initial organisation of unorganised photos into episodes (clusters of
related photographs) to support storytelling; and a novel technique to present and access
these clusters requiring only a single point of contact, and no menus or commands. Key
findings from the evaluations indicate the power of the episodic clustering, the naturalness of
storytelling at our tabletop interface, and the potential of the automatic album construction
to create appropriate, useful and enjoyable photo album pages, annotated with stories
about the photograph.

7.4 Chapter Summary
The interface evaluation presented in this chapter has three main parts. First, a formal
usability study for the fundamentals of the interface, accomplished by a comparative user
study with 24 participants drawn equally from elderly and young adult populations. Second,
an unusual but informative collection of studies based on observation during demonstrations
and exhibitions, which progressively informed refinement of the interface. Finally, the
study of use for PhoTable that assesses the application and framework overall, and how
it enables effective photo sharing at the tabletop towards the automatic construction of
digital photograph album pages, annotated with stories, that have clear potential to be
useful for sharing and archival, as well as being enjoyable.

196



Chapter 8
Conclusion & Future Work

This thesis set out to achieve two main goals:

1. Create an extensible framework for the rapid and flexible development of immersive
tabletop applications; and

2. Create a tabletop application for the natural sharing of authentic digital photographs,
with associated tools to automatically generate a digital photograph album, annotated
with audio versions of the stories told, as a side-effect of the photo sharing session.

The framework includes aspects of both user-view (“the interface”) and developer-view
(“the system”), which were described separately, in Chapters 4 and 5. The evaluation
of these aspects was also separate, with the system evaluation in Chapter 6 following
recommended practices for system evaluation [Olsen, 2007], and the interface evaluation in
Chapter 7 that combines study of use, usability and learnability styles of evaluation.

Combining these goals has meant that the development of the system has been driven
throughout by the vision of PhoTable, framed by the scenario presented in Section 1.1.2.
This is the scenario where someone has recently travelled, taking a large number of digital
photographs. Upon their return, a friend drops by and the user spontaneously decides
to share their holiday experiences, using their photos to tell stories for that friend. They
need to be able to easily access the right photos and make them easy for the friend to see,
perhaps highlighting interesting details. They do not want to take time to sort carefully
through photographs to print and share in traditional ways (and at financial cost for
printing). Nor do they want to construct a formal slideshow.

Current alternatives, such as scrolling through folders full of thumbnails on a computer
screen, have poor support for social aspects of photo sharing and, while in an unlabelled
form (e.g. without tags, captions or categorisation into folders, i.e. as retrieved directly
from camera memory) they have poor support for the need to find particular photos that
you wish to share. Digital slideshows take time to create, and the one slideshow might not
be suitable to share with everyone (the personal aspects of storytelling may be lost).

PhoTable addresses the problem in this scenario by providing a pervasive computing
interface that helps in supporting the social needs of storytelling (such as being able to
ignore the computer, make eye contact, and use gesture) while also presenting an interface
that fluidly allows users to find particular photographs from their collection. This in itself
is novel. However, combined with Cruiser, we have achieved more.

Cruiser and PhoTable provide a digital interface that facilitates photo talk (§1.2.2)
without distracting users from their social interaction. With this, we were given the
opportunity to capture the stories, align them with the trace of user actions on the tabletop
interface, and use this to automatically construct an audio-annotated digital photograph

197



CHAPTER 8. CONCLUSION & FUTURE WORK

album. This is a series of web pages with audio stories, suited to long-term archival, but
that can also be subsequently shared; like a traditional printed photo album, or online.
However, the addition of embedded stories makes it more than a photo album – the owner
benefits from a reminder of the story behind the photo, and recipients are able to hear
the story without the owner needing to be present. In addition, it is produced purely as a
side-effect of an enjoyable and social interaction with another person, rather than a lone
interaction with a computer or physical book. This automatic approach removes the need
to make the effort traditionally required to construct these sharable artifacts, such as the
photo album.

But, while PhoTable was the primary driver, it is just one example of an application
built with the Cruiser framework. In Cruiser, we achieved a flexible platform that not only
let us rapidly explore interface alternatives to implement PhoTable, but also gave others the
opportunity to leverage the tabletop interface framework to create their own applications.
Cruiser’s generality, scalability and flexibility is borne out through its facilitation of the
rapid development of tabletop applications for associative file system search, blackjack,
map and photo tagging and brainstorming, described in Section 6.2.

For both the system and the interface, we adopted an approach to design driven by
a number of guidelines, which we discussed in Chapter 3. The interface guidelines were
backed by our design rationale that focused on learnability and memorability, and addressed
the special aspects associated with multi-user tabletop interfaces. This led to the adoption
of interaction elements that achieve their function through affordances and the interaction
between special objects, rather than through explicit commands, text, prompts, and menu
systems which do not fit our guidelines. The effectiveness of these interface elements for
providing an interface usable by a novice, as well as an interface able to support the special
requirements of photo sharing, is borne out in the combination of usability and study of
use evaluations, described in Chapter 7.

The system design guidelines were also backed by a number of drivers, discussed in
Section 3.5. The initial motivation for these drivers grew from an early system that did
not meet our need to explore the tabletop interface design space and rapidly experiment
with new functionality and develop a diverse range of applications. Guiding the system
development was a set of goals focused on providing a robust, flexible, adaptable, functional
and reusable framework that leverages high-performance technologies, while remaining
flexible to support new ideas and technologies (such as novel input hardware). In our
design, we started afresh, avoiding the legacies of traditional displays that might have
different design needs from those of multi-user, horizontal interaction.

The result is the Cruiser Framework, which supports rapid creation of new functionality
and diverse applications through the use of a plugin architecture. It has a layered approach
to providing its functionality with sets of reusable libraries, decoupled, to distinguish
the core functionality. This allows new applications to be unencumbered by unnecessary,
experimental, or complex tasks, while enabling them to leverage the pre-built application
framework that Cruiser provides. It also allows applications to take advantage of the
high performance of Cruiser, in terms of its rendering speed, responsiveness and memory
requirements. This is as discussed in Chapter 5 and demonstrated in evaluations described
in Chapter 6.

Performance of the framework has been assessed in terms of responsiveness under
extreme load, the rate at which the display can be updated (rendering speed), the efficiency
of use for both system and graphics memory, independence of operating platform, and
independence of input hardware. Only under the unrealistic load of over 1000 objects
was performance degraded. Furthermore, the framework has a variety of techniques for
improving performance under load, or with less powerful hardware, by reducing display
quality while retaining the flexibility to improve quality for the current focus of interaction.

198



CHAPTER 8. CONCLUSION & FUTURE WORK

Chapter 5 gives the detail about how this important goal was achieved, and how the
framework design allows the introduction of new functionality while maximising stability,
code reuse and portability.

This thesis also evaluates the framework, guided by recommended practice for systems
evaluation. We have contextualised the framework design with photo sharing using authentic
digital photographs and automatic capture of stories told about those photographs. This
has yet to be addressed in the research field, and is particularly important as we move into
an age of purely digital forms for photograph sharing, which do not fully support the social
interaction provided by traditional methods of sharing, such the family photo album (as
discussed in Chapter 1). Chapter 6 also shows that the framework generalises well to other
tasks, and is easy to adopt, by analysing 5 projects by others who leveraged the Cruiser
framework for new and diverse applications for the tabletop interface.

Future Work

In the discussion of possible future work, we return to the scenario presented in Section 1.1.2,
and discussed at the start of this chapter. This is the driving vision of the research: an
interactive “coffee table of the future” that allows people, in their homes, to share and tell
stories about their photographs with friends, but also allow these stories to be preserved
and associated with the correct photographs. To fully achieve this vision, there is much
future work to consider.

One aspect is hardware, and there are many possibilities (see Section 2.1). The main
touch-table technologies in the commercial space are Microsoft Surface (computer vision)
and SMART (IR and DViT), with capacitive coupling technologies a future possibility
(DiamondTouch, Apple iPhone). Stylus-based technologies (Mimio, Wacom) may also
be appropriate for some tasks. The focus in this thesis is software, but the platform-
independent approach in developing Cruiser means that adopting PhoTable for any of these
as future work is a manageable task. The Apple iPhone, for example, uses a near-complete
adoption of the OpenGL standard (OpenGL ES), and already includes a microphone.
Cruiser uses OpenGL and has flexible quality tuning that could adapt performance to
support embedded devices.

While the reduced screen resolution of an iPhone or iPod touch (480 × 320) further
reduces the required processing power for the application, it does raise the question of the
necessary screen size and resolution for effective photo sharing at a tabletop. While the
iPhone screen is small, people do share photographs effectively using it, perhaps aided by
the small dot pitch (163 pixels-per-inch, compared to regular LCD screens at 67 ∼ 130ppi).
While we wait for Apple to release the “iTable”, other researchers have increased resolution
by tiling multiple projectors (see Section 2.3.4). But investigation of the optimal screen
size and resolution for photo sharing is very human-centric, and remains future work.

The main user study in this thesis aimed to assess whether PhoTable (and its underlying
Cruiser engine) provided effective support for storytelling and the automatic capture of
stories. We increased authenticity by requiring participants to bring their own collections of
digital photographs (in order to tell effective stories). Each collection, and each photograph,
has its own intrinsic suitability for telling stories, and each person tells stories in different
ways. In future, it would be interesting to conduct psychological studies designed to gain
understanding of the nature of the storytelling afforded by this new interface, perhaps
comparing it with other photo sharing systems. However, such as study would need care,
as the creative aspect of storytelling would inevitably make the results difficult to compare.

One extension of the scenario is the management of digital photo archives. Our scenario
focuses on recently taken photos, such as those one might wish to share upon return from a
holiday. Intuitively, this seems the best time to capture stories about these photos; allowing

199



CHAPTER 8. CONCLUSION & FUTURE WORK

the stories to become part of the archive itself. However, one could imagine wanting to
share archived photos at our interactive coffee table, such as has traditionally been done
with prints in family photo albums. Effective search and story “playback” at the tabletop
are some of the challenges to consider. Incorporation of recent developments in digital
photograph technology, such as geotagging, are also promising to explore. The contributed
Map and Photograph Tagging application described in Section 6.2.3 could be extended to
support incorporation of this metadata.

Another aspect of photo archives concerns maintenance, such as photo editing, sorting
and labelling. PhoTable’s clustering and interaction trace provide a heuristic-based sorting
primarily to assist sharing. Expanding the capabilities of PhoTable beyond sharing is
interesting future work, and would be a challenge for the tabletop interface paradigm.
However, finer control, or more work-intensive tasks such as editing are typically performed
by a single user, and may be better suited to a traditional computer interface rather than
a collaborative tabletop interface.

Accessing archived media, and sharing media remotely or between devices, is another
future avenue for exploration. Cruiser’s approach has been to automatically search re-
movable media, once it is inserted. This works well for photographs recently taken and
still on a camera or memory card (and removes authentication requirements of a wireless
approach), but a photo archive is rarely a single unit, and a user may wish to retrieve
media from a remote device. The Remote Frame Buffer plugin described in Section 5.5.9
provides one approach, but a full exploration of remote file access at an interactive tabletop
is interesting ongoing research (see Section 6.2.1).

With ready access to media, the tabletop interface could also be used for more
information-intensive collaborative tasks, such as in a workplace. The current vision of a
coffee table could be extended to a boardroom table that facilitates sharing of documents
and provides note-taking capabilities. Developments in the field of Personal Informa-
tion Management (PIM) could assist in the provision of access to calendars, contacts,
appointments, email and project management. Developments in videoconferencing and
Computer Supported Cooperative Work (CSCW) could involve non-collocated participants
to collaborate around the tabletop interface, via a network.

If interactive tabletops become a regular part of the way people interact with computers,
they have the potential to influence traditional computing tasks and desktop interfaces too.
For example, some of the techniques to rotate, crop and zoom photographs in Cruiser may
be applied in photo editing or for giving presentations (the author has done just this on
a number of occasions). The algorithms and techniques for the automated story capture
could also be used on a vertical screen, which could provide some level of support before
the tabletop interface becomes ubiquitous in homes.

This brings us to the final point, of whether the tabletop interface will become appealing
for a diverse range of the population, and be a commercial success. One element is cost,
and again Cruiser’s platform-independence, adjustable rendering quality, and reliance on
primarily commodity hardware will help. But what often launches new technology, and
makes it commercially successful is the somewhat clichéd “Killer App” – a new application
leveraging new technology to provide a near-essential service to consumers. To date, many
consumers have been ignoring the decreased emotional attachment that comes with digital
photographs compared with physical prints, or they have been electing to print some or all
of the digital photographs they take, incurring cost (in both money and time) and losing
some of the searching and sharing advantages of digital photographs. This may change,
and PhoTable has the potential to become the new way of sharing photographs in the
future and, with its automatic story capture, it also adds a valuable new service that is
not available with physical prints.

200



CHAPTER 8. CONCLUSION & FUTURE WORK

Conclusion
The versatility of the Cruiser framework opens the door for new exploration of the tabletop
interface, which is rapidly gaining the hardware support to become a viable interface for
enterprise and consumers alike. As discussed in Chapter 2, this hardware is diverse so it is
important that the framework be flexible to support new kinds of input hardware and a
range of operating platforms. Indeed, the design of Cruiser has aimed to provide support
for the range of facilities that we anticipate should be available for future tabletop interfaces
– multi-touch, user identification, audio – while providing the flexibility to support new,
unanticipated facilities.

PhoTable represents a viable new way for people to share and tell stories about their
recently taken, unsorted digital photographs. It also enables the automatic construction
of a digital photograph album, augmented with those stories, purely as a side-effect of
the social interaction at the tabletop interface. Our evaluations indicate that such digital
albums will be useful and enjoyable, for sharing with friends and family, for personal
reminiscences, and for long-term archives. PhoTable has enabled exploration of this new
medium for sharing photographs in the digital age.

This thesis provides a foundation for research in the creation of software for tabletop
interaction, with Cruiser’s design of interaction primitives that break free from desktop
legacies. The Cruiser framework has been demonstrably able to provide a natural interface
for storytelling around photos at a tabletop. At the same time, it has provided a rich
software environment for exploration of new ways to interact at tabletops.

201



CHAPTER 8. CONCLUSION & FUTURE WORK

202



Bibliography

John Adcock, Matthew Cooper, John Doherty, Jonathan Foote, Andreas Girgensohn,
and Lynn Wilcox. Managing digital memories with the FXPAL photo application. In
MULTIMEDIA ’03: Proceedings of the 11th ACM international conference on Multimedia,
pages 598–599, Berkeley, CA, USA, 2003. ACM Press. ISBN 1-58113-722-2. doi:
10.1145/957013.957139. 88

Morgan G. Ames and Lilia Manguy. PhotoArcs: Ludic tools for sharing photographs.
In MULTIMEDIA ’06: Proceedings of the 14th annual ACM international conference
on Multimedia, pages 615–618, Santa Barbara, CA, USA, 2006. ACM Press. ISBN
1-59593-447-2. doi: 10.1145/1180639.1180766. 38

Trent Apted and Judy Kay. Designing a “copy” function for interactive tabletops. Technical
Report 603, School of Information Technologies, University of Sydney, November 2006a.
URL http://www.it.usyd.edu.au/research/tr/tr603.pdf. 44, 60, 80, 167, 181

Trent Apted and Judy Kay. Privacy and remote display control on a multi-user pervasive
tabletop. Technical Report 601, School of Information Technologies, University of Sydney,
November 2006b. URL http://www.it.usyd.edu.au/research/tr/tr601.pdf. 81

Trent Apted and Judy Kay. PhoTable: Enhancing the social interaction around the
sharing of digital photographs. In Siân Lindley, Abigail Durrant, Dave Kirk, and Alex
Taylor, editors, Proceedings of Collocated Social Practices Surrounding Photos workshop
in conjunction with CHI2008 Conference on Human Factors in Computing Systems,
Florence, Italy, April 5–10 2008. 44

Trent Apted, Judy Kay, and Aaron Quigley. A study of elder users in a face-to-face
collaborative multi-touch digital photograph sharing scenario. Technical Report 567,
School of Information Technologies, University of Sydney, March 2005. URL http:
//www.it.usyd.edu.au/research/tr/tr567.pdf. ISBN 1-86487-716-2. 167

Trent Apted, Judy Kay, and Aaron Quigley. Tabletop sharing of digital photographs for
the elderly. In Proceedings of the 2006 Conference on Human Factors in Computing
Systems (CHI 2006) CHI [2006], pages 781–790. doi: 10.1145/1124772.1124887. 14, 23,
41, 44, 50, 95, 167, 181, 189, 190

Mark Ashdown and Peter Robinson. Escritoire: A personal projected display. IEEE
MultiMedia, 12(1):34–42, 2005. ISSN 1070-986X. doi: 10.1109/MMUL.2005.18. 34

