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Abstract: (1) Background: Ruthenium and osmium complexes attract increasing interest as next
generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds,
we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with
cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the
anticancer activity and the ability to evade platin resistance mechanisms for these compounds.
(2) Methods: Structural characterizations and stability determinations have been carried out with
standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and
single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3)
and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected
compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining
were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively.
(3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and
evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS
experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity
and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion:
Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects
on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms
and for the high cancer cell specificity.

Keywords: metal based compounds; cancer treatment; platinum resistance; ovarian cancer;
ruthenium(II); osmium(II)

1. Introduction
1.1. Cisplatin and Analogues

The development of metals as anticancer agents began with the coincidental discovery
of the biologic activity of cis-[Pt(NH3)2Cl2], Cisplatin by Rosenberg in 1965 [1]. Cisplatin
was clinically approved in 1978 and targets primarily the DNA leading to DNA adducts,
DNA damage, and apoptosis induction [2,3]. Nowadays, platin compounds are used in
clinical anticancer treatment against cervical, bladder, head, and neck cancers as single
agent and in combination therapy against testicular, ovarian, bladder, and head and neck
cancers [4]. Unfortunately, the chemotherapy is limited by side effects, e.g., nephrotoxicity,
ototoxicity, neurotoxicity, and innate and acquired resistant mechanism, which limit its
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clinical potencies [5,6]. Since 1992, the second-generation drug Carboplatin is approved
worldwide, showing less nephro- and neurotoxicity than Cisplatin [3,4]. These drawbacks
are the driving force for designing new drug candidates to improve the clinical efficacy of
untargeted anticancer treatments [7–10].

1.2. Ruthenium Compounds for Anticancer Treatment

The development of potential ruthenium anticancer molecules started almost at the
same time as the discovery of Cisplatin. Already 34 years before the discovery of Cisplatins’
potential, two researchers found the activity of Cs2[RuCl6]hydrate, a ruthenium(IV) species
which showed inhibition of tumor growth [11]. Rosenberg himself discovered the activity
of [Ru(NH3)Cl(OH)]Cl, a ruthenium(III) species [1,12]. The first ruthenium compounds
were designed to mimic the platinum drugs and therefore had also am(m)ine and chlorido
ligands, but more recent research showed that ruthenium based compounds have a different
mode of action [4]. Additionally, ruthenium compounds are discussed as candidates for
functionalized cancer-targeting drugs [13].

Clarke and coworkers introduced the ‘activation-by-reduction’-hypothesis, which is
well accepted nowadays, implying that the ruthenium(III) drugs act as prodrugs that are
reduced to their active species, ruthenium(II) [14]. The most promising candidates already
analysed in clinical trials are tetrachloridobis(indazole)ruthenium(III), known as KP1019,
NKP-1339 or IT-139 and tetrachlorido(dimethylsulfoxide)(imidazole)ruthenium(III), known
as NAMI or NAMI-A [15–17]. KP1019, as well as IT-139 show fast binding to serum pro-
teins in blood such as transferrin and albumin, which may regulate the tumor-specific
activity of these compounds [16,18–20]. KP1019 induces apoptosis via the mitochondrial
pathway and has completed Phase-1 clinical studies [21–23]. A change of the counter
cation led to IT-139 which showed increased solubility allowing the application of higher
drug concentrations and is presently the only compound undergoing Phase I/II-clinical
studies [4,15,24]. Beside compounds with N-donor ligands, investigations and optimisa-
tions of S-donor ligands resulted in trans-[RuCl4(DMSO)(HIm)], whereas HIm is imidazole,
known as NAMI (=Novel Anti-Tumor Metastasis Inhibitor) [4,17,25]. NAMI-A was the first
ruthenium-based compound, which entered clinical trials and showed a selective activity
against metastatic cells in vivo, but due to its poor clinical responses, clinical trials were
interrupted [26–28].

Besides Ru(III) compounds, Ru(II) were analyzed for their biological activity. It is
known that ruthenium(II) compounds are activated by a ligand exchange mechanism,
especially by hydrolysis of the Ru-Cl bond [4,29]. Ruthenium(II) complexes, which are
investigated for anticancer activity, show in general a typical ‘piano-stool’ geometry, with
an η6-arene and three open coordination sites X, Y, Z for different ligands, which can
lead to a charge of the complex itself. The arene ligand can be substituted (e.g., cymene),
whereas Z is usually a halide. The positions X and Y can be two different monodentate
ligands, but more common are bidentate ligands (e.g., N,N; N,O; O,O; or O,S) [30]. These
organometallic ‘half-sandwich piano-stool’ compounds were investigated, mainly by the
groups of Dyson, Sadler, and Keppler [31–38]. A great series of compounds, named
RAPTA, were investigated by Dyson and coworkers showing antimetastatic properties,
good aqueous solubility, as well as anti-angiogenic properties [31,32,39,40]. It is known that
their primary target is not the DNA, as they show interactions with proteins [41]. In vivo
and in vitro studies showed that the RAPTA compounds are not cytotoxic to normal cells,
but active against some tumor cells [40,42]. A second series, first introduced by Sadler and
coworkers, are the RAED compounds, e.g., RM175 showing a mechanism of action similar
to Cisplatin by interaction with guanine [33,43]. Both compounds, RAPTA-C and RM175
are in advanced clinical studies due to good in vivo results [31,44,45].

