211 research outputs found

    Children’s Goal Profiles and Perceptions of the Motivational Climate: Interactive Association With Self-Determined Motivation and Affective Patterns in Physical Education

    Get PDF
    Developing an understanding of youngster’s motivation for physical education (PE) is becoming increasingly important. This study examined the interactive effects of children’s multiple goal profiles and perceptions of the motivational climate on indices of self-determined motivation and affect in 429 students (201 boys, 228 girls; M age = 11.2, SD = .39) in northwest England. MANOVA results revealed a significant (p \u3c .05) main effect for goal profiles and perceived motivational climate. Moreover, a significant interaction between goal profiles and perceived climate was found: Children with high mastery/high performance profiles had high levels of intrinsic motivation and identified regulation, regardless of the climate. In contrast, other profile groups (i.e., high mastery/low performance, low mastery/high performance, low mastery/low performance) were more likely to have high levels of intrinsic motivation and identified regulation from exposure to a perceived mastery climate. These results are discussed in terms of the contribution they appear to make to recent analyses of multiple goals

    Diattenuation of Brain Tissue and its Impact on 3D Polarized Light Imaging

    Full text link
    3D-Polarized Light Imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue - diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI.Comment: 32 pages, 15 figure

    Quantum Corrections in 4d N=1 Infinite Distance Limits and the Weak Gravity Conjecture

    Full text link
    We study quantum corrections in four-dimensional theories with N=1N=1 supersymmetry in the context of Quantum Gravity Conjectures. According to the Emergent String Conjecture, infinite distance limits in quantum gravity either lead to decompactification of the theory or result in a weakly coupled string theory. We verify this conjecture in the framework of N=1N=1 supersymmetric F-theory compactifications to four dimensions including perturbative α′\alpha' as well as non-perturbative corrections. After proving uniqueness of the emergent critical string at the classical level, we show that quantum corrections obstruct precisely those limits in which the scale of the emergent critical string would lie parametrically below the Kaluza-Klein scale. Limits in which the tension of the asymptotically tensionless string sits at the Kaluza-Klein scale, by contrast, are not obstructed. In the second part of the paper we study the effect of quantum corrections for the Weak Gravity Conjecture away from the strict weak coupling limit. We propose that gauge threshold corrections and mass renormalisation effects modify the super-extremality bound in four dimensions. For the infinite distance limits in F-theory the classical super-extremality bound is generically satisfied by a sublattice of states in the tower of excitations of an emergent heterotic string. By matching the F-theory α′\alpha' corrections to gauge threshold corrections of the dual heterotic theory we predict how the masses of this tower must be renormalised in order for the Weak Gravity Conjecture to hold at the quantum level.Comment: 75 pages, 7 figures; v2: references added, typos corrected, minor clarifications; v3: references added, version accepted for publication in JHE

    Effects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures

    Get PDF
    The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densities. Separate Au film annealing experiments at 700°C showed little variation in the size and density of the Au catalyst droplets with substrate annealing temperature. The observed variation in the density of nanostructures is attributed to the number of surface nucleation sites on the substrate, leading to a competition between nucleation promoted by the Au catalyst and surface nucleation sites on the rougher surfaces annealed below 1,200°C

    Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms

    Get PDF
    (1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity

    DNS of Multiple Bubble Growth and Droplet Formation in Superheated Liquids

    Get PDF
    Flash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions

    DNS of multiple bubble growth and droplet formation in superheated liquids

    Get PDF
    Flash boiling can occur in rocket thrusters used for orbital manoeuvring of spacecraft as the cryogenic propellants are injected into the vacuum of space. For reliable ignition, a precise control of the atomization process is required as atomization and mixing of fuel and oxidizer are crucial for the subsequent combustion process. This work focuses on the microscopic process leading to the primary break-up of a liquid oxygen jet, caused by homogeneous nucleation and growth of vapour bubbles in superheated liquid. Although large levels of superheat can be achieved, sub-critical injection conditions ensure distinct gas and liquid phases with a large density ratio. Direct numerical simulations (DNS) are performed using the multiphase solver FS3D. The code solves the incompressible Navier-Stokes equations using the Volume of Fluid (VOF) method and PLIC reconstruction for the phase interface treatment. The interfaces are tracked as multiple bubbles grow, deform and coalesce, leading to the formation of a spray. The evaporation rate at the interface and approximate vapour properties are based on pre-computed solutions resolving the thermal boundary layer surrounding isolated bubbles, while liquid inertia and surface tension effects are expected to play a major role in the final spray characteristics which can only be captured by DNS. Simulations with regular arrays of bubbles demonstrate how the initial bubble spacing and thermodynamic conditions lead to distinct spray characteristics and droplet size distributions
    • …
    corecore