Mark Assad, Judy Kay, and Bob Kummerfeld. The Keep-in-Touch system. In Proceedings
of Situating Ubiquitous Computing in Everyday Life: Bridging the Social and Technical
Divide (workshop in conjunction with UbiComp 2005), Tokyo, Japan, September 11 2005.
140, 159

203

http://dx.doi.org/10.1145/957013.957139
http://dx.doi.org/10.1145/1180639.1180766
http://www.it.usyd.edu.au/research/tr/tr603.pdf
http://www.it.usyd.edu.au/research/tr/tr601.pdf
http://www.it.usyd.edu.au/research/tr/tr567.pdf
http://www.it.usyd.edu.au/research/tr/tr567.pdf
http://dx.doi.org/10.1145/1124772.1124887
http://dx.doi.org/10.1109/MMUL.2005.18


BIBLIOGRAPHY BIBLIOGRAPHY

Ronald M. Baecker et al. Readings in Human Computer Interaction: Toward the Year 2000,
chapter 2: Design and Evaluation, pages 73–186. Morgan Kaufmann, second edition,
1995. ISBN 1-55860-246-1. 61

Marko Balabanović, Lonny L. Chu, and Gregory J. Wolff. Storytelling with digital
photographs. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 564–571, The Hague, The Netherlands, April 4-6 2000. CHI 2000, ACM
Press. ISBN 1-58113-216-6. doi: 10.1145/332040.332505. Thea Turner and Gerd Szwillus,
editors. 37, 88

Marko Balabanović, Lonny L. Chu, and Gregory J. Wolff. Method and apparatus for
storytelling with digital photographs. US Patent 6,976,229, Ricoh, Tokyo, Japan, Decem-
ber 13 2005. URL http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=
6976229. Filed December 16, 1999. 37, 88

Dan Bauer, Pierre Fastrez, and Jim Hollan. Computationally-enriched ‘piles’ for managing
digital photo collections. In Proceedings of Visual Languages and Human-Centric
Computing (VLHCC’04), pages 193–195. IEEE Computer Society, 2004. ISBN 0-7803-
8696-5. doi: 10.1109/VLHCC.2004.13. 3

Mikael Bauer. Application development for touch-screen interfaces. Bachelor’s thesis,
Luleå University of Technology, Campus Skellefteå, May 2007. http://nuigroup.com/
touchlib/ Touchlib, verified 2008-05-04. 36

Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley Longman, Boston, MA, USA, 1999. 51

C. Marlin Brown. Human-Computer Interface Design Guidelines. Ablex, 1988. 61

Colin G. Butler and Robert St. Amant. HabilisDraw DT: A bimanual tool-based direct
manipulation drawing environment. In CHI2004 Extended Abstracts CHI [2004b], pages
1301–1304. doi: 10.1145/985921.986049. 35

Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level model for user
performance time with interactive systems. Commun. ACM, 23(7):396–410, 1980. ISSN
0001-0782. doi: 10.1145/358886.358895. 43

Fang Chen, Benjamin Close, Peter Eades, Julien Epps, Peter Hutterer, Serge Lichman,
Masa Takatsuka, Bruce Thomas, and Mike Wu. ViCAT: Visualisation and interaction
on a collaborative access table. In Proceedings of the 1st IEEE International Workshop
on Horizontal Interactive Human-Computer Systems Tab [2006], pages 59–60. doi:
10.1109/TABLETOP.2006.36. 17, 35

Scott Shaobin Chen and P.S. Gopalakrishnan. Clustering via the Bayesian information
criterion with applications in speech recognition. Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’98), 2:645–648, 1998.
90

Proceedings of the SIGCHI conference on Human factors in computing systems (CHI’99),
Pittsburgh, Pennsylvania, USA, May 1999. CHI 1999, ACM Press. ISBN 0-201-48559-1.
Marian G. Williams and Mark W. Altom, editors. 215

Proceedings of the 2004 Conference on Human Factors in Computing Systems (CHI
2004), Vienna, Austria, April 24-29 2004a. CHI 2004, ACM Press. ISBN 1-58113-702-8.
Elizabeth Dykstra-Erickson and Manfred Tscheligi, editors. 213, 214

204

http://dx.doi.org/10.1145/332040.332505
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6976229
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6976229
http://dx.doi.org/10.1109/VLHCC.2004.13
http://nuigroup.com/touchlib/
http://nuigroup.com/touchlib/
http://dx.doi.org/10.1145/985921.986049
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1109/TABLETOP.2006.36


BIBLIOGRAPHY BIBLIOGRAPHY

Extended abstracts of the 2004 conference on Human factors and computing systems, Vienna,
Austria, April 2004b. CHI 2004 Extended Abstracts, ACM Press. ISBN 1-58113-703-6.
Elizabeth Dykstra-Erickson and Manfred Tscheligi, editors. 204, 213

Proceedings of the 2005 Conference on Human Factors in Computing Systems (CHI 2005),
Portland, Oregon, USA, April 3 2005. CHI 2005, ACM Press. ISBN 1-58113-998-5. 209,
211

Proceedings of the Conference on Human Factors in Computing Systems (CHI 2006),
Montréal, Québec, Canada, 2006. CHI 2006, ACM Press. ISBN 1-59593-372-7. Conference
Chair Gary Olson and Program Chair Robin Jeffries. 203, 205, 209, 211, 216

Andy Cockburn, Carl Gutwin, and Jason Alexander. Faster document navigation with
space-filling thumbnails. In Proceedings of the 2006 Conference on Human Factors in
Computing Systems (CHI 2006) CHI [2006], pages 1–10. doi: 10.1145/1124772.1124774.
78, 81, 90, 184

Anthony Collins. Exploring tabletop file system interaction. Honours thesis, School of
Information Technologies, University of Sydney, November 2006. URL http://www.it.
usyd.edu.au/~anthony/thesis.pdf. 44, 152

Anthony Collins and Judy Kay. Collaborative personal information management with
shared, interactive tabletops. In Proceedings of Personal Information Management
2008 (workshop in conjunction with CHI2008), Florence, Italy, April 2008. URL http:
//pim2008.ethz.ch/papers/pim2008-collins-etal.pdf. 153, 164, 189

Anthony Collins, Trent Apted, and Judy Kay. Tabletop file system access: Associative and
hierarchical approaches. In Proceedings of the 2nd Annual IEEE International Workshop
on Horizontal Interactive Human-Computer Systems Tab [2007], pages 113–120. doi:
10.1109/TABLETOP.2007.34. xvii, 44, 53, 60, 152, 153, 181

Matthew Cooper, Jonathan Foote, Andreas Girgensohn, and Lynn Wilcox. Temporal event
clustering for digital photo collections. ACM Trans. Multimedia Comput. Commun.
Appl., 1(3):269–288, 2005. ISSN 1551-6857. doi: 10.1145/1083314.1083317. 88

Kara Pernice Coyne and Jakob Nielsen. Web usability for senior citizens: 46 design
guidelines based on usability studies with people age 65 and older. Technical report,
Nielsen Norman Group, 2002. 173

Andy Crabtree, Tom Rodden, and John Mariani. Collaborating around collections: In-
forming the continued development of photoware. In Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW’04) CSC [2004], pages 396–405. doi:
10.1145/1031607.1031673. 3, 5, 6, 88

Proceedings of the 2002 ACM conference on Computer Supported Cooperative Work, New
Orleans, Louisiana, USA, November 2002. CSCW 2002, ACM Press. ISBN 1-58113-560-2.
Elizabeth Churchill and Joe McCarthy, editors. 206, 214

Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW’04),
Chicago, Illinois, USA, November 6-10 2004. CSCW 2004, ACM Press. 205, 206, 210,
211, 213

Roberto Arturo Diaz-Marino, Edward Tse, and Saul Greenberg. Programming for multiple
touches and multiple users: A toolkit for the diamondTouch hardware. In Compan-
ion Proceedings of ACM UIST’03 User Interface Software and Technology, Vancouver,
Canada, November 2003. ACM Press. 35

205

http://dx.doi.org/10.1145/1124772.1124774
http://www.it.usyd.edu.au/~anthony/thesis.pdf
http://www.it.usyd.edu.au/~anthony/thesis.pdf
http://pim2008.ethz.ch/papers/pim2008-collins-etal.pdf
http://pim2008.ethz.ch/papers/pim2008-collins-etal.pdf
http://dx.doi.org/10.1109/TABLETOP.2007.34
http://dx.doi.org/10.1145/1083314.1083317
http://dx.doi.org/10.1145/1031607.1031673


BIBLIOGRAPHY BIBLIOGRAPHY

Michael Diehl and Wolfgang Stroebe. Productivity loss in idea-generating groups: Tracking
down the blocking effect. Journal of personality and social psychology, 61(3):392–403,
1991. 156

Paul Dietz and Darren Leigh. DiamondTouch: A multi-user touch technology. In Proceedings
of the 14th Annual ACM symposium on User interface software and technology UIS
[2001], pages 219–226. doi: 10.1145/502348.502389. 13, 21, 26, 29, 32, 50, 177, 226

Steven M. Drucker, Curtis Wong, Asta Roseway, Steven Glenner, and Steven De Mar.
MediaBrowser: Reclaiming the shoebox. In AVI ’04: Proceedings of the working
conference on Advanced visual interfaces, pages 433–436, Gallipoli, Italy, 2004. ACM
Press. ISBN 1-58113-867-9. doi: 10.1145/989863.989944. 38

Katherine Everitt, Clifton Forlines, Kathy Ryall, and Chia Shen. Observations of a shared
tabletop user study. In Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW’04) CSC [2004]. Interactive Poster Abstract. 28, 168

Katherine Everitt, Chia Shen, Kathy Ryall, and Clifton Forlines. MultiSpace: Enabling
electronic document micro-mobility in table-centric, mutli-device environments. In
Proceedings of the 1st IEEE International Workshop on Horizontal Interactive Human-
Computer Systems Tab [2006], pages 27–34. doi: 10.1109/TABLETOP.2006.23. 14

Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks.
Communications of the ACM, 40(10):32–38, October 1997. ISSN 0001-0782. doi:
10.1145/262793.262798. Special Issue on Object-Oriented Application Frameworks. 7,
25, 36

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 171–183, San Diego, California, United States, 1998.
ACM. ISBN 0-89791-979-3. doi: 10.1145/268946.268961. 112

Clifton Forlines and Chia Shen. DTLens: Multi-user tabletop spatial data exploration.
In Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology UIS [2005], pages 119–122. doi: 10.1145/1095034.1095055. 15

Clifton Forlines, Chia Shen, Frédéric Vernier, and Mike Wu. Under my finger: Human
factors in pushing and rotating documents across the table. In Maria Francesca Costabile
and Fabio Paternò, editors, Tenth IFIP TC13 International Conference on Human-
Computer Interaction (INTERACT), volume 3585 of Lecture Notes in Computer Science,
Rome, Italy, September 2005. INTERACT 2005, Springer. ISBN 3-540-28943-7. 24

Jon Fortt. Microsoft surface: consumer version in 2011. Fortune magazine,
Big Tech, March 26 2008. http://bigtech.blogs.fortune.cnn.com/2008/03/26/
microsoft-surface-consumer-version-in-2011/ verified 2008-04-24. 31

David Frohlich, Allan Kuchinsky, Celine Pering, Abbe Don, and Steven Ariss. Requirements
for photoware. In Proceedings of the 2002 ACM conference on Computer Supported
Cooperative Work CSC [2002], pages 166–175. ISBN 1-58113-560-2. Elizabeth Churchill
and Joe McCarthy, editors. 3, 5, 40

David M. Frohlich. Audiophotography: Bringing Photos to Life with Sounds, volume 3 of
Computer Supported Cooperative Work. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2004. 40

206

http://dx.doi.org/10.1145/502348.502389
http://dx.doi.org/10.1145/989863.989944
http://dx.doi.org/10.1109/TABLETOP.2006.23
http://dx.doi.org/10.1145/262793.262798
http://dx.doi.org/10.1145/268946.268961
http://dx.doi.org/10.1145/1095034.1095055
http://bigtech.blogs.fortune.cnn.com/2008/03/26/microsoft-surface-consumer-version-in-2011/
http://bigtech.blogs.fortune.cnn.com/2008/03/26/microsoft-surface-consumer-version-in-2011/


BIBLIOGRAPHY BIBLIOGRAPHY

David M. Frohlich, Steven A. Wall, and Graham Kiddle. Collaborative photowork: Chal-
lenging the boundaries between photowork and phototalk. In Siân Lindley, Abigail
Durrant, Dave Kirk, and Alex Taylor, editors, Proceedings of Collocated Social Prac-
tices Surrounding Photos workshop in conjunction with CHI2008 Conference on Human
Factors in Computing Systems, Florence, Italy, April 5–10 2008. 77

Bryan Gardiner. Can apple patent the pinch? Experts say it’s possible. Wired News,
Gadgets, February 22 2008. http://www.wired.com/gadgets/miscellaneous/news/
2008/02/multitouch_patents verified 2008-03-05. 24

Andreas Girgensohn, John Adcock, Matthew Cooper, Jonathan Foote, and Lynn Wilcox.
Simplifying the management of large photo collections. Human-Computer Interaction
(INTERACT), 3:196–203, 2003. 88

Adrian Graham, Hector Garcia-Molina, Andreas Paepcke, and Terry Winograd. Time as
essence for photo browsing through personal digital libraries. In JCDL ’02: Proceedings
of the 2nd ACM/IEEE-CS joint conference on Digital libraries, pages 326–335. ACM
Press, 2002. ISBN 1-58113-513-0. doi: 10.1145/544220.544301. 88, 91

Saul Greenberg and William Buxton. Usability evaluation considered harmful (some of
the time). In Mary Czerwinski, Arnold M. Lund, and Desney S. Tan, editors, CHI,
pages 111–120, Florence, Italy, April 5-10 2008. ACM. ISBN 978-1-60558-011-1. doi:
10.1145/1357054.1357074. 149, 150, 165

François Guimbretière. Paper augmented digital documents. In Proceedings of the 16th
Annual ACM Symposium on User Interface Software and Technology UIS [2003], pages
51–60. doi: 10.1145/964696.964702. 13

Carl Gutwin and Saul Greenberg. The effects of workspace awareness support on the
usability of real-time distributed groupware. ACM Trans. Comput.-Hum. Interact., 6(3):
243–281, 1999. ISSN 1073-0516. doi: 10.1145/329693.329696. 37

Vicki Ha, Kori M. Inkpen, Regan L. Mandryk, and Tara Whalen. Direct intentions: The
effects of input devices on collaboration around a tabletop display. In Proceedings of the
1st IEEE International Workshop on Horizontal Interactive Human-Computer Systems
Tab [2006], pages 175–182. doi: 10.1109/TABLETOP.2006.10. xix, 20, 21

Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total internal reflection.
In Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology UIS [2005], pages 115–118. doi: 10.1145/1095034.1095054. 13, 16

Mark S. Hancock, Frédéric D. Vernier, Daniel Wigdor, Sheelagh Carpendale, and Chia
Shen. Rotation and translation mechanisms for tabletop interaction. In Proceedings
of the 1st IEEE International Workshop on Horizontal Interactive Human-Computer
Systems Tab [2006], pages 79–86. doi: 10.1109/TABLETOP.2006.26. 23

Björn Hartman, Meredith Ringel Morris, and Anthony Cassanego. Reducing clutter
on tabletop groupware systems with tangible drawers. In CHI’06 extended abstracts,
Montréal, Québec, Canada, 2006. CHI 2006 Extended Abstracts, ACM Press. ISBN
1-59593-298-4. Unarchived poster session. 39, 43, 189

Otmar Hilliges, Dominikus Baur, and Andreas Butz. Photohelix: Browsing, sorting and
sharing digital photo collections. In Proceedings of the 2nd Annual IEEE International
Workshop on Horizontal Interactive Human-Computer Systems Tab [2007], pages 87–94.
doi: 10.1109/TABLETOP.2007.20. 39, 43

207

http://www.wired.com/gadgets/miscellaneous/news/2008/02/multitouch_patents
http://www.wired.com/gadgets/miscellaneous/news/2008/02/multitouch_patents
http://dx.doi.org/10.1145/544220.544301
http://dx.doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1145/964696.964702
http://dx.doi.org/10.1145/329693.329696
http://dx.doi.org/10.1109/TABLETOP.2006.10
http://dx.doi.org/10.1145/1095034.1095054
http://dx.doi.org/10.1109/TABLETOP.2006.26
http://dx.doi.org/10.1109/TABLETOP.2007.20