Next to N,N-chelating substances, different chelating ligands, e.g.,: N,O; O,O; C,N;
and S,N have been reported in the last years [43,46,47]. Ruthenium(II) compounds with
O,S-chelating ligands have been introduced and investigated by Keppler and coworkers.
By comparing O,O- and O,S-chelating ligands, they identified that the change from O,O to
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O,S ligands increases the solubility and stability and result in lower IC50 values [45,48,49].
In 2016, we have shown the increased biological activity of one ruthenium(II) complex
with a cinnamic acid derivative as O,S-chelating ligand compared to their platinum(II)
analogues and analyzed the interaction with proteins [50,51]. In the same year, Keppler and
coworkers compared first time ruthenium(II) and osmium(II) analogues with O,S ligands,
together with iridium(II) and rhenium(II) complexes [48]. They investigated the impact of
the leaving group (imidazole vs. chlorido) and the change of the metal, resulting in good
IC50 values in general. However, the best IC50 values were generated by the ligand itself,
without any complexation to metals, being a great difference to our compounds showing
50- to 200-fold lower IC50 values after complexation to the ruthenium(II) [48,51].

1.3. Osmium Compounds for Anticancer Treatment

Significant results in the ruthenium drugs have enhanced the interest in osmium
compounds to develop anticancer drugs [52,53]. Therefore, a discussion of osmium com-
pounds cannot be separated from their ruthenium analogues, as the first compounds of this
class have been analogues of well-known ruthenium complexes, e.g., RAPTA-C, RM175,
NAMI-A and KP1019 [4,44,52–60]. The comparison of the osmium compounds to their
ruthenium counterparts often results in different biological behavior, especially related
to anticancer activity [4,52–54,61]. According to the HSAB-principle, osmium is a softer
metal compared to ruthenium and therefore results in different coordination preferences to
biomolecules. Moreover, it is known that the metal-ligand exchange mechanisms are slower
for the osmium compounds compared to their ruthenium analogues [4,29,52,62,63]. There-
fore, many osmium compounds, mostly representing half-sandwich complexes, have been
investigated for their biological activity in vitro and partly in vivo [52,53,57,58,61,63–69].
Some osmium(II) compounds show similarities to Cisplatin and Carboplatin [52,70].

Several studies focused on comparing ruthenium(II) and their osmium(II) analogues,
e.g., the study of Keppler and coworkers with the first comparison of O,S-chelating ligands
to these metals, as mentioned before [48]. Recently, it was shown that both the specific
cell line and the present ligands determine which metal complex has superior cytotoxicity
and that targeting topoisomerase IIα contributes to the effect [71]. To point out some other
examples, in 2018 Carcelli and coworkers compared ruthenium(II) and osmium(II) thiosemi-
carbazone (S,N-chelating) complexes [72]. The investigated compounds exhibited lower
resistance factors than Cisplatin and the ruthenium(II), and osmium(II) analogues showed
cytotoxic activity in the same range [72]. However, 2-phenylbenzothiazole (S,N-chelating)
complexes with osmium(II) exhibited higher in vitro cytotoxicity than ruthenium(II) com-
pounds [73]. Likely, some osmium(II)-p-cymene complexes functionalized with alkyl or
perfluoroalkyl groups complexes showed better results than their ruthenium(II) analogues
and are more selective to cancer cells [52,74]. Osmium(II) compounds with arene ligand
and phosphane co-ligand tend to be more cancer specific but less active on platinum re-
sistant cells than their ruthenium counterparts [75]. The further biological investigations
were endorsed by the important statement, that ruthenium compounds which show good
in vivo results (e.g., RAPTA-C) are compounds with low or even no cytotoxic behavior
in vitro [21,24,27,28,52]. In general, these results led to the conclusion that the osmium
complexes ‘tend to be slightly more cytotoxic than their ruthenium counterparts’ [52]—but
which metal complex is more cytotoxic in vitro and/or in vivo depends on the ligand
system [52,61,64,68].

Ruthenium and osmium compounds were mainly investigated to mimic the mode
of action of platinum-based complexes [4]. Although both metals are the most advanced
non-platinum metallodrugs, the major challenge is still the discovery of their molecular
targets [4]. Several investigations, ours included, showed that the biological behavior
of these compounds is different to Cisplatin and that the DNA is not the primary tar-
get [4,38,50,76]. Both the nature of the ligands and the change of the metal (from ruthe-
nium to osmium) results in different anticancer activity, biological activity in general, and
may enable the specific targeting of cancer cells or photodynamic therapy and a catalytic
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activity [14,52,77–79]. Keppler and coworkers investigated some general structure-activity-
relationships for osmium(II) and ruthenium(II) complexes; they concluded that the effect
of the chosen metal and its anticancer activity is highly ligand-dependent [4]. Ruthe-
nium(II) complexes are more active than their osmium(II) analogues with O,O-chelating
ligand systems, whereas N,O/N,N/C,N and S,N osmium(II) compounds show better
results [4,58–60,66,67,70,80–82]. As mentioned above, to the best of our knowledge, only
the Keppler group analyzed an O,S-chelating system while focusing on different leaving
groups and metal centers but did not analyze effects on platinum resistant cells [48,71].
In this work, we analyze different ruthenium(II) complexes and some of their osmium(II)
counterparts with O,S-chelating ligands for anticancer properties. Next to investigating
the influence of the metal-exchange, we focus on the structure-activity-relationships of
different cinnamic acid derivatives as O,S-bidentate ligands. As clinically relevant mod-
els, both platinum-sensitive and –resistant epithelial ovarian cancer (EOC) cell lines were
chosen for the in vitro comparison of the compounds’ cytotoxic effect. While EOC is, in
the majority of cases, a platinum-sensitive disease, eventually the majority of patients will
relapse and develop a platinum resistance. Platinum resistance is the main limitation for a
long-lasting successful therapeutic effect, thus contributing to the low five-year survival
rate of approximately 40% [83].

2. Results and Discussion
2.1. Synthesis

The general structure of the ligand-system and the metal compounds analyzed in this
work is given in Figure 1.
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Figure 1. (A) Overview and substance code of compounds this work is dealing with:
β-Hydroxydithiocinnamic acid esters L1-L18 and corresponding Ru complexes Ru1-Ru17 and Os
compounds Os3/Os7/Os13 and Os14. (B) General structure of the used ligand system. (C) Structure
of analysed complexes with numbers indicating atoms discussed for their NMR signals (Table 1).
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Table 1. Selected NMR signals for L7/Ru7/Os7. Ru and Os compounds show similar effects after
complexation resulting in comparable NMR pattern and changes. A high field shift is observable for
signals 2 and 4; a low field shift for signal 1 and signal 3 does not show remarkable changes.

Signal no. * L7 Ru7 Os7

1 -C-OH/M 169.1 ppm 179.0 ppm 174.9 ppm
2 -C=S 217.3 ppm 185.9 ppm 186.7 ppm
3 =C-H 112.9 ppm 113.4 ppm 112.7 ppm
4 =C-H 6.97 ppm 6.64 ppm 6.87 ppm

* atoms responsible for signals are depicted in Figure 1C.

Cinnamic acid derivatives L1–L18 were synthesized according to published procedures
as described in the Supplementary part [51]. For ruthenium(II) and osmium(II) complexes,
the corresponding β-Hydroxydithiocinnamic acid ester is deprotonated at the vinyloge acid
function with 1 equiv. t-BuOK and afterwards given to a 0.5 equiv. [(η6-p-cymene)MCl2]2
(M = Ru or Os) suspension in THF (Scheme 1). By adding the yellow ester solution to
the M(II)-dimer, the color turns dark red and the reaction is stirred over night at room
temperature, followed by acidic work up and column chromatography (THF/DCM).
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Scheme 1. Reagents and conditions: (a) (i) 1 equiv. t BuOK, THF, rt, 0.5 h; (ii) 0.5 equiv. [(η6-p-cymene)MCl2]2,
THF, rt; (iii) (i) + (ii), rt, 24 h; (iv) H2SO4/H2O, rt, 0.5 h.

2.2. Characterization

All compounds were characterized by NMR spectroscopy, mass spectrometry, and
elemental analysis (see Method section). Results for L13–L18 are in common with those for
L1–L12, which were reported earlier (see Supplementary part) [51]. The chemical shifts
in 1H NMR and 13C{1H} NMR spectra show significant changes after complexation to the
metal(II) center for both ligand systems, the O,S-chelating and the arene ligand. Specific
changes in the NMR spectra have been already discussed previously for corresponding
platinum(II) compounds and are in good agreement for the metal(II) compounds this work
is dealing with [51]. Interestingly, the signals of the methine protons are shifted to high-field
as a result of their complexation with ruthenium(II)/osmium(II), whereas a low-field shift
of the corresponding signals for the platinum(II) complexes were observed, as shown in
Figure 2. This is potentially caused by the better donor ability of the cymene ligand. A
high-field shift for the 13C isotope of the -C=S-group was observed previously in the 13C{1H}
NMR spectra of the platinum(II) compounds after complexation and can be confirmed
for the ruthenium(II)/osmium(II) complexes as well (see Method section and Table 1).
Synthesis for the metal complexes starts with the symmetrical bimetallic complex [(η6-p-
cymene)MCl2]2 and aromatic signals of the cymene ligand are observed as two doublets,
whereas the isopropyl groups resulted in one doublet. Nevertheless, the complexation
to the O,S-chelating ligand leads to an unsymmetrical structure and results in chemically
non-equivalent aromatic protons and carbons. Thus, four aromatic doublets for the cymene
and two doublets for the isopropyl groups in the 1H NMR spectra, as well as four (instead
of two) aromatic carbon signals and two (instead of one) signal for the isopropyl groups
in the 13C{1H} NMR spectra are detectable. For the mass spectra in general, the molec-
ular peak is not observable, only a [M-Cl]+ fragment, comparable to literature data [45],
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and a further fragmentation pathway as observed for the β-Hydroxydithiocinnamic acid
derivatives itself.
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Figure 2. (A) Part of the 1H NMR spectra for L9/Ru9 and their corresponding Pt(II) complex,
a significant shift of the marked methine proton is observable after complexation to the metals.
(B) Shift of the methine proton for the Ru(II) and the Os(II) compounds 7; the Os(II) complexes do not
shift as much (in comparison to the free ligand) as the Ru(II) analogues. Arrows depict the specific
methin proton peak in the spectrum and the responsible position in the ligand.