BIBLIOGRAPHY BIBLIOGRAPHY

Uta Hinrichs, M. Sheelagh T. Carpendale, Stacey D. Scott, and Eric Pattison. Interface
currents: Supporting fluent collaboration on tabletop displays. In Andreas Butz, Brian D.
Fisher, Antonio Krüger, and Patrick Olivier, editors, Smart Graphics, volume 3638 of
Lecture Notes in Computer Science, pages 185–197. Springer, 2005a. ISBN 3-540-28179-7.
81

Uta Hinrichs, Sheelagh Carpendale, and Stacey D. Scott. Interface currents: supporting
fluent face-to-face collaboration. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches,
page 142, New York, NY, USA, 2005b. ACM. doi: 10.1145/1187112.1187284. 18, 33

Uta Hinrichs, Sheelagh Carpendale, and Stacey D. Scott. Interface currents - supporting co-
located collaborative work on tabletop displays. Technical Report 2005-773-04, University
of Calgary, Calgary, AB, 2005c. URL http://pharos.cpsc.ucalgary.ca/Dienst/UI/
2.0/Describe/ncstrl.ucalgary_cs/2005-773-04. 33

Uta Hinrichs, Sheelagh Carpendale, and Stacey D. Scott. Evaluating the effects of fluid
interface components on tabletop collaboration. In AVI ’06: Proceedings of the working
conference on Advanced visual interfaces, pages 27–34, New York, NY, USA, 2006. ACM.
ISBN 1-59593-353-0. doi: 10.1145/1133265.1133272. 33

Hitachi Ltd. http://crave.cnet.co.uk/video/0,139101587,49295106,00.htm. ,
Crave TV: Hitachi StarBoard interactive surface, January 2008. 13

Hitachi Software Engineering America. StarBoard™ FX 77 Duo interactive whiteboard.
Brochure and Specs, model AH00179, Hitachi Ltd., 2007. URL http://starboard.
hitachi-soft.com/supportingdocs/icg/FXduo.pdf. Retrieved 2008-01-23. 52

Steve Hodges, Shahram Izadi, Alex Butler, Alban Rrustemi, and Bill Buxton. ThinSight:
Versatile multi-touch sensing for thin form-factor displays. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology (UIST2007) UIS
[2007], pages 259–268. ISBN 978-1-59593-679-2. doi: 10.1145/1294211.1294258. 32

Dane M. Howard. Sharing Digital Photos: The Future of Memories. Microsoft Press, 1st
edition, October 8 2003. 3

HP Labs. HP Labs marks 40th with high-tech coffee table. URL, via C|Net, February 22
2006. http://www.news.com/HP-Labs-marks-40th-with-high-tech-coffee-table/
2100-1008_3-6041758.html (Verified 2007-12-16). 18, 29

David F. Huynh, Steven M. Drucker, Patrick Baudisch, and Curtis Wong. Time quilt:
Scaling up zoomable photo browsers for large, unstructured photo collections. In CHI ’05
extended abstracts on Human factors in computing systems, pages 1937–1940, Portland,
OR, USA, 2005. ACM Press. ISBN 1-59593-002-7. doi: 10.1145/1056808.1057061. 38

Tobias Isenberg, André Miede, and Sheelagh Carpendale. A buffer framework for supporting
responsive interaction in information visualization interfaces. In Proceedings of the Fourth
International Conference on Creating, Connecting and Collaborating through Computing
(C5 2006), pages 262–269, Berkley, California, USA, January 25–27 2006. IEEE Computer
Society. doi: 10.1109/C5.2006.4. 33, 53, 100

Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood.
Dynamo: A public interactive surface supporting the cooperative sharing and exchange
of media. In Proceedings of the 16th Annual ACM Symposium on User Interface Software
and Technology UIS [2003], pages 159–168. doi: 10.1145/964696.964714. 12, 35

208

http://dx.doi.org/10.1145/1187112.1187284
http://pharos.cpsc.ucalgary.ca/Dienst/UI/2.0/Describe/ncstrl.ucalgary_cs/2005-773-04
http://pharos.cpsc.ucalgary.ca/Dienst/UI/2.0/Describe/ncstrl.ucalgary_cs/2005-773-04
http://dx.doi.org/10.1145/1133265.1133272
http://crave.cnet.co.uk/video/0,139101587,49295106,00.htm
http://starboard.hitachi-soft.com/supportingdocs/icg/FXduo.pdf
http://starboard.hitachi-soft.com/supportingdocs/icg/FXduo.pdf
http://dx.doi.org/10.1145/1294211.1294258
http://www.news.com/HP-Labs-marks-40th-with-high-tech-coffee-table/2100-1008_3-6041758.html
http://www.news.com/HP-Labs-marks-40th-with-high-tech-coffee-table/2100-1008_3-6041758.html
http://dx.doi.org/10.1145/1056808.1057061
http://dx.doi.org/10.1109/C5.2006.4
http://dx.doi.org/10.1145/964696.964714


BIBLIOGRAPHY BIBLIOGRAPHY

Young Kyu Jin, Seung Eok Choi, Amy Chung, In Sik Myung, Ja Yeon Lee, Min Chul Kim,
and Joo Kyung Woo. GIA: Design of a gesture-based interaction photo album. Personal
Ubiquitous Comput., 8(3-4):227–233, 2004. ISSN 1617-4909. doi: 10.1007/s00779-004-
0282-y. 3, 5, 37

Bonnie E. John and David E. Kieras. The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Trans. Comput.-Hum. Interact., 3(4):320–351, 1996.
ISSN 1073-0516. doi: 10.1145/235833.236054. 43

Martin Kaltenbrunner and Ross Bencina. reacTIVision: A computer-vision framework
for table-based tangible interaction. In Proceedings of the 1st International conference
on Tangible and Embedded Interaction, pages 69–74, Baton Rouge, Louisiana, USA,
February 15–17 2007. ACM Press. doi: 10.1145/1226969.1226983. 36

David S. Kirk, Abigail J. Sellen, Carsten Rother, and Kenneth R. Wood. Understanding
photowork. In Proceedings of the 2006 Conference on Human Factors in Computing
Systems (CHI 2006) CHI [2006], pages 761–770. doi: 10.1145/1124772.1124885. 2, 86

Hideki Koike, Yoichi Sato, and Yoshinori Kobayashi. Integrating paper and digital inform-
ation on EnhancedDesk: A method for realtime finger tracking on an augmented desk
system. ACM Transactions on Human-Computer Interaction, 8(4):307–322, December
2001. doi: 10.1145/504704.504706. 35

Hideki Koike, Shin’ichiro Nagashima, and Yasuto Nakanishi. EnhancedTable: Support-
ing a small meeting in ubiquitous and augmented environment. IS Technical Report
UEC-IS-TR-2003-9, Graduate School of Information Systems, University of Electro-
Communications, 2003. 35

Robert E. Kraut. HCI Models, Theories and Frameworks: Toward a Multidisciplinary
Science, chapter Applying Social Psychological Theory to the Problems of Group Work,
pages 325–356. Morgan Kaufman, 2003. ISBN 1-55860-808-7. 12, 22

Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Anthony Tang. Fluid integ-
ration of rotation and translation. In Proceedings of the 2005 Conference on Hu-
man Factors in Computing Systems (CHI 2005) CHI [2005], pages 601–610. doi:
10.1145/1054972.1055055. 33, 66

Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, MA, USA,
1995. ISBN 0-262-121867. 150

Carney Landis. Determinants of the critical flicker-fusion threshold. Physiol. Rev., 34(2):
259–286, 1954. 160

Daniel Leithinger and Michael Haller. Improving menu interaction for cluttered tabletop
setups with user-drawn path menus. In Proceedings of the 2nd Annual IEEE International
Workshop on Horizontal Interactive Human-Computer Systems Tab [2007], pages 121–128.
doi: 10.1109/TABLETOP.2007.12. 13, 39, 43

Allan Christian Long, Jr. Quill: A Gesture Design Tool for Pen-based User Interfaces.
PhD thesis, U.C. Berkeley, EECS Department, Computer Science Division, December
2001. 22

Luidia, Inc. http://www.e-beam.com/. , eBeam Website, 2004. 13

James B MacQueen. Some methods for classification and analysis of multivariate obser-
vations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, 1(281-297):14, 1967. 90

209

http://dx.doi.org/10.1007/s00779-004-0282-y
http://dx.doi.org/10.1007/s00779-004-0282-y
http://dx.doi.org/10.1145/235833.236054
http://dx.doi.org/10.1145/1226969.1226983
http://dx.doi.org/10.1145/1124772.1124885
http://dx.doi.org/10.1145/504704.504706
http://dx.doi.org/10.1145/1054972.1055055
http://dx.doi.org/10.1109/TABLETOP.2007.12
http://www.e-beam.com/


BIBLIOGRAPHY BIBLIOGRAPHY

Shahzad Malik and Joe Laszlo. Visual touchpad: A two-handed gestural input device. In
Proceedings of the 6th International Conference on Multimodal Interfaces (ICMI’04),
State College, Pennsylvania, USA, October 2004. ICMI 2004, ACM. ISBN 1-58113-995-0.
doi: 10.1145/1027933.1027980. 13, 16, 35

Marjo Markkula and Eero Sormunen. End-user searching challenges indexing practices in
the digital newspaper photo archive. Information Retrieval, 1(4):259–285, 2000. 3

David A. Martin. Interactive display system (SMARTBoard). US Patent 5,448,263,
Smart Technologies Inc., Calgary, California, USA, September 5 1995. URL http:
//patft.uspto.gov/netacgi/nph-Parser?patentnumber=5448263. Filed October 21,
1991. 13, 17

Masafumi Matsuda, Mitsunori Matsushita, Tatsumi Yamada, and Takeshi Namemura. Be-
havioral analysis of asymmetric information sharing on Lumisight Table. In Proceedings
of the 1st IEEE International Workshop on Horizontal Interactive Human-Computer
Systems Tab [2006], pages 113–119. ISBN 0-7695-2494-X/06. doi: 10.1109/TAB-
LETOP.2006.6. Morten Fjeld and Masahiro Takatsuka, editors. 16

Mitsunori Matsushita, M. Iida, T. Ohguro, Y. Shirai, K. Kakehi, and Takeshi Namemura.
Lumisight table: A face-to-face collaboration support system that optimizes direction
of projected information to each stakeholder. In Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW’04) CSC [2004], pages 274–283. 13, 16,
37

Deborah J. Mayhew. Principles and Guidelines in Software User Interface Design. PTR
Prentice Hall, 1992. ISBN 0137219296. 61

Koen Meinds and Bart Barenbrug. Resample hardware for 3D graphics. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages
17–26, Saarbrucken, Germany, 2002. Eurographics Association. ISBN 1-58113-580-7. 21

Microsoft Corporation. Surface computing comes to life in restaurants, hotels, retail
locations and casino resorts. http://www.microsoft.com/surface/, May 2007. Verified
2007-06-25. 13

André Miede. Realizing responsive interaction for tabletop interaction metaphors. Master’s
thesis, Otto-von-Guericke-University of Magdeburg, Germany, 2006. URL http://
portfolio.miede.de. 33

Margaret R. Minsky. Manipulating simulated objects with real-world gestures using a force
and position sensitive screen. SIGGRAPH Comput. Graph., 18(3):195–203, 1984. ISSN
0097-8930. doi: http://doi.acm.org/10.1145/964965.808598. 12, 21, 26, 46, 65

Mitsubishi Electric Research Laboratories, Inc. MERL DiamondTouch™ Table. Product
specifications, Cambridge, Massachusetts, USA, October 26 2006. URL http://www.
merl.com/projects/DiamondTouch/DTflier.pdf. Retrieved 2008-01-23. 52

Baback Moghaddam, Qi Tian, Neal Leah, Chia Shen, and Thomas S. Huang. PDH: A
human-centric interface for image libraries. In Proceedings of International Conference
on Multimedia & Expo (ICME’02), Lausanne, Switzerland, August 2002. 38

Baback Moghaddam, Qi Tian, Neal Lesh, Chia Shen, and Thomas S. Huang. Visu-
alization and user-modeling for browsing personal photo libraries. International
Journal of Computer Vision, 56(1-2):109–130, January 2004. ISSN 0920-5691. doi:
10.1023/B:VISI.0000004834.62090.74. 37, 38

210

http://dx.doi.org/10.1145/1027933.1027980
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5448263
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=5448263
http://dx.doi.org/10.1109/TABLETOP.2006.6
http://dx.doi.org/10.1109/TABLETOP.2006.6
http://www.microsoft.com/surface/
http://portfolio.miede.de
http://portfolio.miede.de
http://dx.doi.org/http://doi.acm.org/10.1145/964965.808598
http://www.merl.com/projects/DiamondTouch/DTflier.pdf
http://www.merl.com/projects/DiamondTouch/DTflier.pdf
http://dx.doi.org/10.1023/B:VISI.0000004834.62090.74


BIBLIOGRAPHY BIBLIOGRAPHY

K. A. Mohamed, S. Haag, J. Peltason, F. Dal-Ri, and Th. Ottmann. Disoriented pen-
gestures for identifying users around the tabletop without cameras and motion sensors.
In Proceedings of the 1st IEEE International Workshop on Horizontal Interactive Human-
Computer Systems Tab [2006], pages 43–50. ISBN 0-7695-2494-X/06. doi: 10.1109/TAB-
LETOP.2006.11. Morten Fjeld and Masahiro Takatsuka, editors. 22

Meredith Ringel Morris. Supporting effective interaction with tabletop groupware.
Colloquium at University of Washington, Seattle, WA, February 28 2006. URL
http://norfolk.cs.washington.edu/htbin-post/unrestricted/colloq/details.
cgi?id=482. 17

Meredith Ringel Morris, Dan Morris, and Terry Winograd. Individual audio channels with
single display groupware: Effects on communication and task strategy. In Proceedings
of the Conference on Computer-Supported Cooperative Work (CSCW’04) CSC [2004],
pages 242–251. doi: 10.1145/1031607.1031646. 3

Meredith Ringel Morris, Kathy Ryall, Chia Shen, Clifton Forlines, and Frédéric Vernier.
Beyond “social protocols”: Multi-user coordination policies for co-located groupware. In
Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW’04)
CSC [2004], pages 262–265. doi: 10.1145/1031607.1031648. 20, 46, 47, 179

Meredith Ringel Morris, Andreas Paepcke, and Terry Winograd. TeamSearch: Comparing
techniques for co-present collaborative search of digital media. In Proceedings of the 1st
IEEE International Workshop on Horizontal Interactive Human-Computer Systems Tab
[2006], pages 97–104. doi: 10.1109/TABLETOP.2006.32. 3, 15, 37

Meredith Ringel Morris, Andreas Paepcke, Terry Winograd, and Jeannie Stamberger.
TeamTag: Exploring centralized versus replicated controls for co-located tabletop
groupware. In Proceedings of the 2006 Conference on Human Factors in Comput-
ing Systems (CHI 2006) CHI [2006], pages 1273–1282. ISBN 1-59593-372-7. doi:
10.1145/1124772.1124964. Conference Chair Gary Olson and Program Chair Robin
Jeffries. 15, 39, 43

Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl Gutwin. A
comparison of techniques for multi-display reaching. In Proceedings of the 2005 Conference
on Human Factors in Computing Systems (CHI 2005) CHI [2005], pages 371–380. ISBN
1-58113-998-5. doi: 10.1145/1054972.1055024. 19

Yasuto Nakanishi, Yoichi Sato, and Hideki Koike. EnhancedDesk and EnhancedWall:
Augmented desk and wall interfaces with real-time tracking of user’s motion. In Proc.
of UbiComp’02 Workshop on Collaborations with Interactive Walls and Tables, pages
27–30, 2002. 13

William Newman and Pierre Wellner. A desk supporting computer-based interaction with
paper documents. In CHI ’92: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 587–592, Monterey, California, United States, 1992. ACM.
ISBN 0-89791-513-5. doi: 10.1145/142750.143007. 12

Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993. ISBN 0125184050. 41, 42

Jakob Nielsen. Enhancing the explanatory power of usability heuristics. In CHI ’94:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
152–158, Boston, Massachusetts, United States, 1994a. ACM. ISBN 0-89791-650-6. doi:
10.1145/191666.191729. 61

211

http://dx.doi.org/10.1109/TABLETOP.2006.11
http://dx.doi.org/10.1109/TABLETOP.2006.11
http://norfolk.cs.washington.edu/htbin-post/unrestricted/colloq/details.cgi?id=482
http://norfolk.cs.washington.edu/htbin-post/unrestricted/colloq/details.cgi?id=482
http://dx.doi.org/10.1145/1031607.1031646
http://dx.doi.org/10.1145/1031607.1031648
http://dx.doi.org/10.1109/TABLETOP.2006.32
http://dx.doi.org/10.1145/1124772.1124964
http://dx.doi.org/10.1145/1054972.1055024
http://dx.doi.org/10.1145/142750.143007
http://dx.doi.org/10.1145/191666.191729