2.3. Stability Determination

To investigate the behaviour of the ruthenium(II) complexes Ru1, Ru3, and Ru8 in
solution, we analysed kinetic measurements via 1H NMR spectroscopy (every 1 h, one
spectra). NMR signals and behaviour of the ruthenium and osmium compounds is similar,
but osmium(II) compounds show a slower ligand exchange mechanism and a higher
stability in general [4]. The stability determinations for the osmium(II) compounds using
NMR spectroscopy show no structural changes (data for Os3 Supplementary Figure S1).
However, ruthenium(II) compounds exhibit a reduced stability. All 1H NMR spectra show
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that the ruthenium(II) molecules are not stable in dmso-d6 solution. Figure 3 shows the
results for Ru1 at 37 ◦C in dmso-d6. The blue spectrum displays the first measurement at t =
0 h and the double-doublets of the cymene ligand changed quickly and already disappeared
after 24 h (red spectra). The detailed data showing all of the 1H NMR spectra for 72 h
prove that already after 5 h measurements, the signals for the cymene ligand change to a
new signal, resulting in a high-field shift (Supplementary Figure S2). Additional Figure 3
shows that signals of the aromatic region change and the methine proton is disappeared
after 24 h (detailed analysis proves a loss after 7 h, Supplementary Figure S2). The same
measurements were done also with dmso at room temperature. Similar changes in the
spectra occur at room temperature and new species are detectable (exemplified for Ru1
in the Supplementary Figure S3). However, slower speciation processes in comparison
to 37 ◦C measurements occur, which is exemplarily represented by the disappearance
of the double-doublets of the cymene ligand after 29 h (rt, Supplementary Figure S3) vs.
5 h (37 ◦C, Supplementary Figure S2). As reported earlier, dmso molecules are able to
bind to the ruthenium(II) center by losing the cymene ligand and changing the structure
to an octahedral metal(II) coordination sphere [50]. Thus, an explanation for the new
species can be the binding of dmso molecules to the ruthenium(II) center after loss of
the cymene ligand representing the new species in the 1H NMR spectra. To support this
hypothesis, the ruthenium(II) complexes were measured under same conditions (rt, 72 h)
in CD2Cl2, and it was shown that the compounds are stable under these conditions in the
other solvent (see Supplementary Figure S4). In conclusion, it is shown that the analysed
Ru(II) compounds are able to react with dmso at room temperature as well as at 37 ◦C, but
not with dichlormethane.
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Figure 3. Overview of stability determination via 1H NMR spectroscopy for substance Ru1 at
37 ◦C for 72 h. Major detectable changes are boxed and labelled: (a) appearance of a new species,
(b) disappearance of the methine proton, and (c) change of the double doublets of the cymene ligand.
For a detailed overview of the spectral changes per hour, see Supplementary Figure S2.
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However, we used freshly prepared stock solutions in dmso for each experiment and
diluted these stock solutions within 1 h at RT to the final concentration in cell culture
medium (final dmso concentration 0.5%). Therefore, the stability and the potential genera-
tion of speciation products in cell culture medium is more relevant but presently unknown.
Earlier data show minor changes of the UV-VIS spectra in aqueous solutions pointing to
an aquation (ligand exchange chloride to aqua) [50]. Even more important, incubations in
protein solution (RNaseA) prove the interaction and binding to proteins [50]. Therefore, it
is likely that Ru and eventually Os compounds undergo protein binding and speciation
processes in biological systems. Although, the species causative for observed biological
effects (see below) is unknown, these effects are attributable to the tested compounds.

2.4. Molecular Structures

Ruthenium(II) complexes Ru9, Ru13, and Ru14 as well as L14, L15, L17, and L18
were characterized by means of single crystal X-ray structure determination, whereas the
molecular structures of Ru3, L1, L3, L4, L8, and L9 are already known [50,51]. Figure 4
shows the ruthenium(II) complex 14, whereas the molecular structures of Ru9, Ru13, and
of the ligands are depicted in the Supplementary part, Figures S5 and S6, and Table S1.
Results are in good agreement with the values reported earlier [50].
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Table 2 displays specific bond length and angles for the presented Ru(II) compounds.
The ruthenium(II) center shows a tetrahedral structure environment with L-Ru-L angles of
around 90◦. The bond lengths of ruthenium (here for example Ru9) and their neighbouring
atoms are decreasing in the order of S(1)-Ru(1) (2.3544(5)) > Cl(1)-Ru(1) (2.4081(5)) >
O(1)-Ru(1) (2.0790 (14) Å). The bond lengths of the oxygen-substituted moiety at the
aromatic ring O(2)-C(9/8/7) are in the same range, whereas the bond lengths for ortho-
substituted Ru9 (1.359(3) Å) are the smallest. Coordination of the O,S-chelating ligands to
ruthenium(II) results in the elongation of the C(1)-S(1) bond and shortening of the C(3)-O(1)
bond; this is comparable to the already discussed platinum(II) complexes [51].
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Table 2. Bond angles [◦] and bond lengths [Å] for characterized ruthenium(II) compounds.

Ru9 Ru13 Ru14

O(1)-Ru(1) 2.0790(14) 2.0822(14) 2.0754(15)
S(1)-Ru(1) 2.3544(5) 2.3498(5) 2.3498(6)
Cl(1)-Ru(1) 2.4081(5) 2.4317(5) 2.4091(6)
O(1)-C(3) 1.266(2) 1.268(2) 1.270(3)
C(3)-C(4) 1.503(3) 1.501(3) 1.492(3)
S(1)-C(1) 1.690(2) 1.699(2) 1.690(2)

O(2)-C(9/8/7) 1.359(3) 1.373(3) 1.372(3)
S(1)-Ru(1)-O(1) 91.85(4) 91.37(4) 92.71(5)
S(1)-Ru(1)-Cl(1) 86.37(2) 87.227(19) 88.09(2)
O(1)-Ru(1)-Cl(1) 85.86(4) 84.43(4) 82.29(5)

2.5. Biological Behavior

The biological behaviour of all substances was characterized by their cytotoxic activity
against a panel of cell lines enabling an understanding of the structure-activity relationship.
Cytotoxic activity was determined on ovarian carcinoma cell lines SKOV3 and A2780 as
well as their Cisplatin resistant analogues (SKOV3cis and A2780cis) [84,85] and the lung
carcinoma cell line A549. Due to a low solubility in water, dmso is used as a solvent for
the preparation of a dilution series in cell culture experiments. The toxic influence of dmso
was determined earlier and experiments were carried out with 0.5% dmso in cell culture
media and this concentration was used as reference sample in each MTT assay (details:
Section 3) [51]. Cisplatin was used as a reference substance, and a 4.7 or 3.6 times higher
IC50 value was observed for resistant cell lines; see Table 3. Resistance factors (RF) were
determined for all substances (for IC50 values and RF of β-Hydroxydithiocinnamic acid
esters L1–L18, see Tables S2 and S3, Supplementary part). All investigated ruthenium(II)
compounds show lower RF values than Cisplatin on ovarian carcinoma cell lines, ranging
from 0.2 to 1.5 (Table 3). Whereas the IC50 values on the non-resistant cell lines are in most
cases higher than the IC50 of the reference substance, no increase of IC50 values is observed
for the resistant cell lines. Contrary, eight ruthenium complexes show lower IC50 values on
SKOV3cis than Cisplatin and four compounds on A2780cis. Thus, it can be concluded that
these compounds are able to bypass the Cisplatin resistance mechanism in these cell lines
pointing to a different mechanism of action.

The osmium compounds show, in most cases, lower IC50 values than the reference
Cisplatin (except for SKOV3 and Os7, 13, and 14, Table 3). To point out, all substances
show IC50 values between 0.3–0.4 µM on A2780, whereas Cisplatin has an IC50 value of
1.3 µM. On the resistant analogue of A2780, the activity is more than five times higher
for Os3 (0.4 µM) and Os13 (0.8 µM) in comparison to Cisplatin (6.1 µM). Albeit only one
compound (Os3) exhibits a lower IC50 value for SKOV3 than Cisplatin, all compounds
have a higher activity against SKOV3cis. Remarkably, Os7 shows a 13-times lower IC50
value than Cisplatin (0.6 to 13.5 µM). The most promising candidate, Os3, shows IC50
values between 0.4 µM (A2780) and 2.3 µM (SKOV3cis), generally lower than the range
of Cisplatin (1.3 µM A2780–13.5 µM SKOV3cis). Whereas the resistance factors of the
ruthenium compounds are in most cases lower than 1, pointing to the specific targeting
of resistant cells, the osmium analogues do not behave the same. This confirms earlier
published comparison studies showing that osmium analogues of ruthenium complexes
exhibit a different biological behavior in vitro (see introduction).

Table 4 shows IC50 values for normal primary short-term cell cultures of keratinocytes
and fibroblasts as well as the non-cancerous breast epithelial cell line MCF10A. As men-
tioned before, Cisplatin exhibits numerous side effects by its unselective behaviour and
cytotoxic activity against normal cells, which is also reflected by the measured IC50 values
against non-cancerous cell cultures. Despite this, both most active compounds, Os3 and
Ru14, show high IC50 values for these cells.
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Table 3. IC50 [µM] and resistance factors (RF) of all metal(II) compounds for cancer cells *.

Substance SKOV3 SKOV3cis RF SKOV3 A2780 A2780cis RF A2780 A549

Ru1 34.7 (±0.2) 18.4 (±5.1) 0.5 12.8 (±1.1) 9.6 (±6.4) 0.75 28.8 (±5.1)
Ru2 15.7 (±3.7) 11.1 (±5.6) 0.7 10.0 (±7.4) 4.8 (±5.4) 0.48 12.2 (±2.8)
Ru3 18.9 (±0.8) 12.1 (±5.5) 0.6 8.7 (±3.8) 7.4 (±0.8) 0.9 8.0 (±8.5)
Os3 1.1 (±0.2) 2.3 (±0.2) 2.1 0.4 (±0.1) 0.4 (±0.3) 1 0.7 (±0.1)
Ru4 21.8 (±4.6) 27.9 (±5.6) 1.3 21.4 (±7.5) 21.4 (±4.1) 1 26.3 (±11.8)
Ru5 15.4 (±4.0) 9.3 (±5.2) 0.6 44.9 (±1.3) 8.1 (±5.6) 0.2 11.5 (±3.8)
Ru6 28.6 (±4.5) 22.6 (±3.0) 0.8 15.4 (±5.6) 15.3 (±0.6) 1 48.5 (±4.3)
Ru7 22.4 (±9.6) 17.8 (±0.9) 0.8 16.4 (±3.3) 15.0 (±2.9) 0.9 15.3 (±8.1)
Os7 8.8 (±4.4) 0.6 (±0.5) 0.1 0.4 (±0.1) 2.1 (±1.5) 5.3 6.2 (±5.8)
Ru8 21.3 (±1.9) 20.3 (±4.9) 1 14.3 (±7.7) 16.8 (±3.0) 1.2 13.7 (±4.6)
Ru9 25.3 (±8.6) 12.5 (±5.9) 0.5 24.2 (±6.5) 16.4 (±3.7) 0.7 39.6 (±2.7)