BIBLIOGRAPHY BIBLIOGRAPHY

Jakob Nielsen. Usability Inspection Methods, chapter 2: Heuristic Evaluation, pages 25–62.
John Wiley and Sons, New York, 1994b. 60, 61

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI’90:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
249–256, Seattle, Washington, USA, 1990. ACM Press. ISBN 0-201-50932-6. doi:
10.1145/97243.97281. 60

Bernard A. Nijstad, Wolfgang Stroebe, and Hein F.M. Lodewijkx. Production blocking
and idea generation: Does blocking interfere with cognitive processes? Journal of
Experimental Social Psychology, 39(6):531–548, November 2003. doi: 10.1016/S0022-
1031(03)00040-4. 156

Kazushi Nishimoto, Kenta Amano, and Masao Usuki. pHotOluck: A home-use table-ware
to vitalize mealtime communications by projecting photos onto dishes. In Proceedings
of the 1st IEEE International Workshop on Horizontal Interactive Human-Computer
Systems Tab [2006], pages 9–16. doi: 10.1109/TABLETOP.2006.24. 38

Dan R. Olsen, Jr. Evaluating user interface systems research. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology (UIST2007) UIS
[2007], pages 251–258. doi: 10.1145/1294211.1294256. 149, 150, 165, 197

J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks.
Neural Computation, 3(2):246–257, 1991. 131, 132

Robert Penner. Robert Penner’s Programming Macromedia Flash MX. McGraw-Hill/
OsborneMedia, 2002. ISBN 978-0072223569. 124

Romain Perron and Fran cois Laborie. Augmented tabletops, an incentive for distributed
collaboration. In Proceedings of the 1st IEEE International Workshop on Horizontal
Interactive Human-Computer Systems Tab [2006], pages 133–140. doi: 10.1109/TAB-
LETOP.2006.4. 12, 17

Phillips Electronics. Entertaible: Combination of electronic gaming and traditional board
games. http://www.research.philips.com/initiatives/entertaible/index.html,
January 2006. Verified 2007-06-25. 18, 29

Claudio Pinhanez and Mark Podlaseck. To frame or not to frame: The role and design
of frameless displays in ubiquitous applications. In Proceedings of the 7th International
Conference on Ubiquitous Computing, (UbiComp), number 3660 in LNCS, pages 340–357,
Tokyo, Japan, September 2005. UbiComp 2005, Springer-Verlag. Michael Beigl et al.,
editors. 179

Anne Marie Piper, Eileen O’Brien, Meredith Ringel Morris, and Terry Winograd. Sides:
a cooperative tabletop computer game for social skills development. In CSCW ’06:
Proceedings of the 2006 20th anniversary conference on Computer supported cooper-
ative work, pages 1–10, New York, NY, USA, 2006. ACM. ISBN 1-59593-249-6. doi:
10.1145/1180875.1180877. 23

John C. Platt. AutoAlbum: Clustering digital photographs using probabilistic model
merging. In Proceedings of the IEEE Workshop on Content-based Access of Image
and Video Libraries (CBAIVL’00), pages 96–101, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0695-X. doi: 10.1109/IVL.2000.853847. 88

John C. Platt, Mary Czerwinski, and Brent A. Field. PhotoTOC: Automatic clustering
for browsing personal photographs. In Proceedings of the 2003 Joint Conference of the

212

http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1016/S0022-1031(03)00040-4
http://dx.doi.org/10.1016/S0022-1031(03)00040-4
http://dx.doi.org/10.1109/TABLETOP.2006.24
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1109/TABLETOP.2006.4
http://dx.doi.org/10.1109/TABLETOP.2006.4
http://www.research.philips.com/initiatives/entertaible/index.html
http://dx.doi.org/10.1145/1180875.1180877
http://dx.doi.org/10.1109/IVL.2000.853847


BIBLIOGRAPHY BIBLIOGRAPHY

Fourth International Conference on Information, Communications and Signal Processing,
2003 and the Fourth Pacific Rim Conference on Multimedia, volume 1, pages 6–10, 2003.
doi: 10.1109/ICICS.2003.1292402. 88

Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland, and Tom Carey.
Human-Computer Interaction. Addison-Wesley, 1994. ISBN 0-201-62769-8. 168

Jun Rekimoto. SmartSkin: An onfrastructure for freehand manipulation on interactive
surfaces. In Proceedings of the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, pages 113–120, Minneapolis, Minnesota,
USA, 2002. CHI 2002, ACM Press. ISBN 1-58113-453-3. doi: 10.1145/503376.503397.
Dennis Wixon, editor. 13, 15, 66

Jun Rekimoto, Takaaki Ishizawa, Carsten Schwesig, and Haruo Oba. PreSense: Interaction
techniques for finger sensing input devices. In Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology UIS [2003], pages 203–212. doi:
10.1145/964696.964719. 15

Eric F. Rietzschel, Bernard A. Nijstad, and Wolfgang Stroebe. Productivity is not enough:
A comparison of interactive and nominal brainstorming groups on idea generation and
selection. Journal of Experimental Social Psychology, 42(6):244–251, March 2006. doi:
10.1016/j.jesp.2005.04.005. 155

Meredith Ringel, Kathy Ryall, Chia Shen, Clifton Forlines, and Frédéeric Vernier. Re-
lease, relocate, reorient, resize: Fluid techniques for document sharing on multi-user
interactive tables. In CHI2004 Extended Abstracts CHI [2004b], pages 1441–1444. doi:
10.1145/985921.986085. 14, 66, 168

Peter Risborg and Aaron Quigley. Nightingale: Reminiscence and technology – from a user
perspective. In Proceedings of OZeWAI 2003, pages 1–8, La Trobe University, Victoria,
Australia, December 1-3 2003. 47, 168

Kerry Rodden and Kenneth R. Wood. How do people manage their digital photographs? In
Proceedings of the Conference on Human Factors in Computing Systems, pages 409–416,
Ft. Lauderdale, Florida, USA, April 5-10 2003. CHI 2003, ACM Press. ISBN 1-58113-
630-7. doi: 10.1145/642611.642682. Gilbert Cockton and Panu Korhonen, editors. 3, 5,
21, 91

Y. Rogers, W. Hazlewood, E. Blevis, and Y. Lim. Finger talk: Collaborative decision-
making using talk and fingertip interaction around a tabletop display. In Proceedings of
the 2004 Conference on Human Factors in Computing Systems (CHI 2004) CHI [2004a],
pages 1271–1274. 37

Kathy Ryall, Clifton Forlines, Chia Shen, and Meredith Ringel Morris. Exploring the effects
of group size and table size on interactions with tabletop shared-display groupware. In
Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW’04)
CSC [2004], pages 284–293. 13, 168

Kathy Ryall, Meredith Ringel Morris, Katherine Everitt, Clifton Forlines, and Chia Shen.
Experiences with and observations of direct-touch tabletops. In Proceedings of the 1st
IEEE International Workshop on Horizontal Interactive Human-Computer Systems Tab
[2006], pages 89–96. doi: 10.1109/TABLETOP.2006.12. 15, 39, 43

Stacey D. Scott. Territoriality in Collaborative Tabletop Workspaces. PhD thesis, Depart-
ment of Computer Science, University of Calgary, Alberta, Canada, 2005. 19, 41, 47,
178

213

http://dx.doi.org/10.1109/ICICS.2003.1292402
http://dx.doi.org/10.1145/503376.503397
http://dx.doi.org/10.1145/964696.964719
http://dx.doi.org/10.1016/j.jesp.2005.04.005
http://dx.doi.org/10.1145/985921.986085
http://dx.doi.org/10.1145/642611.642682
http://dx.doi.org/10.1109/TABLETOP.2006.12


BIBLIOGRAPHY BIBLIOGRAPHY

Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System guidelines for co-located
collaborative work on a tabletop display. In Proceedings of the 8th European Conference of
Computer-Supported Cooperative Work (ECSCW’03), pages 159–178, Helsinki, Finland,
September 2003. xix, 19, 37, 61

Stacey D. Scott, M. Sheelagh T. Carpendale, and Stefan Habelski. Storage bins: Mobile
storage for collaborative tabletop displays. IEEE Computer Graphics and Applications,
25(4):58–65, July 2005. doi: 10.1109/MCG.2005.86. 47, 81

Chia Shen. Multi-user interface and interactions on direct-touch horizontal surfaces:
Collaborative tabletop research at MERL. In Proceedings of the 1st IEEE International
Workshop on Horizontal Interactive Human-Computer Systems Tab [2006], pages 53–54.
doi: 10.1109/TABLETOP.2006.22. 15, 37

Chia Shen, Neal Lesh, Baback Moghaddam, Paul Beardsley, and Ryan Scott Bardsley.
Personal digital historian: User interface design. In CHI ’01 extended abstracts on
Human factors in computing systems, pages 29–30, Seattle, Washington, USA, April
2001. ACM Press. ISBN 1-58113-340-5. doi: 10.1145/634067.634090. 26, 38

Chia Shen, Neal B. Lesh, Frédéric Vernier, Clifton Forlines, and Jeana Frost. Sharing and
building digital group histories. In Proceedings of the 2002 ACM conference on Computer
Supported Cooperative Work CSC [2002], pages 324–333. doi: 10.1145/587078.587124.
38, 39, 43

Chia Shen, Katherine Everitt, and Kathleen Ryall. UbiTable: Impromptu face-to-face
collaboration on horizontal interactive surfaces. In Proceedings of the 5th International
Conference on Ubiquitous Computing (UbiComp), volume 2864 of Lecture Notes in
Computer Science (LNCS), pages 281–288, Seattle, Washington, USA, October 2003a.
UbiComp 2003, Springer. ISBN 3-540-20301-X. Anind K. Dey, Albrecht Schmidt and
Joseph F. McCarthy, editors. 28, 74, 78

Chia Shen, Neal B. Lesh, and Frédéric Vernier. Personal digital historian: Story sharing
around the table. ACM Interactions, 10(2):15–22, March 2003b. ISSN 1072-5520. doi:
10.1145/637848.637856. 26, 37, 38, 88

Chia Shen, Frédéric Vernier, Clifton Forlines, and Meredith Ringel. DiamondSpin: An
extensible toolkit for around-the-table interaction. In Proceedings of the 2004 Conference
on Human Factors in Computing Systems (CHI 2004) CHI [2004a], pages 167–174. doi:
10.1145/985692.985714. 22, 26, 66

Dr. Chia Shen, Clifton Forlines, Daniel Wigdor, and Frédéric Vernier. Open letter to
OS designers from the tabletop research community. , Mitsubishi Electric Research
Laboratories, University of Paris, 2007. URL http://www.diamondspace.merl.com/.
28, 34

Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley, second edition, 1992. 61

Beat Signer, Ueli Kurmann, and Moira C. Norrie. iGesture: A general gesture recognition
framework. In Proceedings of the 9th International Conference on Document Analysis
and Recognition (ICDAR 2007 Vol. 2), Curitiba, Parana, Brazil, September 23–26 2007.
ISBN 978-0-7695-2822-9. doi: 10.1109/ICDAR.2007.4377056. 22

Yannis Smaragdakis and Don Batory. Mixin-based programming in C++. In Generative
and Component-Based Software Engineering, Second International Symposium (GCSE

214

http://dx.doi.org/10.1109/MCG.2005.86
http://dx.doi.org/10.1109/TABLETOP.2006.22
http://dx.doi.org/10.1145/634067.634090
http://dx.doi.org/10.1145/587078.587124
http://dx.doi.org/10.1145/637848.637856
http://dx.doi.org/10.1145/985692.985714
http://www.diamondspace.merl.com/
http://dx.doi.org/10.1109/ICDAR.2007.4377056


BIBLIOGRAPHY BIBLIOGRAPHY

2000), volume 2117 of LNCS, pages 163–177, Erfurt, Germany, October 9-12 2000.
Springer Berlin / Heidelberg. ISBN 978-3-540-42578-6. doi: 10.1007/3-540-44815-2. 112

SMART Technologies Inc. DViT: Digital vision touch technology. White paper, February
2003. http://www.smarttech.com/dvit/DViT_white_paper.pdf. 17

SMART Technologies ULC. SMART Board™ interactive whiteboard. Specifications,
December 2006. URL http://www2.smarttech.com/st/en-US/Support/FlatPanel/
FP300seriesspecifications.htm. Retreived 2008-01-23. 52

Alan F. Smeaton, Colum Foley, Cathal Gurrin, and Hyowon Lee. Collaborative searching
for video using the Físchlár system and a diamondtouch table. In Proceedings of the 1st
IEEE International Workshop on Horizontal Interactive Human-Computer Systems Tab
[2006], pages 149–156. doi: 10.1109/TABLETOP.2006.7. 35, 49

J. David Smith, T.C. Nicholas Graham, David Holman, and Jan Borchers. Low-cost
malleable surfaces with multi-touch pressure sensitivity. In Proceedings of the 2nd Annual
IEEE International Workshop on Horizontal Interactive Human-Computer Systems Tab
[2007], pages 205–208. doi: 10.1109/TABLETOP.2007.15. 13

Sidney L. Smith and Jane N. Mosier. Guidelines for designing user interface software.
Technical Report MTR-10090, The MITRE Corporation, Bedford, MA, USA, August
1986. 61

Le Song and Masahiro Takatsuka. Real-time 3D finger pointing for an augmented desk.
In Proc. of 6th Australasian User Interface Conference, CRPIT 40, 2005. URL http:
//www.it.usyd.edu.au/~lesong/papers/SongMasaFingerPointing.pdf. 13, 35

Jason Stewart, Benjamin B. Bederson, and Allison Druin. Single display groupware:
A model for co-present collaboration. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI’99) CHI [1999], pages 286–293. doi:
10.1145/302979.303064. 13, 35

Norbert Streitz, Peter Tandler, Christian Müller-Tomfelde, and S. Konomi. Human-
Computer Interaction in the New Millenium, chapter Roomware: Towards the Next
Generation of Human-Computer Interaction based on an Integrated Design of Real and
Virtual Worlds, pages 553–578. Addison-Wesley, 2001. ISBN 0201704471. 16, 29, 35

Norbert Streitz, Thorsten Prante, Christian Müller-Tomfelde, Peter Tandler, and Carsten
Magerkurth. Roomware©: The second generation. In CHI ’02 extended abstracts on
Human factors in computing systems, pages 506–507, Minneapolis, Minnesota, USA,
2002. ACM Press. ISBN 1-58113-454-1. doi: 10.1145/506443.506452. xvii, 16, 17

Norbert A. Streitz, Jörg Geißler, Torsten Holmer, Shin’ichi Konomi, Christian Müller-
Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-LAND:
An interactive landscape for creativity and innovation. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI’99) CHI [1999], pages 120–127.
ISBN 0-201-48559-1. doi: 10.1145/302979.303010. Marian G. Williams and Mark W.
Altom, editors. 16, 35

Yasuyuki Sumi, Jun Ito, and Toyoaki Nishida. PhotoChat: Communication support system
based on sharing photos and notes. In Mary Czerwinski, Arnold M. Lund, and Desney S.
Tan, editors, CHI Extended Abstracts, pages 3237–3242, Florence, Italy, April 5-10 2008.
ACM. doi: 10.1145/1358628.1358837. 5

215

http://dx.doi.org/10.1007/3-540-44815-2
http://www.smarttech.com/dvit/DViT_white_paper.pdf
http://www2.smarttech.com/st/en-US/Support/FlatPanel/FP300seriesspecifications.htm
http://www2.smarttech.com/st/en-US/Support/FlatPanel/FP300seriesspecifications.htm
http://dx.doi.org/10.1109/TABLETOP.2006.7
http://dx.doi.org/10.1109/TABLETOP.2007.15
http://www.it.usyd.edu.au/~lesong/papers/SongMasaFingerPointing.pdf
http://www.it.usyd.edu.au/~lesong/papers/SongMasaFingerPointing.pdf
http://dx.doi.org/10.1145/302979.303064
http://dx.doi.org/10.1145/506443.506452
http://dx.doi.org/10.1145/302979.303010
http://dx.doi.org/10.1145/1358628.1358837


BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the 1st IEEE International Workshop on Horizontal Interactive Human-
Computer Systems (TableTop), Adelaide, Australia, January 2006. TableTop 2006, IEEE
Computer Society. ISBN 0-7695-2494-X/06. Morten Fjeld and Masahiro Takatsuka,
editors. 204, 206, 207, 210, 211, 212, 213, 214, 215, 217

Proceedings of the 2nd Annual IEEE International Workshop on Horizontal Interactive
Human-Computer Systems (TableTop), Newport, Rhode Island, USA, October 10–12
2007. TableTop 2007, IEEE Computer Society. ISBN 0-7695-3013-3. 29, 31, 152, 180,
205, 207, 209, 215, 216, 217