Ru10 27.7 (±5.5) 17.7 (±3.6) 0.6 14.6 (±6.2) 11.7 (±2.3) 0.8 27.7 (±10.8)
Ru11 17.0 (±1.5) 16.8 (±1.1) 1 15.6 (±7.1) 11.8 (±4.6) 0.8 19.0 (±1.9)
Ru12 24.0 (±10.4) 12.7 (±7.5) 0.5 11.0 (±8.1) 10.1 (±6.8) 0.9 6.9 (±0.8)
Ru13 16.9 (±2.2) 17.4 (±3.1) 1 2.6 (±0.4) 4.8 (±3.9) 1.8 28.4 (±4.0)
Os13 4.1 (±2.1) 7.1 (±1.8) 1.7 0.3 (±0.0) 0.8 (±0.4) 2.7 3.1 (±1.2)
Ru14 3.5 (±2.0) 5.1 (±2.8) 1.5 1.9 (±0.5) 2.9 (±0.8) 1.5 2.7 (±1.2)
Os14 10.4 (±1.4) 12.1 (±0.7) 1.2 0.3 (±0.0) 1.3 (±0.6) 4.3 5.5 (±4.0)
Ru15 7.4 (±1.4) 3.7 (±0.8) 0.5 5.8 (±2.3) 4.4 (±1.4) 0.8 16.5 (±1.9)
Ru16 13.2 (±2.9) 13.2 (±4.4) 1 5.4 (±3.5) 6.8 (±4.6) 1.3 4.9 (±0.4)
Ru17 17.2 (±3.4) 17.5 (±0.6) 1 14.2 (±2.6) 9.8 (±2.8) 0.7 15.1 (±0.5)

Cisplatin 3.8 (±2.8) 13.5 (±4.4) 3.6 1.3 (±0.2) 6.1 (±2.1) 4.7 7.6 (±2.6)

* IC50 values lower than the IC50 of Cisplatin and RF < 1 are marked in red.

Table 4. IC50 values [µM] for non-cancerous cell cultures.

Cell Culture Ru14 Os3 Cisplatin

Keratinocytes >100 84.5 (±31.3) 5.7 (±3.1)
Fibroblasts >100 >100 4.1 (±1.1)
MCF10A 16.7 (±4.1) 21.3 (±3.3) 3.3 (±0.6)

To conclude, the osmium compounds are in general more active against all five cell
lines than Cisplatin and their ruthenium counterparts. This shows the enormous potential
for osmium compounds as next generation anticancer drugs. However, the ruthenium
compounds are specifically active against Cisplatin-resistant cell lines, meaning they are
able to elude the mechanisms of Cisplatin resistance. This indicates the opportunity for
ruthenium compounds to be selected for resistant tumors. Additionally, our data showing
a higher activity for osmium compared to ruthenium compounds in ovarian and lung
cancer cell lines resemble data from Klose et al., identifying tumor type specific activity
ratios for isosteric Ru/Os compounds using the NCI-60 cell line panel [86]. Both compound
classes do not attack non-cancerous cells resulting in higher cancer specificity compared
to Cisplatin. This is confirmed by recent data for breast cancer cell lines showing a high
cancer cell selectivity for similar Ru(II) complexes with cinnamic acid derivates [87] and
for Ru(II)/Os(II) complexes with N,N-bidentate ligands in various cancer cell models [88].
This higher cancer cell specificity potentially leads to lower side effects during the therapy
in vivo. Lower side effects may translate into the treatment with higher doses of the drugs,
resulting in earlier and increased effects. Therefore, acquired drug resistance mechanisms
arising after several treatments with suboptimal doses may be circumvented by drugs like
the osmium compounds due to lower toxic side effects. Altogether, there are possibly two
different indications for the ruthenium(II) and osmium(II) complexes. The ruthenium(II)
compounds should be further developed for a treatment of Cisplatin resistant tumors,
whereas the osmium(II) complexes can be an alternative for the first-line therapy due to
higher cytotoxic activity compared to Cisplatin.
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A further analysis for the different ruthenium(II) compounds to determine structure-
activity-relationships shows that five compounds (Ru14, Ru15, Ru2, Ru5, and Ru3) exhibit
lower mean IC50 value on Cisplatin resistant cell lines than Cisplatin itself (Supplementary
Figure S7E). Interestingly, compounds Ru14, Ru15, and Ru16 are, all together, the most
active compounds in comparison to Cisplatin (Figure 5A). The compound Ru14 shows a
lower mean IC50 value than Cisplatin for all cancer cell lines (Supplementary Figure S7A),
for all ovarian carcinoma cell lines (Supplementary Figure S7C), for the Cisplatin resistant
cell lines (Supplementary Figure S7E), and for all non-resistant cell lines (Supplementary
Figure S7B). In conclusion, the determined structure-activity-relationship shows that longer
alkyl chains at the aromatic ring lead to higher cytotoxic activity. The most active compound
having an ethoxy-group at para-position (Ru14) is followed by Ru15 with an ethoxy-group
at ortho-position. Interestingly, compound Ru16 has a butoxy-substituent at meta-position.
Thus, it can be concluded that the biological activity is mediated by a longer chain (butoxy)
at the meta-position, whereas the ortho- and para-positions are more suitable with a shorter
chain (ethoxy). To have a further look at the influence of the different ligand systems and
substitution patterns, all β-Hydroxydithiocinnamic acid alkyl esters were tested under
same conditions as their derived ruthenium(II) complexes (Figure 5B, Supplementary
Table S3). Figure 5B shows the trend of all IC50 values ordered by an increased mean IC50
value (determined for all five cell lines) for the β-Hydroxydithiocinnamic acid alkyl esters.
Interestingly, the most active compounds are L17, L14, L18, L16, L13, and L15, showing
similar low IC50 values on all cell lines. This confirms the results for the corresponding
ruthenium(II) complexes, proving that the longer alkyl chains on the aromatic positions are
the most active compounds and that the IC50 values increase by decreasing lipophilicity. All
ligands are less cytotoxic than Cisplatin itself and therefore the metal(II) center is necessary
for the high cytotoxic activity, what is in clear contrast to the literature for O,S-chelating
ruthenium(II) or osmium(II) compounds with thiomaltol ligand [48,71] but confirmed for
Ru(II)/Os(II) compounds with N,N-bidentate glycosyl heterocyclic ligands [88]. This is
exemplarily shown by the comparison of mean IC50 values for Cisplatin, L14, and Ru14
(Supplementary Figure S8). The ruthenium(II) center strongly decreases the IC50 values
in all cases, and therefore the metal is the active part that is supported by the most active
ligand system.