Peter Tandler, Thorsten Prante, Christian Müller-Tomfelde, Norbert A. Streitz, and Ralf
Steinmetz. Connectables: Dynamic coupling of displays for the flexible creation of
shared workspaces. In Proceedings of the 14th Annual ACM symposium on User interface
software and technology UIS [2001], pages 11–20. doi: 10.1145/502348.502351. 29, 78

Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh Carpendale.
Collaborative coupling over tabletop displays. In Proceedings of the 2006 Conference on
Human Factors in Computing Systems (CHI 2006) CHI [2006], pages 1181–1190. doi:
10.1145/1124772.1124950. 60

Technical Standardization Committee on AV & IT Storage Systems and Equipment.
Exchangeable image file format for digital still cameras: Exif version 2.2. Standard
JEITA CP-3451, Japan Electronics and Information Technology Industries Association,
April 2002. http://www.exif.org/Exif2-2.PDF. 2, 138

Lucia Terrenghi, David Kirk, Abigail Sellen, and Shahram Izadi. Affordances for manipu-
lation of physical versus digital media on interactive surfaces. In Proceedings of the 2006
Conference on Human Factors in Computing Systems (CHI 2007), pages 1157–1166,
San Jose, California, USA, 2007. CHI 2007, ACM Press. ISBN 978-1-59593-593-9. doi:
10.1145/1240624.1240799. Mary Beth Rosson and David J. Gilmore, editors. 24, 43

Bruce Tognazzini. Tog on software design. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1996. ISBN 0-201-48917-1. 42

Edward Tse and Saul Greenberg. Rapidly prototyping single display groupware through the
SDGToolkit. In Proceedings of 5th Australasian User Interface Conference, volume 28 of
CRPIT Conferences in Research and Practice in Information Technology Series, pages
101–110, Dunedin, New Zealand, January 2004. Australian Computer Society Inc. 35

Philip Tuddenham and Peter Robinson. T3: Rapid prototyping of high-resolution and
mixed-presence tabletop applications. In Proceedings of the 2nd Annual IEEE Interna-
tional Workshop on Horizontal Interactive Human-Computer Systems Tab [2007], pages
11–18. doi: 10.1109/TABLETOP.2007.32. 34

Proceedings of the 14th Annual ACM symposium on User Interface Software and Technology,
Orlando, Florida, USA, November 2001. UIST 2001, ACM Press. ISBN 1-58113-438-X.
Joe Marks and Elizabeth Mynatt, editors. 206, 216

Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology,
Vancouver, Canada, November 2003. UIST 2003, ACM Press. ISBN 1-58113-636-6. 207,
208, 213, 217

Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology,
Seattle, WA, October 2005. UIST 2005, ACM Press. 206, 207

216

http://dx.doi.org/10.1145/502348.502351
http://dx.doi.org/10.1145/1124772.1124950
http://www.exif.org/Exif2-2.PDF
http://dx.doi.org/10.1145/1240624.1240799
http://dx.doi.org/10.1109/TABLETOP.2007.32


BIBLIOGRAPHY BIBLIOGRAPHY

Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology
(UIST2007), Newport, Rhode Island, USA, October 7-10 2007. UIST 2007, ACM Press.
ISBN 978-1-59593-679-2. Chia Shen, Robert J. K. Jacob and Ravin Balakrishnan, editors.
208, 212, 217

USB Implementers’ Forum. Device class definition for human interface devices (hid). Firm-
ware Specification Version 1.1, June 6 2001. URL http://www.usb.org/developers/
devclass_docs/HID1_11.pdf. Retrieved 2008-01-23. 52, 56, 130, 141, 164

Frédéric Vernier, Neal Lesh, and Chia Shen. Visualization techniques for circular tabletop
interfaces. In Proceedings of Advanced Visual Interfaces (AVI’02), pages 257–266, Trento,
Italy, May 2002. ACM Press. 38, 66

Virtual Ink Inc. mimio® interactive. Specifications, May 2006. URL http://www.mimio.
com/products/documentation/mimiointeractive_datasheet.pdf. Retrieved 2008-
01-23. 52, 180

Virtual Ink Inc. http://www.mimio.com/. , Mimio Website, 2005. 13

David A. Wheeler. http://www.dwheeler.com/sloccount/. Website, SLOCCount, a set
of tools for counting physical Source Lines of Code (SLOC), 2007. 97

Andrew D. Wilson. Depth-sensing video cameras for 3D tangible tabletop interaction. In
Proceedings of the 2nd Annual IEEE International Workshop on Horizontal Interactive
Human-Computer Systems Tab [2007], pages 201–204. doi: 10.1109/TABLETOP.2007.6.
29

Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits
or training: A $1 recognizer for user interface prototypes. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology (UIST2007) UIS
[2007], pages 159–168. doi: 10.1145/1294211.1294238. 22

Mike Wu and Ravin Balakrishnan. Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. In Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology UIS [2003], pages 192–202. doi:
10.1145/964718. 23, 168

Mike Wu, Chia Shen, Kathy Ryall, Clifton Forlines, and Ravin Balakrishnan. Gesture
registration, relaxation, and reuse for multi-point direct-touch surfaces. In Proceedings
of the 1st IEEE International Workshop on Horizontal Interactive Human-Computer
Systems Tab [2006], pages 183–190. doi: 10.1109/TABLETOP.2006.19. 23, 42

217

http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.usb.org/developers/devclass_docs/HID1_11.pdf
http://www.mimio.com/products/documentation/mimiointeractive_datasheet.pdf
http://www.mimio.com/products/documentation/mimiointeractive_datasheet.pdf
http://www.mimio.com/
http://www.dwheeler.com/sloccount/
http://dx.doi.org/10.1109/TABLETOP.2007.6
http://dx.doi.org/10.1145/1294211.1294238
http://dx.doi.org/10.1145/964718
http://dx.doi.org/10.1109/TABLETOP.2006.19


BIBLIOGRAPHY BIBLIOGRAPHY

218



Index

alpha channel, xxi
Ambiente Lab, 16
animation, 122–124
anisotropic filtering, 105
attachment, 74

audio, 76
audio, 67, 128–129

dumping, 140
feedback, 141

AugmenTable, 17

BEACH, 17
Black Hole, 69–72, 110
Bounder, 113
Bounds, 114
Browser, 77–78, 135, 145
browsing, see Browser

calibration, 131–132
callback, xxi
Camera, 116
Capture, 115

also, see Capture Frame
Capture Frame, 73–74
Caputure Frame, 142–144
clustering, 87–91, 136, 181, 183
clutter, 32, 39, 43, 47, 60, 69, 75, 81, 189
codec, xxi
CoGestures, 20
CollaborationTable, 17
Collage Builder, 28
CommChair, 17
commodity hardware, xxi
cooperative gesture, 23
critical section, xxi

data member, xxi
database, see metadata
datawall, 127

debugging, 117
delete, see Black Hole
derived class, xxi
design heuristics, 60–62
design pattern

adapter, 107, 116
composite, 113
factory, 25, 103, 126
observer, 135, 138
singleton, 103

DiamondSpace, 15
DiamondSpin, 14, 22, 26–28, 35
DiamondTouch, 13–15, 50, 167
DigitalDesk, 35
display list, 100, 105
DocuBits, 14
Drawing, 109
DTLens, 15
DViT, 17
dwell, 67
dynamic linking, xxi, 56
Dynamo, 35
DynaWall, 17

eBeam, 17
EnhancedDesk, 35
Environment, 98
events, 118–121
Exif, xxi, 39, 105, 106, 138–139, 147

Físchlár, 35
FixedPDAdapter, 107
flick, 65

also, see momentum
flicking, 84
flipping, 67
forward declaration, xxi
Frame, see Capture Frame

219



INDEX INDEX

framebuffer, xxii, 115, 116
Fraunhofer ISPI, 16
FTIR, 16
functor, xxii

Gesture, 101
gesture, 21, 125–126, 177
glTexImage2D, 106
GNU, xxii
GOMS, 43
GPL, 56
GPU, 53

HabilisDraw, 35
HID, 51, 52, 130, 164
hook, xxii

i-LAND, 16
Image, 105
Ink Environment, 22
input, 127, 130–132, 140–141
InteracTable, 16
interactive image, 82–83, 144–145

JPEG, xxii
JVM, 28

KLM, 43

Layout, 106
leeway, 115
lines of code, 98
LobbyTable, 15
Lumisight, 16

MagNets, 17
mainloop, 136
media detection, 137–138
MediaBrowser, 38
member function, xxii
MERL, 13, 15, 38
metadata, 134, 139
Microsoft Surface, 29

applications, 30
limitations, 32
SDK, 31
specifications, 29

Mimio, 38
mipmap, xxii, 121
mixin, 112
momentum, 65, 125
multi-user, 99
MultiSpace, 14
mutex, xxii

named socket, xxii
near-infrared, xxii

object coordinate, xxii, 100
OpenGL, 54, 95, 100, 109
overcrowding, see cutter81

PalmBench, 17
Pantograph, 20
PDA, 17
PDAdapter, 107

FixedPDAdapter, 107
PDH, 38
performance, 160

also, see responsiveness
photo-talk, 40
pHotOluck, 38
Pick & Drop, 20
pick list, 100
picking problem, 33, 100
PIM, 153
plugin, 137

initialisation, 135, 136
plugins, 133
Poetry Table, 13, 28
Poly, 110
Press & Flick, 20

Radar, 19
RAII, 100
raster, xxii
RBF, 131
reference counting, xxii, 105
render loop, xxiii
resize, see rosize
Resource, 98–102

Arrow, 106
AudioCircle, 111
Black Hole, see Black Hole
Browser, see Browser
Circle, 111
Drawing, 109
factory, 103
Image, 105
Label, 106
People, 140
PhotoCopier, 79
Poly, 110
Slider, 135
SmartFrame, see Capture Frame
Storage Bin, see storage bins
Video, 83, 134

220



INDEX INDEX

VNCImage, see interactive image
VUWidget, 141
Writing, 108

responsiveness, 97, 100, 104, 106, 120, 129,
135, 160

also, see performance
RoomPlanner, 23
Roomware, 17
rosize, 66
rotate, see rosize

screen coordinate, xxiii
SDG, 13, 35
SDK, 52
SharePic, 50, 167–180
singleton, xxiii
Sling Shot, 20
SLOC, 98, 151
SLOCCount, 97
SmartSkin, 15
socket, xxiii
specular reflection, xxiii
SQL, see metadata
SQLite, 103
SquiggleDraw, 35
stereoscopic, xxiii
STL, 98
storage bins, 81
streaming, 129
Strokereader, 131

STU, 150
syntactic sugar, xxiii
system memory, xxiii

Table for N, 28
TabletPC, 19
tagging, 75
TeamSearch, 15
TeamTag, 15
Texture, 17
texture, xxiii
threads, 129
TRECVid, 35
triangle strip, xxiii
tweening, 122

UbiTable, 28

ViCAT, 17
virtual function, xxiii
Visual Touchpad, 16

widget, xxiii, 135
WIMP, 135
world coordinate, xxiii
Writing, 108

XAML, 31

YUV, xxiii

z-order, xxiv

221



INDEX INDEX

222



Appendix A
Technical Notes

A.1 Software Libraries Used by Cruiser
This collection of cross-platform libraries are open source, licensed under the LGPL or
more flexible license (e.g. BSD-style or MIT). These licenses permit dynamic linking to
the library without affecting the license of your software (unlike the GPL). It is important
to distinguish the functionality newly available due to the Cruiser framework, from the
functionality that has been provided by freely available open source libraries.

Required by Core

SDL The following description is taken from http://www.libsdl.org:

Simple DirectMedia Layer is a cross-platform multimedia library designed
to provide low level access to audio, keyboard, mouse, joystick, 3D hardware
via OpenGL, and 2D video framebuffer. It is used by MPEG playback
software, emulators, and many popular games, including the award winning
Linux port of “Civilization: Call To Power.”
SDL supports Linux, Windows, Windows CE, BeOS, MacOS, Mac OS X,
FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX. The
code contains support for AmigaOS, Dreamcast, Atari, AIX, OSF/Tru64,
RISC OS, SymbianOS, and OS/2, but these are not officially supported.

The wide range of platform support, and an elegant API makes SDL well suited
to providing an immersive and efficient tabletop computing environment. Recent
porting efforts have also investigated running SDL applications on the iPhone1.

SDL_Image SDL_image is an image file loading library build using SDL. It suports
image formats BMP, GIF, JPEG, LBM, PCX, PNG, PNM, TGA, TIFF, XCF, XPM
and XV. Details of the actual image format are hidden from the developer – one
can simply ask SDL_image to load a file and, if it is an image that it supports, it
will load it and allow access to the image data in a format-independet manner. See
§5.2.4.1.

libjpeg SDL_Image does not support saving images – libjpeg is used to save frame
captures, for example. See §5.2.5.2, §5.2.11.2.

polyfonts Provides fonts and font rendering based on OpenGL primitives (polygons). See
§5.2.4.3.

1http://code.google.com/p/iphone-sdl-mame/ verified 2008-03-24

223

http://www.libsdl.org
http://code.google.com/p/iphone-sdl-mame/


A.1. Software Libraries Used by Cruiser APPENDIX A. TECHNICAL NOTES

Used for the build process

Autoconf / Automake GNU Autoconf and Automake are used to compile the applic-
ation. One particular area where these tools excell is in cross-compilation. This
allows Windows binaries to be compiled on a Linux machine in a straightforward
manner (one merely specifies --target=i686-mingw32). An example Automake file
for a plugin is shown in Listing 6.2 on page 161.

GNU libtool Libtool manages shared library inter-dependencies and, with libltdl, it
provides utilities to access dynamically loadable code in a platform-independent
manner.

Used by Plugins

SDL_Net SDL_Net provides cross-a platform API to networking sockets – TCP/IP.

SQLite The following is taken from http://www.sqlite.org:

SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine in the world. It
is used in countless desktop computer applications as well as consumer
electronic devices including cellphones, PDAs, and MP3 players. The
source code for SQLite is in the public domain.

In particular, the database is maintained as a single file, on disk, rather than requiring
a transaction server process.

libexif a C library for reading and writing Exif metainformation from and to image files.

Windows COM API To support drive detection, a Windows message processing thread
runs in parallel to the SDL main thread to receive events from the Windows operating
system via the COM (Component Object Model) API.

DBUS / HAL / glib Drive detection on Linux uses the DBUS system messagebus, HAL,
the Hardware Abstraction Layer, and a glib main loop.

Runtime tools used if available

ImageMagick Used via the convert command line program to perform high-quality
cropping and rotation of image files on disk.

Transcode Used via the tcprobe program to query the properties of a video file such as
dimensions and frame rate.

Mplayer Used with FIFO sockets to stream uncompressed video frames from a movie file,
webcam, internet video stream or TV capture card.

Audio Libraries

JACK The JACK Audio Connection toolKit is an audio backend for POSIX-compliant
systems, specifically designed for low-latency audio input and output. It is optionally
supported by Cruiser’s audio framework.

Portaudio A highly cross-platform audio library for playing and recording audio.

224

http://www.sqlite.org


APPENDIX A. TECHNICAL NOTES A.2. Windows DLLs

libsndfile Provides read and write access to a large number of audio container formats
and encodings.

libresample Resamples PCM-format audio between differing sample rates.

A.2 Windows DLLs

Windows (including Windows Vista) has poor support for dynamically linked libraries.
Dynamic linking (i.e. allowing the implementation of a function call to be determined when
the program is loaded, rather than when it is compiled) is required if we are to support
a plugin architecture, and legally use LGPL-licensed code libraries without encumbering
Cruiser with a GPL-style license (see §3.5). However, Windows DLLs are crippled: they
do not allow backreferences, nor undefined symbols at compile time – the Directed Acyclic
Graph (DAG) of dependencies must be known at compile time.

Another limitiation of Windows DLLs is that they do not allow their symbols to be
accessed via the addition of more than one constant. This means, for example, that an
array data member of a class defined in a DLL may not be indexed with a constant number
(as the offset of the start of the array is also a constant). This may sound innocent – data
members are rarely accessed directly in true OO-programming – but a more problematic
example occurs in the face of inheritance. C++ looks up the implementation for virtual
functions from an array of pointers, so indexing this array with a constant is not possible.
Recent compilers (e.g. since gcc version 4) now automate the workaround for this limitation,
with a (very) minor runtime performance penalty.

Further annoyance with Windows is its only partial support for Position Independent
Code (PIC). Windows requires programs to know where DLLs will be loaded in their virtual
address space at compile time. DLLs may suggest an offset that may help avoid collisions
(e.g. Windows system DLLs do this), but usually a non-random default is assigned by
the compiler. This means that all user-created DLLs will usually have the same offset,
requiring programs to use a different offset at compile time for all but the first DLL that is
used. Then, when a program is run, if the offset for a DLL used by the program does not
match any currently used offset for that DLL, that DLL must be loaded a second time
into memory, with the new offset; wasting memory and reducing the potential for speed
improvements gained by reuse of CPU cache.