The reduced viability under treatment, as measured by the MTT assay, can be a result
of cell cycle arrest and/or increased cell death. To further evaluate the anticancer properties
of the ruthenium(II) complexes we measured cell cycle distribution and cell death rates
after treatment with Ru3 or Ru14. After seeding and attaching, the cells were treated for
48 h with different concentrations of substances. For cell cycle distribution measurements,
a recovery phase of 24 h was added after treatment, and cells were fixed and stained with
PI for the DNA content. Arresting of cells in specific cell cycle phases gives them time to
resolve the DNA damage (G1 arrest) or is an initial step to apoptosis if DNA damage is too
severe (G2/M arrest) [89]. As previously shown, Cisplatin (5 µM) efficiently induces cell
cycle arrest in G2/M phase in parental A2780 and SKOV3 cells, whereas resistant cells show
only a minor G2/M arrest [85]. On the other side, both examined ruthenium complexes
show no or only a minor effect on cell cycle distribution (Figure 6). This is in line with
other published ruthenium(II) complexes, which do not all induce cell cycle arrest [89,90].
Therefore, one can suggest that these complexes do not induce high DNA damage levels,
leading to cell cycle arrest.
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Figure 6. Cell cycle distribution of A2780 and SKOV3 cells and the resistant subcultures after
treatment with 5 µM Cisplatin or indicated concentrations of Ru3/Ru14. Cells were incubated for
48h followed by a recovering time of 24 h and analyzed by PI staining and FACS.
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For cell death rate analysis, live cells were stained with PI immediately after 48 h
treatment. Again, it can be seen that 15 µM Cisplatin efficiently induces cell death in
parental ovarian cancer cells [85], where it is 29.9-fold higher for A2780 and 6.3-fold higher
for SKOV3 compared to untreated cells. Furthermore, resistant cells show much lower
Cisplatin-induced cell death rates (Figure 7). Both complexes, Ru3 and Ru14, have a high
capacity to induce cell death in vitro (Figure 7). In A2780 cells, both compounds trigger
similar cell death rates in parental and Cisplatin-resistant cells. Cisplatin-resistant SKOV3
are much more sensitive to both ruthenium(II) complexes than the parental counterpart,
with a median of 3.3-fold higher sensitivity. Interestingly, Ru3 induced higher cell death
rates than Ru14 despite contrary results for IC50 values.
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Figure 7. Cell death rates induced by 15 µM Cisplatin or 20 µM and 30 µM Ru3/Ru14 in A2780 and
SKOV3 cells. Untreated or DMSO treated cells served as controls. Cells were incubated for 48 h. The
number of dead cells was measured via PI staining.