Linux and Mac OSX platforms have none of these limitations. References in programs
to code in dynamic libraries are adjusted when a program is loaded to match whatever
the current locations of the dynamic libraries are in the entire system’s virtual address
space. Furthermore, both platforms support prelinking, which allows the library offsets
to be determined before the program is even run by predetermining unique offsets for all
libraries on the system. This gains significant performance benefits both in terms of speed
and memory usage.

A.3 DiamondTouch

A.3.1 A two-finger rotate

A common observation amongst the elderly users was a tendency to attempt to rotate
an image using two fingers. This was usually done either before the user had come to
the rosize section of the tutorial, or if the rosize action had been forgotten. Observations
indicate that perhaps this is the intuitive way to accomplish a rotation. Indeed, if one
considers a table with physical photographs on it, to rotate the object the natural tendency
is to use multiple fingers to spin it.

225



A.4. Class Diagrams APPENDIX A. TECHNICAL NOTES

Figure A.1: An (ambiguous) two-finger rotate gesture.
Note that the coordinates on the right side with the same labels (i.e. xl2, xr2, yt2, yb2) are

equivalent so it is not possible to determine which is correct.

However, implementing this gesture with the DiamondTouch hardware is problematic.
Firstly, as in the physical analogy, there is the possibility that more than two fingers (or
perhaps even a palm) is used to rotate. By itself, this could probably be resolved by
mapping all the points to coordinates on the image and minimising the error when the
fingers do not maintain their relative positions after a rotation. But the second problem is
more insidious: it is not possible to determine the direction of rotation using the current
implementation of the DiamondTouch hardware.

Consider the two finger case. Because the surface has only row and column receptors
(and not individual cell receptors), it cannot determine which pair of opposite corners of a
bounding box are the actual location of the two fingers [Dietz and Leigh, 2001]. This is
shown for a rotate gesture in Figure A.1. It is not possible to determine which of the two
rotations on the right of the figure is correct. Note also that it is not known for the initial
state the corners at which the fingers are located. Furthermore, the two possibilities are
equally probable so it is not possible to distinguish between them (e.g. by determining the
user’s intent).

A.4 Class Diagrams
Figure A.2 shows an extended version of the Resource class hierarchy in Figure 5.2

226



APPENDIX A. TECHNICAL NOTES A.4. Class Diagrams

Figure A.2: Resource and PositionDependant inheritance lattice

227



A.4. Class Diagrams APPENDIX A. TECHNICAL NOTES

228



APPENDIX A. TECHNICAL NOTES A.5. Listings

A.5 Listings

A.5.1 SMARTBoard-specific device handling code

# include "mimiolinux.h"
/* *\ file smartboard_fallback . cpp

3 * Definition of SmartBoard input device fallback
* \ author Trent Apted <tapted@it . usyd .edu .au >
* $Rev : 1953 $
* $Date : 2007 -12 -11 13:10:45 +1100 (Tue , 11 Dec 2007) $
*/

8 # include <linux/input.h>
namespace {

int fallback(const struct input_event * event , MimioLinux *ml) {
ml->penid = 1; /* DViT can report a second ID as well */
if (event ->type == EV_SYN && event ->code == SYN_REPORT)

13 return ml->dispatch_coord ();

if (event ->type == EV_ABS) {
switch(event ->code) {
case ABS_X:

18 case ABS_Y:
ml->handle_coord(event);
return 1;
break;

default:
23 fprintf(stderr , "[SMARTBOARD] EV_ABS Unknown axis: 0x%x\n", �

event ->code);
}

} else if (event ->type == EV_KEY && event ->code == 272) {
ml->penstate = event ->value ? MimioEvent ::DOWN : MimioEvent ::UP;
return 1;

28 }
fprintf(stderr , "[SMARTBOARD] Ignoring Event {type , code , value} = {0x%x, �

0x%x, %d}\n", event ->type , event ->code , event ->value);
return 1; /* keep going (i.e. always indicate " valid ") */

}
struct Init{Init(){MimioLinux :: add_fallback (& fallback);}};

33 Init startup;
}

A.5.2 Repositioning the viewing camera, triggered by a dwell on the
SmartFrame

1 void Camera :: fillView(const Pt &centre , const Pt &top , double aspect) {
current.eye = current.ctr = centre;
current.eye.z += RConfig :: ENV_CAMERA_HEIGHT;
current.aspect = aspect;
Pt forward = current.ctr - current.eye;

6 Pt upward = top - current.eye;
double costheta = forward.dot(upward)

/ ( sqrt(forward.lensq())*sqrt(upward.lensq()));
current.fovy = RAD2DEG * acos(costheta);
current.up = top - centre;

11 }

DWELL_STATUS SmartFrame ::dwell(int scr_x , int scr_y ,
unsigned user , double movement) {

checkOverlap ();
16 Camera *c = env ->getCamera ();

P3<GLfloat > up;
toWorld(up, P3<GLfloat >(0.0, 1.0, 0.0));
c->pushView ();
c->fillView(position , up, aspect);

21 return FramePic ::dwell(scr_x , scr_y , user , movement);
}

229



A.5. Listings APPENDIX A. TECHNICAL NOTES

2.598
1
SELOK

3
4

-1
0
(1.7,

0,
0.003)

0(0)
1(1)

10((827,
384,

0))
(827,

384,
0)

(0,
0,

0)
:
images/frame.png

2.598
1
SROSZ

3
4

1
0

(1.7,
0,

0.009)
-0.004278(0.6586)

0.9946(143.8)
10((827,

384,
0))

(827,
384,

0)
(-0.617,

-0.48,
0)

:
images/frame.png

2.856
1
FROSZ

3
4

1
0

(1.7,
0,

0.009)
0.1992(0.8621)

0.5(72.31)
10((827,

384,
0))

(827,
384,

0)
(-0.617,

-0.48,
0)

:
images/frame.png

2.856
1
RLEAS

3
4

1
0

(1.7,
0,

0.009)
0.1992(0.8621)

0.5(72.31)
10((827,

384,
0))

(827,
384,

0)
(-0.617,

-0.48,
0)

:
images/frame.png

3.095
1
DESEL

3
4

-1
0
(1.7,

0,
0.009)

0.1992(0.8621)
0.5(72.31)

10((827,
384,

0))
(827,

384,
0)

(-0.617,
-0.48,

0)
:
images/frame.png

3.099
1
SELOK

3
4

-1
0
(1.7,

0,
0.009)

0.1992(0.8621)
0.5(72.31)

10((827,
384,

0))
(827,

384,
0)

(-0.617,
-0.48,

0)
:

images/frame.png
3.099

1
SMOVE

3
4

1
0

(1.7,
0,

0.009)
0.1992(3.45)

0.5(23.09)
10((827,

384,
0))

(827,
384,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.384
1
FMOVE

3
4

1
0

(2.63,
2.02,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

758,
0))

(1000,
758,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.384
1
RLEAS

3
4

1
0

(2.63,
2.02,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

758,
0))

(1000,
758,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.405
1
SMOVE

3
4

-1
0

(2.63,
2.06,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

758,
0))

(1001,
767,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.744
1
DESEL

3
4

-1
0

(2.63,
2.06,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

766,
0))

(1000,
766,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.745
1
SELOK

1
1

-1
0

(-0.5,
0,

0.012)
0(0)

1(1)
10((419,

384,
0))

(419,
384,

0)
(0,

0,
0)

:
images/blackhole.png

3.745
1
SMOVE

3
4

-1
0

(2.63,
2.06,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

766,
0))

(1001,
767,

0)
(0.209,

0.119,
0)

:
images/frame.png

3.763
1
SROSZ

1
1

1
0

(-0.5,
0,

0.012)
0.053(4.147)

0.7863(86.83)
10((419,

384,
0))

(419,
384,

0)
(0.344,

0.484,
0)

:
images/blackhole.png

3.882
1
FROSZ

1
1

1
0

(-0.5,
0,

0.012)
0.8813(4.976)

0.5(55.22)
10((419,

384,
0))

(419,
384,

0)
(0.344,

0.484,
0)

:
images/blackhole.png

3.882
1
RLEAS

1
1

1
0

(-0.5,
0,

0.012)
0.8813(4.976)

0.5(55.22)
10((419,

384,
0))

(419,
384,

0)
(0.344,

0.484,
0)

:
images/blackhole.png

4.507
1
DESEL

3
4

-1
0

(2.63,
2.06,

0.009)
0.1992(3.45)

0.5(23.09)
10((1000,

766,
0))

(1000,
766,

0)
(0.209,

0.119,
0)

:
images/frame.png

4.518
1
DESEL

1
1

-1
0

(-0.5,
0,

0.012)
0.8813(4.976)

0.5(55.22)
10((419,

384,
0))

(419,
384,

0)
(0.344,

0.484,
0)

:
images/blackhole.png

4.522
1
SELOK

4
16

-1
0
(0.181,

0.543,
-4.66e-10)

-2.02(-2.02)
1(1)

2.148((545,
484,

0))
(545,

484,
0)

(0,
0,

0)
:

oneimage/hyde_park.jpg
4.541

1
SMOVE

4
16

1
0

(0.178,
0.539,

0.003)
-2.02(1.866)

1(48.08)
1.846((545,

484,
0))

(545,
484,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.743
1
ATTACH

4
16

1
1
(-0.356,

0.334,
0.003)

-2.02(1.866)
1(48.08)

0.2251((464,
412,

0))
(446,

446,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.758
1
SMOVE

4
16

1
1

(-0.377,
0.323,

0.003)
-2.02(1.866)

1(48.08)
0.1576((457,

406,
0))

(442,
444,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.759
1
ATTACH

4
16

1
1
(-0.377,

0.323,
0.003)

-2.02(1.866)
1(48.08)

0.1576((457,
406,

0))
(442,

444,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.776
1
SMOVE

4
16

1
1
(-0.388,

0.323,
0.003)

-2.02(1.866)
1(48.08)

0.1272((453,
403,

0))
(440,

444,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

4.777
1
ATTACH

4
16

1
1
(-0.388,

0.323,
0.003)

-2.02(1.866)
1(48.08)

0.1272((453,
403,

0))
(440,

444,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.791
1
SMOVE

4
16

1
1
(-0.42,

0.313,
0.003)

-2.02(1.866)
1(48.08)

0.1154((451,
402,

0))
(434,

442,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

4.792
1
ATTACH

4
16

1
1
(-0.42,

0.313,
0.003)

-2.02(1.866)
1(48.08)

0.1154((451,
402,

0))
(434,

442,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.808
1
SMOVE

4
16

1
1

(-0.442,
0.302,

0.003)
-2.02(1.866)

1(48.08)
0.07981((446,

398,
0))

(430,
440,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.808
1
ATTACH

4
16

1
1
(-0.442,

0.302,
0.003)

-2.02(1.866)
1(48.08)

0.07981((446,
398,

0))
(430,

440,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.825
1
SMOVE

4
16

1
1

(-0.464,
0.302,

0.003)
-2.02(1.866)

1(48.08)
0.0586((442,

395,
0))

(426,
440,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.826
1
ATTACH

4
16

1
1
(-0.464,

0.302,
0.003)

-2.02(1.866)
1(48.08)

0.0586((442,
395,

0))
(426,

440,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.841
1
SMOVE

4
16

1
1

(-0.491,
0.296,

0.003)
-2.02(1.866)

1(48.08)
0.04364((438,

395,
0))

(421,
439,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.842
1
ATTACH

4
16

1
1
(-0.491,

0.296,
0.003)

-2.02(1.866)
1(48.08)

0.04364((438,
395,

0))
(421,

439,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.858
1
SMOVE

4
16

1
1

(-0.507,
0.291,

0.003)
-2.02(1.866)

1(48.08)
0.02707((434,

393,
0))

(418,
438,

0)
(-0.258,

0.0443,
0)

:
oneimage/hyde_park.jpg

4.859
1
ATTACH

4
16

1
1
(-0.507,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.02707((434,
393,

0))
(418,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.859
1
SMOVE

4
16

1
1
(-0.523,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.02707((434,
393,

0))
(415,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

4.859
1
ATTACH

4
16

1
1
(-0.523,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.02707((434,
393,

0))
(415,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

4.916
1
SMOVE

4
16

1
1
(-0.528,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.01309((428,
391,

0))
(414,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

4.921
1
ATTACH

4
16

1
1
(-0.528,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.01309((428,
391,

0))
(414,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

now_on
NULL

5.040
1
RLEAS

4
16

1
1
(-0.528,

0.291,
0.003)

-2.02(1.866)
1(48.08)

0.01157((427,
391,

0))
(413,

438,
0)

(-0.258,
0.0443,

0)
:
oneimage/hyde_park.jpg

T
he

firstcolum
ns

are
tim

e
(in

seconds
since

the
application

was
started),a

user
identifier

(i.e.who
is

perform
ing

the
action),the

action,a
resource

identifier,a
photo

identifier,and
the

lock
status

(i.e.the
user

who
has

perm
ission

to
m
anipulate

the
object,or

-1
ifit

is
unlocked).

T
hese

are
followed

by
state

variables
thatdescribe

the
location,orientation,size

and
touch

pointofthe
object.

T
he

lastcolum
n
is

the
filenam

e
ofthe

object,and
(for

attach
actions)

the
nam

e
ofits

im
m
ediate

parent,ifany.

Figure
A
.3:

Excerpt
ofInteraction

Trace

230



APPENDIX A. TECHNICAL NOTES A.5. Listings

A.5.3 Determining texture offsets of underlying image, when another
object is overlaid

bool SubTexImage :: findSourceCoords(P3<GLfloat > (& obj_source)[4],
Image *source ,

3 SmartFrame *creator) {
GLfloat creator_aspect = creator ->getAspect ();
GLfloat source_aspect = source ->getAspect ();
P3<GLfloat > obj_creator [4];
P3<GLfloat > world_creator [4];

8
obj_creator [0]. set(-0.5* creator_aspect , -0.5, 0.0);
obj_creator [1]. set( 0.5* creator_aspect , -0.5, 0.0);
obj_creator [2]. set( 0.5* creator_aspect , 0.5, 0.0);
obj_creator [3]. set(-0.5* creator_aspect , 0.5, 0.0);

13
for (unsigned i = 0; i < 4; ++i) {

creator ->toWorld(world_creator[i], obj_creator[i]);
world_creator[i].z = 0;
source ->toObject(obj_source[i], world_creator[i]);

18 if (fabsf(obj_source[i].x) > 0.5* source_aspect
|| fabsf(obj_source[i].y) > 0.5) {

return false; //a corner did not hit -- reject
}
obj_source[i].z = 0; obj_source[i].y*=-1;

23 }
return true; // all 4 corners hit

}

A.5.4 Converting texture coordinate offset references into commands to
process an image on disk and reload

int SubTexImage :: convert_upgrade_async () {
GLfloat radsrotated , xw , xh;
std:: ostringstream crop1 , rot , crop2 , command;
std:: string fname = fileName;

5 {
/* Step 1: crop to bounding box */
std::vector <GLfloat > xs(4), ys(4);
for (size_t i = 0; i < 4; ++i) {

xs[i] = off[i].x;
10 ys[i] = off[i].y;

}
std::sort(xs.begin(), xs.end());
std::sort(ys.begin(), ys.end());
crop1 << " -crop "

15 << (xw = (xs[3] - xs[0])*source ->width) << ’x’
<< (xh = (ys[3] - ys[0])*source ->height) <<
’+’ << xs[0]* source ->width <<
’+’ << ys[0]* source ->height;

}
20 {

/* Step 2: rotate */
rot << " -rotate "

<< (radsrotated = atan2f(off [0].y - off [3].y,
off [0].x - off [3].x))

25 * -RAD2DEG + 90;
}
{

/* step 3: re - crop centres are all the same point , so reuse */
GLfloat w = distf((off [1].y - off [0].y)*source ->height ,

30 (off [1].x - off [0].x)*source ->width);
GLfloat h = distf((off [2].y - off [1].y)*source ->height ,

(off [2].x - off [1].x)*source ->width);
/* now where do we put it: depends how big it is * now * */
crop2 << " -gravity Center -crop "

35 << w << ’x’ << h << "+0+0";
}
{

const size_t trim = strlen(QUICKCROP ".jpg");

231



A.5. Listings APPENDIX A. TECHNICAL NOTES

/* step 4: figure out a new filename */
40 if (fname.size() > trim)

fname = fname.substr(0, fname.size() - trim) + ".jpg";
}
int rval;
// need a temporary image for convert

45 command << PATH_TO_CONVERT
<< " \"" << source ->fileName << ’"’
<< crop1.str() << rot.str() << ’ ’ << fname;

rval = system(command.str().c_str());
if (rval)

50 return rval;
command.str("");
command << PATH_TO_CONVERT << ’ ’

<< fname
<< crop2.str() << ’ ’

55 << fname;
rval = system(command.str().c_str());
if (rval)

return rval;
if (!load(fname)) /* load the newly created image off disk */

60 return 1;
upgraded = true;
pushMemberEvent (&Image ::reload , Image::Ref(this), true);
return rval;

}

A.5.5 Procedure for deciding whether to initiate a flip

1 bool Image:: flipSelected () {
GLfloat x = fabsf(currMPos.x), y = fabsf(currMPos.y);
return !inBlackhole &&

(y - x > RConfig :: CORNER_PROP ||
x - y > 0.5* aspect - 0.5 + RConfig :: CORNER_PROP);

6 }

A.5.6 Procedures for flipping an object, given the current contact posi-
tion on the screen

bool Image:: flipto(int screen_x , int screen_y) {
P3<GLfloat > avgPos;
// determine in texture coords where the control point is

4 setObject(avgPos , screen_x , screen_y , true);
avgPos.x /= aspect; // normalise between 0 and 1
//(we always flip along the bigger direction )

float cosval , dist;
9 if (! flipping) { // not already flipping

xflip = fabs(avgPos.y) > fabs(avgPos.x);
dist = xflip ? avgPos.y*2.0 : avgPos.x*2.0;
backflip = dist < 0;
wasflipped = flipped;

14 flipping = true;
} else {

dist = xflip ? avgPos.y*2.0 : avgPos.x*2.0;
}

19 // now the flipping state toggles if the distance has changed in sign
flipped = wasflipped != (backflip != dist < 0);

// determine the angle to rotate the image
cosval = fabs(dist);

24 if (cosval < 1.0) {
flipangle = acosf(cosval); // between 0 and 90

// now , if we started on the " wrong " side , we rotate the other way
// we also do a magical flip at the centre if flipped

29 if (xflip == backflip)

232



APPENDIX A. TECHNICAL NOTES A.5. Listings

flipangle *= -1.0;

// now we are here , whenever we have a change from
// the start , we want to subtract from 180 degrees

34 if (flipped != wasflipped)
flipangle = -flipangle;

} else {
// dist is > 1.0 , so touch point moved away -- don ’t flip

39 flipangle = 0.0;
}

pc.makeDirty ();
return true;

44 }
void Image:: drawPartialFlip () {

glPushMatrix ();
glRotatef(flipangle*RAD2DEG ,

xflip ? 1.0 : 0.0,
49 xflip ? 0.0 : 1.0,

0.0);
if (flipped) {

drawReverse ();
// also draw the back if we are flipping

54 if (flipping) {
glRotatef (180,

xflip ? 1.0 : 0.0,
xflip ? 0.0 : 1.0,
0.0);

59 glCallList (*model);
}

} else {
drawTexture ();

64 if (flipping) {
glRotatef (180,

xflip ? 1.0 : 0.0,
xflip ? 0.0 : 1.0,
0.0);

69 drawReverse (); /* if rendering ?? */
}

}
glPopMatrix ();

}

A.5.7 Procedure, called each time an object is moved, to check whether
it should be attached to another object

void Resource :: checkLink () {
2 // get the topmost object in the environment at the ’touch ’ location

P3<int > scr(pc.getScreen () + clickPos);
PResource top = env ->selectTop(scr.x, scr.y, this , true);

PResource cur = 0; // current parent , if any
7 if (link)

cur = link ->getParent ();

if (cur != top && canDetach ()) { // if changed
// remove old dependencies , if any

12 removeDependenciesOnParent ();

if (top && top ->isFlipped ()) {
if (canLink(top) && top ->canLink(this)) {

Layout *lay = top ->getChildLayout ();
17 /* if new parent has a layout manager , add to that */

if (lay) {
lay ->add(this);
lay ->layout ();
link = lay;

22 } else { /* else use " basic " linking method */

233



A.5. Listings APPENDIX A. TECHNICAL NOTES

link = PDAdapter ::link(this , top);
}
pushFlasher(top); // give feedback

}
27 }

}
}

234



Appendix B
Exposure

B.1 Media Articles
• “2026: A vision for the Nation’s Future, The Vanishing Computer”. Newspaper

magazine article in The Australian, Part 3: IT and Communications, 2006, pages
12-13 Ian Cuthbertson and Roland Tellzen
http://technews.acm.org/archives.cfm?fo=2006-10-oct/oct-25-2006.html#284123

“Many experts say that increasingly transparent technology, ubiquitous
computing, will lead to all sorts of ingenious interfaces, possibly even
including the air itself, which is already filled with network and radio
signals. Trent Apted, PhD student at Sydney University, is developing a
table intended for meetings, which is able to project images such as photos
that can be passed around, enlarged, and written on. . . . ”

• “All hands on the table for cyber communication”. Newspaper article in Sydney
Morning Herald, October 4, 2007 Conrad Walters
http://www.smh.com.au/articles/2007/10/03/1191091193503.html

“. . . The project, dubbed the Cruiser tabletop system, was conceived
as a way to use this social space to help elderly people talk about their past.
The idea is that images can be stored on a computer and then intuitively
manipulated to help storytelling.

Pictures can be resized, copied, moved, rotated, flipped and cropped -
all via hand gestures on an interactive table. Cruiser also allows images to
be arranged into slide shows and for text or audio to be added.

The interface by Kay and PhD student Trent Apted is not the first to
use what is called surface computing, but Cruiser won high praise from the
elderly people who have tested it. It has a single A4 sheet of instructions
in large type for its audience. . . . ”

B.2 Selected Talks
• “Touch and Pen-based Gestures for Digital Picture Sharing on a Pervasive Tabletop”

28th April, 2005, Workshop Presentation for Gestural Interaction Workshop (NICTA),
Sydney.

• “Sharing Digital Media on Collaborative Tables and Displays”, 11th September, 2005,
Workshop Presentation for UbiComp, Tokyo, Japan.

235

http://technews.acm.org/archives.cfm?fo=2006-10-oct/oct-25-2006.html#284123
http://www.smh.com.au/articles/2007/10/03/1191091193503.html


B.3. Notable Demonstrations APPENDIX B. EXPOSURE

• “Privacy and Remote Display Control on a Multi-User Pervasive Tabletop”,29th
Jan – 1st Feb, 2006, MU3I Workshop at International Conference on Intelligent User
Interfaces (IUI’06), Sydney.

• “Capturing the Digital Photograph Story at a Tabletop”, 22nd March, 2006, PhD
Review Talk, School of IT.

• “Tabletop Sharing of Digital Photographs for the Elderly”, 22nd–27th April, 2006
SIGCHI Conference on Human Factors in Computing Systems (CHI’06), Montréal,
Québec, Canada (full paper presentation).

• “Engineering an Effective Social Interface for Sharing Digital Photographs”, 30th
Jan 2007, CSIRO HAIL Seminar, Macquarie University. Video Recorded http:
//www.ict.csiro.au/hail/Abstracts/2007/TrentApted.htm.

• “PhoTable: Enhancing the Social Interaction around Digital Photographs”, 14th
September 2007, Joint HCSNet-HxI Workshop on Human Issues in Interaction and
Interactive Interfaces, Australian Technology Park.

• “PhoTable: Enhancing the Social Interaction around the Sharing of Digital Photo-
graphs”, 5th April 2008, Workshop on the Collocated Practices Surrounding Photos,
CHI2008, Florence, Italy.

• “Tomorrow’s Coffee Table takes your Photo Albums into the Digital Era”, 22nd May
2007, CRCA Annual Conference, Australian Technology Park.

B.3 Notable Demonstrations
• The Honourable Daryl Williams, Australian Federal Minister for Communications,

IT and the Arts (NICTA, Sydney, 2005)

• Senator Kate Lundy, Shadow Minister for the Arts, Sport and Information Technology
(University of Sydney, 2005)

• Gestural Interaction Workshop (NICTA, Sydney, 27th –28th April, 2005)

• CeBIT Australia Exhibition (Sydney Exhibition Centre, Darling Harbour, Sydney,
24th – 26th May, 2005)

• Science in the City (The Australian Museum 2nd – 4th August, 2005)

• Sydney Uni Live! (Courses and Careers Day, University of Sydney, 27th August,
2005)

• Science Faculty Postgraduate Exhibition (University of Sydney, 12th October, 2005)

• Engineering Industry Conversazione (University of Sydney, 28th October, 2005)

• Demonstration for delegates at MU3I Workshop (31st Jan, 2006)

• Sydney Uni Live! (Courses and Careers Day, University of Sydney, 27th August,
2006)

• Science Forum (Eastern Avenue Auditorium, University of Sydney, 25th October,
2006)

• Visitors from Google Labs Sydney, University of Sydney, March, 2007

236

http://www.ict.csiro.au/hail/Abstracts/2007/TrentApted.htm
http://www.ict.csiro.au/hail/Abstracts/2007/TrentApted.htm


APPENDIX B. EXPOSURE B.3. Notable Demonstrations

• Demonstration at 2nd International IEEE Conference on Horizontal Interactive
Surfaces, Newport, Rhode Island, USA, October 2007

• Lab visit and demonstration at The University of Calgary, Calgary, Alberta, Canada,
October 2007

• CRCA Annual Conference (Showcasing CRC Early Career Scientists), Australian
Technology Park, 21st–23rd May 2008

• Smart Services CRC Launch, Australian Techonology Park, 3rd July 2008

• Perpetually running installation at Smart Internet CRC Offices, Bay 8, Australian
Technology Park (since April, 2006)

237



B.3. Notable Demonstrations APPENDIX B. EXPOSURE

238



Appendix C
Supporting Documents

C.1 Information Statement

[logo]

School of Information Technologies

NSW 2006 AUSTRALIA

Faculty of Science
College of Sciences and Technology

Associate Professor Judy Kay
Smart Internet Technology Research Group

School of Information Technolgies Building, J12
Telephone +61 2 9351 4502
Facsimile  +61 2 9351 3838
Email judy@it.usyd.edu.au

PARTICIPANT INFORMATION SHEET
Research Project

Title:   Cruiser – Investigating the Tabletop Interface for Digital Photograph Sharing

(1) What is the study about?

Cruiser is a new,  tabletop interface that aims to help you share your digital photographs with 
friends and family. Rather than using a computer screen, keyboard and mouse to browse your 
digital photographs, Cruiser allows you to sit down with some friends at an interactive table to 
browse, annotate and share your photographs.

(2) Who is carrying out the study?

The study is being conducted by Trent Apted and will form the basis for the degree of PhD in 
Computer Science at The University of Sydney under the supervision of Associate Professor 
Judy Kay with the School of Information Technologies.

(3) What does the study involve?

We would like to record video and audio of your participation in this study and conduct short 
questionnaires before and after the experiment.

(4) How much time will the study take?

The two questionnaires and the tasks between should not take more than one hour.

(5) Can I withdraw from the study?

Being in this study is completely voluntary - you are not under any obligation to consent and 
you may withdraw at any time. You will still be compensated for your time.

(6) Will anyone else know the results?

All personally identifiable aspects of the study, including results, will be strictly confidential and 
only the researchers will have access to information on participants. A report of the study may 
be submitted for publication, but individual participants will not be identifiable in such a report.
To assist our research, you can indicate whether we may use still image, video and/or audio 
information collected from the experiment for publication in a report. This is voluntary, and you 
may specify that you wish your features to be anonymised.

(7) Will the study benefit me?

You will  be financially compensated for your time and you will  receive a copy of any media 
items you create during the experiment.

(8) Can I tell other people about the study?

You are free to discuss the experiment with others, unless they are future participants for this 
experiment.

Page 1 of 2

Figure C.1: Page 1 of the Information Sheet for PhoTable experiments

239



C.1. Information Statement APPENDIX C. SUPPORTING DOCUMENTS

PARTICIPANT INFORMATION SHEET
Research Project

Title:   Cruiser – Investigating the Tabletop Interface for Digital Photograph Sharing
 

(9) What if I require further information?

When you have read this information, Trent will  discuss it  with you further and answer any 
questions you may have.  If  you would like to know more at any stage, please feel free to 
contact:

Trent Apted, PhD Candidate,    School of IT, University of Sydney, (02) 9351 5711
tapted@it.usyd.edu.au

Judy Kay, Associate Professor, School of IT, University of Sydney, (02) 9351 4502
judy@it.usyd.edu.au 

(10) What if I have a complaint or concerns?

Any person with concerns or complaints about the conduct of a research study 
can contact the Manager, Ethics Administration, University of Sydney on (02) 9351 4811.

This information sheet is for you to keep

Page 2 of 2

Figure C.2: Page 2 of the Information Sheet for PhoTable experiments

240



APPENDIX C. SUPPORTING DOCUMENTS C.2. Consent Form

C.2 Consent Form

[logo]

School of Information Technologies

NSW 2006 AUSTRALIA

Faculty of Science
College of Sciences and Technology

Associate Professor Judy Kay
Smart Internet Technology Research Group

School of Information Technolgies Building, J12
Telephone +61 2 9351 4502
Facsimile  +61 2 9351 3838
Email judy@it.usyd.edu.au

PARTICIPANT CONSENT FORM

I, ................................................……............... , give consent to my participation in the research project
Name (please print)

TITLE:    Cruiser – Investigating the Tabletop Interface for Digital Photograph Sharing 

In giving my consent I acknowledge that:

1. The procedures required for the project and the time involved have been explained to me, and 
any questions I have about the project have been answered to my satisfaction.

2. I have read the Participant Information Sheet and have been given the opportunity to discuss 
the information and my involvement in the project with the researcher/s.

3. I understand that I can withdraw from the study at any time, without affecting my relationship 
with the researcher(s) now or in the future.

4. I understand that my involvement is strictly confidential and no information about me will be 
used in any way that reveals my identity.

Signed: ............................................................................................................................................ 

Name: .............................................................................................................................................

Date: .............................................................................................................................................

Please fill out the section below after the experiment

To  assist  our  research,  you  can  indicate  whether  we  may  use  still  image,  video  and/or  audio 
information collected from the experiment for publication in a report. This is voluntary, and you may 
specify that you wish your features to be anonymised. If this section is blank, we will assume ‘No’ for 
all responses.

I hereby give consent for the following (please the appropriate box in each row):

Yes Yes, if anonymised No
Use of my still image for research publications 

Use of my image in video (no audio)  for research publications 

Use of my recorded audio for research publications 

Signed: ............................................................................................................................................ 

Page 1 of 1

Figure C.3: Consent Form for PhoTable experiments

241



C.3. Album Questionnaire Responses APPENDIX C. SUPPORTING DOCUMENTS

C.3 Album Questionnaire Responses

Album as a whole Participant
N A B C D E F

Enjoyment 6 5.33 0.82 4 6 4 5 6 6 5 6
Would Share 6 5.83 0.41 5 6 6 5 6 6 6 6
Would Reminisce 6 6 0 6 6 6 6 6 6 6 6
Would Share 6 5.83 0.41 5 6 6 6 6 6 6 5

Enjoyment 4.52 4 6 6.15
Would Share 5.42 5 6 6.24
Would Reminisce 6 6 6 6
Would Archive 5.42 5 6 6.24

Photo #
Participant A 1 2 3 4 5
Number Clips 2 3 1 1 1
Accuracy N P G G G
Add 5 5 3 5 6 3.7 3 6 5.9
Enjoy 5 5 5 5 5 5 5 5 5
Share 4 5 3 5 5 3.5 3 5 5.29
Reminisce 4 5 5 6 6 4.36 4 6 6.04
Archive 4 5 3 5 5 3.5 3 5 5.29
Description Photo #

Bridge 1

Entertainer 2 Clip 3 is mostly me cleaning up the tablet so I wouldn't share that

Pigeon 3

Stage 4 Should really be joined with the next page, then it would be more enjoyable
Corridor 5

General Comments

Photo #
Participant B 1 2 3 4 5 6 7 8 9
Number Clips 1 2 1 2 1 2 1 2 1
Accuracy G C N G N N G N P
Add 6 5 6 4 6 6 6 6 6 4.96 4 6 6.37
Enjoy 5 5 5 4 5 6 6 6 6 4.63 4 6 6.04
Share 6 3 6 4 6 6 6 6 6 4.31 3 6 6.57
Reminisce 6 3 6 5 6 6 6 6 6 4.54 3 6 6.57
Archive 6 2 6 4 5 5 5 5 6 3.62 2 6 6.16

Avg stddev min max

Avg-σ min max Avg+σ

Avg-σ min max Avg+σ

The 2 clips should really be joined as they are both about the same thing. e.g. [question asked] in 
clip 1 [was] answered in clip 2

The main reason I looked at this sign is to remind myself of the name. If it were an album I made 
I would include a different photo with a caption (audio was cut off; continued on next page)

Should really be joined to previous page , but clip okay otherwise

The enjoyability was somewhat diminished by the fact that I was telling the story in a lab setting-- I was put 
on the spot with a camera facing me,so there seems to be a slight nervousness in the stories. For this 
reason, I'm not sure I would share those stories with others. In a real setting, where I am more relaxed, I 
would have no problem sharing the stories. For me, I see this tool more useful for sharing stories with 
people who can't be there when you are telling it. However after a much longer period of time (e.g. 5 
years), I would enjoy the reminiscing side of it more (currently, after 15 months, it was enjoyable but not 
that enjoyable as it is still quite fresh in my head anyway). Once issue that concerns me is privacy. 
Perhaps for some stories I might want some bits of it to only be heard by the people who are in the room 
with me (i.e. not archived or shared with others). I might say things to my peers that I wouldn't say to my 
grandparents, for example.

Avg-σ min max Avg+σ

Figure C.4: Overall responses, and participant A–B individual album page responses

242



APPENDIX C. SUPPORTING DOCUMENTS C.3. Album Questionnaire Responses

Photo #
Participant C 1 2 3 4 5 6 7 8 9 10 11
Number Clips 6 3 1 2 2 2 3 1 1 1 1
Accuracy B P P N G P N 0 P C N
Add 6 6 5 6 5 6 6 6 2 5 4 3.93 2 6 6.43
Enjoy 3 5 6 4 5 6 5 2 6 3 6 3.2 2 6 6.07
Share 6 6 5 6 5 6 5 6 3 6 6 4.52 3 6 6.39
Reminisce 6 6 5 6 5 6 6 6 5 5 5 5.02 5 6 6.07
Archive 6 6 5 6 5 6 5 6 2 6 5 4.08 2 6 6.46
Description

Exchanging Vows 1
2 Again, story was truncated (1'39”).  9'19” was very enjoyable, the best clip

Bridesmaids 3 “I'm glad that they didn't end up putting him in a dress” -> clip is gold!
Bride 4
Poem 5 Both clips were good, 6'50” was truncated
The cake! 6 “How fantastic is this cake?”
Guest 7 Sound clip was a little embarrassing, but I can hear myself relaxing, getting better at storytelling
Make-up 8 Love the photo, doesn't so much match the audio/story telling
My Hair 9 Good story
3 Guests 10
2 Guests 11 funny!

Photo #
Participant D 1 2 3 4 5
Number Clips 1 2 2 1 1
Accuracy P N 0 C G
Add 6 6 6 6 6 6 6 6 6
Enjoy 6 5 3 4 4 3.26 3 6 5.54
Share 6 6 3 4 5 3.5 3 6 6.1
Reminisce 6 6 5 5 5 4.85 5 6 5.95
Archive 6 6 3 4 5 3.5 3 6 6.1

Comments

Photo #
Participant E 1 2 3 4 5 6
Number Clips 3 1 2 1 2 1
Accuracy G C N N N N
Add 5 5 6 5 6 6 4.95 5 6 6.05
Enjoy 6 6 6 6 5 6 5.42 5 6 6.24
Share 6 5 6 6 6 6 5.42 5 6 6.24
Reminisce 6 5 6 6 6 6 5.42 5 6 6.24
Archive 5 4 6 5 6 6 4.52 4 6 6.15
Description Photo #

Dragon Well 1
Ancient Tower 2 Start and end got cut off a bit
Temple Entrance 3 The audio was nicely captured
Tower on hand 4
Temple of General 5
Flying Mountain 6

Comments

Avg-σ min max Avg+σ

Two of the audio clips were good, but one of them was truncated before I was about to point 
something out

Handfasting

Avg-σ min max Avg+σ

Archive with others: by this I assume you mean share with close friends only, and very much not openly for 
everyone to see on the Internet. I think the idea is great, as too the ability to capture the happiness and 
emotion accompanying the photos, which is made viable through the audio stream.

Avg-σ min max Avg+σ

The audio definitely helps remember particulars about that photo, not only about the photo, but 
the enjoyment sharing with a friend, then. The mic was probably too close to the tablet though..

Recording the conversation during photo sharing is a terrific idea, especially for reminiscences. I like that 
the audio was automatically and selectively recording. For the purpose of reminiscences, I prefer to have 
the clips “under-recorded” than “over-recorded”. I probably would get bored very quickly if I were to listen to 
the recording of the whole sharing process.
Regarding UI only current photo, audio clips and timeline make perfect sense to me, I guess subimages 
kind of do as well, but I remember that I often tried to look for the next photo(s) to talk about while I'm on 
the current one. In that case, a lot of subimages might not be relevant.

Figure C.5: Participant C-E individual photo album page responses

243



C.3. Album Questionnaire Responses APPENDIX C. SUPPORTING DOCUMENTS

Photo #
Participant F 1 2 3 4 5 6 7
Number Clips 2 3 1 1 1 1 1
Accuracy G N G N N P C
Add 5 5 6 5 5 5 5 4.76 5 6 5.52
Enjoy 4 5 5 6 6 6 6 4.64 4 6 6.22
Share 5 6 5 5 5 5 5 4.76 5 6 5.52
Reminisce 5 4 4 5 4 5 4 3.89 4 5 4.96
Archive 4 3 3 4 3 4 4 3.04 3 4 4.11
Description Photo #

1 The second audio clip would have been much better if it had more 'context' to it

2

3

4 Without the audio this image does not have much impact
5 Same as above comment
6
7 The audio is missing the context that was given earlier, making it difficult to understand

Comments

Avg-σ min max Avg+σ

This image (like most in this collection) are not of me/my immediate family, thus I would not 
archive it for myself so much

This photo and the previous one would make more sense if they were shown together (as the 
story talks about them together)

I liked the automatic segmentation of the audio, but would have preferred if I could tweak the start/ending 
points for some of the clips. The audio would have been better if it was on both channels (as I listened to 
the page with headphones on) [note: this was due to a glitch – audio was recorded with a mono 
microphone but it was not mixed into stereo channels for the digital album]. The subpictures/parents was 
not explained (and I am still not exactly sure how they relate to the image that I selected).

Figure C.6: Participant F individual photo album page responses

244



APPENDIX C. SUPPORTING DOCUMENTS C.3. Album Questionnaire Responses

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Participant A

Participant D Participant E

Participant CParticipant B

Maximum
response

Average +/- 1
standard deviation

Minimum
response

Strongly
Agree

Strongly
Agree

Agree

Disagree

Strongly
Disagree

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Participant F

Add Enjoy Share Reminisce Archive

1

2

3

4

5

6

Aggregate

Note that these aggregates must be interpreted with care. Each photo from each participant’s
collection has an inherent appropriateness for each measure, so these do not directly correlate
with performance of the album creation. They do, however, indicate the potential. See §7.3.

Figure C.7: Aggregates of Likert responses for each participant evaluating their digital
photo album

245



C.3. Album Questionnaire Responses APPENDIX C. SUPPORTING DOCUMENTS

246



Appendix D
Copyright statements

D.1 DiamondSpin
Permission to use, copy, modify and distribute this software and its documentation for
educational, research and non-profit purposes, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and the following three
paragraphs appear in all copies.

To request Permission to incorporate this software into commercial products contact
one of the authors of the project:

Fred Vernier: frederic.vernier@limsi.fr Assistant professor at University of Paris XI,
LIMSI Lab, Paris

Chia Shen: shen@merl.com Associate Director & Senior Research Scientist at MERL
Research Lab, Boston

Guillaume Besacier: guillaume.besacier@limsi.fr Ph.D. candidate at the Université
Paris-Sud XI, LIMSI-CNRS Lab, Paris

Daniel Wigdor: dwigdor@dgp.toronto.edu Ph.D. candidate at the University of Toronto

Cliff Forlines: forlines@merl.com Research Associate at MERL Research Lab, Boston.

IN NO EVENT SHALL THE AUTHORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUD-
ING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE AUTHORS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

THE AUTHORS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HERE UNDER IS ON AN "AS IS" BASIS, AND THE AUTHORS HAS NO OBLIGA-
TIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.

D.2 ACM Press
ACM grants gratis permission for individual digital or hard copies made without fee for
use in academic classrooms and for use by individuals in personal research and study and
works published by the ACM Press are published with the following copyright notice:

247



D.3. Public Domain APPENDIX D. COPYRIGHT STATEMENTS

Copyright © YYYY by the Association for Computing Machinery, Inc. Per-
mission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.

D.3 Public Domain
Works labelled public domain are works no longer subject to any copyright under Australian
copyright law (which is compatible with EU and US copyright law), or they have been
explicitly placed into the public domain by the copyright holder. That is, the copyright
holder has granted any entity the right to use a work for any purpose, without any
conditions, unless such conditions are required by law. As a courtesy, an attribution will
usually be given.

248



APPENDIX D. COPYRIGHT STATEMENTS D.3. Public Domain

249


	Acknowledgements
	Short Abstract
	Abstract
	Preface & Notes
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Thesis Statement
	1.1.1 Naming: Cruiser and PhoTable
	1.1.2 Scenario

	1.2 Research Problem
	1.2.1 Traditional Photo Sharing
	1.2.2 Sharing Digital Photographs
	1.2.3 Tabletop Interfaces

	1.3 Requirements
	1.4 Contributions

	2 Background
	2.1 The Interactive Tabletop
	2.1.1 DiamondTouch
	2.1.2 Other TableTop Hardware Prototypes
	2.1.3 Commercial or Unpublished Hardware
	2.1.4 Section Summary

	2.2 Interaction Techniques
	2.2.1 TableTop Interaction
	2.2.2 Gestural Interaction
	2.2.3 Interaction Design
	2.2.4 Section Summary

	2.3 Frameworks for Interactive Tables
	2.3.1 DiamondSpin
	2.3.2 Microsoft® Surface™
	2.3.3 Innovis Buffer Framework
	2.3.4 The T3 Toolkit
	2.3.5 Other toolkits
	2.3.6 Summary

	2.4 Photos and Photo Sharing
	2.4.1 Photo Sharing Applications and Devices
	2.4.2 Photo Sharing on the Tabletop
	2.4.3 Audiophotography

	2.5 Chapter Summary

	3 Design Overview
	3.1 UI Design Drivers
	3.2 Influences for User Interface Design
	3.2.1 Direct-Touch ``Keystrokes''
	3.2.2 Design Approach

	3.3 Key Design Elements
	3.3.1 Select
	3.3.2 Move
	3.3.3 Rotate & Resize
	3.3.4 Copy
	3.3.5 Grouping
	3.3.6 Delete
	3.3.7 Capture

	3.4 Further Exploration
	3.5 Drivers for Framework Design
	3.5.1 Design goals
	3.5.2 Stable code base with easy experimentation
	3.5.3 Visually bare, yet functional and unencumbered core
	3.5.4 Hardware independent and easily adaptable
	3.5.5 Able to leverage modern hardware (GPU, and multi-core CPU)
	3.5.6 Run effectively without specialised hardware
	3.5.7 Cross platform
	3.5.8 Flexible, functional and encouraging code reuse
	3.5.9 Other Goals

	3.6 Chapter Summary

	4 User View
	4.1 Interface Design Approach
	4.1.1 Design Heuristics

	4.2 Interface Actions
	4.2.1 Select
	4.2.2 Move
	4.2.3 Flicking and Momentum
	4.2.4 Rotate and Resize (rosize)
	4.2.5 Flip
	4.2.6 Dwell Actions

	4.3 High-Level Functions
	4.3.1 Delete (Black Hole)
	4.3.2 Framing and Capturing
	4.3.3 Bounds Checking and Claiming
	4.3.4 Item Attachment
	4.3.5 Explicit Audio Attachment
	4.3.6 Image Loading
	4.3.7 Browsing
	4.3.8 Copy
	4.3.9 Storage Bins

	4.4 Extended Functionality
	4.4.1 Interactive Images
	4.4.2 Video Images
	4.4.3 Remote Images and Image Transferal
	4.4.4 Drawn Annotations
	4.4.5 Paper (Anoto) Frame

	4.5 Sharing Photographs with PhoTable
	4.5.1 Rationale
	4.5.2 Method
	4.5.3 Clustering Background
	4.5.4 Clustering in PhoTable
	4.5.5 Browsers Revisited
	4.5.6 Clustering in Depth

	4.6 Storytelling and Album Creation
	4.6.1 Capturing Audio and Interaction Traces
	4.6.2 Digital Photograph Album

	4.7 Chapter Summary

	5 Framework Design
	5.1 System Overview
	5.2 Cruiser Core
	5.2.1 Resource (top-level)
	5.2.2 Environment (top-level)
	5.2.3 Top-Level Utilities
	5.2.4 Core Resource Framework (core/res)
	5.2.5 Core Environment Support (core/env)
	5.2.6 Core Utilities (core/utl)
	5.2.7 Core Event Framework (core/event)
	5.2.8 Core Raster Processing (core/ras)
	5.2.9 Core Animation Framework (core/ani)
	5.2.10 Core Gesture Framework (core/ges)
	5.2.11 Other Core Components

	5.3 Utility Libraries
	5.3.1 Audio Subsystem
	5.3.2 Thread Management
	5.3.3 Input Device Framework and Calibration (strokereader)
	5.3.4 Calibrator Program
	5.3.5 Other Utilities

	5.4 Plugin Libraries
	5.4.1 Cross Platform File Search (libfolder)
	5.4.2 Database Access (libdb)
	5.4.3 Video Images (libvideo)
	5.4.4 Plugin utility and program initialisation (plug)
	5.4.5 Browsing Containers (libbrowser)
	5.4.6 Slider Widget (libslider)
	5.4.7 main()

	5.5 Plugins
	5.5.1 Removable Storage Detection, Media Search (disk)
	5.5.2 Exif JPEG Metadata Parsing (exif)
	5.5.3 Metadata Cache (metadata)
	5.5.4 People Objects (people)
	5.5.5 Audio Dumper
	5.5.6 Input Plugins
	5.5.7 VU (Volume Meter) Widgets (vu_widget)
	5.5.8 Capture Frame Plugin
	5.5.9 Remote Frame Buffer (rfb)
	5.5.10 End-User Plugins

	5.6 Feature Highlights
	5.7 Chapter Summary

	6 System Evaluation
	6.1 Introduction
	6.2 Contributed Plugins
	6.2.1 Associative File System Search (fsviewer)
	6.2.2 Blackjack
	6.2.3 Map and Photograph Tagging Application
	6.2.4 Brainstorming Plugin
	6.2.5 Context Pie-Menu System (men)

	6.3 Applications
	6.4 Cruiser Performance
	6.4.1 Load Testing Plugin
	6.4.2 Rendering Speed
	6.4.3 Memory Load
	6.4.4 Platform Independence
	6.4.5 Hardware Independence

	6.5 Chapter Summary

	7 Interface Evaluation
	7.1 Usability with Elderly
	7.1.1 Method
	7.1.2 Results
	7.1.3 Task Completion
	7.1.4 Novel Interface Elements
	7.1.5 Affective Analysis
	7.1.6 Reflections on SharePic

	7.2 Interface Demonstrations
	7.2.1 Exhibitions

	7.3 PhoTable Experiment
	7.3.1 User Study
	7.3.2 Participant Arrangement
	7.3.3 Interface Setup
	7.3.4 Method
	7.3.5 Results (tabletop interface)
	7.3.6 Results (digital photo album)
	7.3.7 Discussion

	7.4 Chapter Summary

	8 Conclusion & Future Work
	Bibliography
	 Index
	A Technical Notes
	A.1 Software Libraries Used by Cruiser
	A.2 Windows DLLs
	A.3 DiamondTouch
	A.3.1 A two-finger rotate

	A.4 Class Diagrams
	A.5 Listings
	A.5.1 SMARTBoard-specific device handling code
	A.5.2 Repositioning the viewing camera, triggered by a dwell on the SmartFrame
	A.5.3 Determining texture offsets of underlying image, when another object is overlaid
	A.5.4 Converting texture coordinate offset references into commands to process an image on disk and reload
	A.5.5 Procedure for deciding whether to initiate a flip
	A.5.6 Procedures for flipping an object, given the current contact position on the screen
	A.5.7 Procedure, called each time an object is moved, to check whether it should be attached to another object


	B Exposure
	B.1 Media Articles
	B.2 Selected Talks
	B.3 Notable Demonstrations

	C Supporting Documents
	C.1 Information Statement
	C.2 Consent Form
	C.3 Album Questionnaire Responses

	D Copyright statements
	D.1 DiamondSpin
	D.2 ACM Press
	D.3 Public Domain