Previous studies showed a direct induction of apoptosis by ruthenium(II) complexes
via ROS production and activation of pro-apoptotic BCL2-family proteins [91,92]. Ru(II)
compounds may also inhibit TrxR (thioredoxin reductase), thus resulting in ROS produc-
tion, mitochondrial dysfunction, and apoptosis [93]. ROS production may also lead to
endoplasmatic reticulum stress-induced apoptosis [36]. In general, many ruthenium(II)
complexes with different ligands induce intracellular ROS [94–99]. Moreover, the cytotoxic
activity of Os(II) compounds can be inhibited by vitamin E co-treatment pointing to the
contribution of ROS [88]. In addition to mitochondrial dysfunction, Ru(II) complexes may
affect glycolysis [100] or topoisomerase I/II, thus inducing necroptosis [101]. Ru(II) com-
pounds with modified pyrithione ligands were recently described to overcome platinum
resistance in ovarian cancer cells by inducing cytostatic G1 arrest, TrxR inhibition, and cell
membrane damage [102]. Both Ru(II) and Os(II) compounds can also inhibit proteosyn-
thesis [34,103]. A direct interaction of Ru3 with a model protein (RNaseA) resulted in
ligand exchange, binding to histidine residues, and altered coordination sphere geometry,
pointing to a mode-of-action that involves protein targets [50]. Future studies may identify
the specific target proteins enabling molecular docking studies and specific refinement of
the organo-metal compound structure. Altogether, presented compounds may use some of
these alternative modes of action as well, as we see efficient cell death but no cell cycle arrest
induction by Ru3/Ru14. Furthermore, the ruthenium(II) core atom might be responsible
for this effect because of the lack of anticancer behaviour of the ligand L14 (Supplementary
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Figure S8). To further confirm that Ru compounds use another mechanism of action, DNA
damage analyses were conducted for Ru3 and Ru14 (Figure 8). Both Ru compounds (at
IC50 concentration) induced less γH2AX-foci as Cisplatin after 24h incubation under the
same conditions. This confirms published data pointing to a DNA-independent mode of
action for ruthenium compounds [41,71,104]. However, other data show an interaction
of ruthenium complexes with DNA [33,43,99,105,106]. These contrary observations may
relate to experimental conditions or specific ligands.
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Figure 8. γH2AX foci analysis (DNA damage) after 24h incubation with IC50 concentrations for
Cisplatin, Ru3 and Ru14. (A): Box plot of quantitative analysis for γH2AX foci per nuclei (n > 100). (B):
Exemplary pictures for A2780par and A2780Cis for all substances. γH2AX foci are shown by green
signal (Alexa488-labelled secondary antibody) and nuclei are stained with DAPI (4’,6-Diamidino-2-
phenylindol, blue).

The presented data suggest that Ru(II) and Os(II) complexes with O,S-chelating
β-Hydroxydithiocinnamic acid esters are both highly active and specific against cancer
cell lines (Os(II) compounds) or Cisplatin resistant cancer cells (Ru(II) compounds). The
avoidance of resistance mechanisms seems to be related to another mode of action inducing
cell death without high levels of DNA damage or cell cycle arrest. Several limitations
must be discussed for the evaluation of these data. Firstly, the biological activity was
determined for in-vitro 2D cell culture systems, only. Further analyses in 3D cell cultures
or in vivo should clarify the potential for clinical use of the most active compounds (Os3,
Ru14). Thereby, the detailed mode-of-action must be identified, although first data point
to a potential contribution of protein interactions [50]. Secondly, presented and already
published data point to the instability of Ru(II) compounds and the generation of speciation
products in dmso and biological systems (Figure 3) [50]. Therefore, it is presently unknown
which specific compound directly causes the observed biological effects. However, our
experiments show clearly and reproducibly that the tested complexes are the general source
of the effects. If future studies can solve these limitations and validate the high cancer cell
specific cytotoxicity also against platin resistant tumors, these compounds are likely to
improve the treatment of ovarian cancer patients.

3. Materials and Methods
3.1. Materials and Techniques

All reactions were performed using standard Schlenk and vacuum-line techniques
under nitrogen atmosphere. The NMR spectra were recorded with a Bruker Avance
200 MHz, 400 MHz, or 600 MHz spectrometer. Chemical shifts are given in ppm with
reference to SiMe4. Mass spectra were recorded with a Finnigan MAT SSQ 710 instru-
ment. Elemental analysis was performed with a Leco CHNS-932 apparatus. Silica gel 60
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(0.015–0.040 mm) was used for column chromatography, and TLC was performed using
Merck TLC aluminium sheets (Silica gel 60 F254). Chemicals were purchased from Fisher
Scientific (Schwerte, Germany), Sigma-Aldrich (Taufkirchen, Germany), or Acros (Nid-
derau, Germany) and were used without further purification. All solvents were dried and
distilled prior to use according to standard methods.

3.2. Synthesis

Different β-Hydroxydithiocinnamic acid alkyl esters and [(η6-p-cymene)XCl2]2 (X = Ru or
Os) were prepared by modified literature methods [51,107]. New compounds L13–L17 are
described in the supplementary information.

General procedure 1: Ruthenium(II) complexes with β-Hydroxydithiocinnamic acid
alkyl esters, chlorido and p-cymene as ligands (Ru1–Ru17).

[(η6-p-cymene)RuCl2]2 (0.5 equiv.) was dissolved in 50 mL tetrahydrofurane (THF).
The corresponding ligand L1-L12 (1 equiv.) was solved in 25 mL THF and potassium-
tert.-butoxylate (t-BuOK, 2 equiv.) was added to that solution and stirred 30 min at
rt. The solution of the deprotonated ligand was added dropwise to the suspension of
[(η6-p-cymene)RuCl2]2 and stirred at room temperature for 24 h. After adding sulfuric
acid (H2SO4, 20 mL, 2M) to the solution, the mixture was stirred for 30 min at rt and after-
wards extracted with dichlormethane (DCM, 3 × 30 mL). The combined organic phases
were washed with water (3 × 20 mL), dried over sodium sulfate and after filtration and
evaporation of the solvent the crude product was purified with column chromatography.

3.2.1. General Procedure 1: Osmium(II) Complexes with β-Hydroxydithiocinnamic Acid
Alkyl Esters, Chlorido, and p-cymene as Ligands (Os1–Os4)

[(η6-p-cymene)OsCl2]2 (0.5 equiv.) was dissolved in 50 mL tetrahydrofurane (THF).
The corresponding ligand (1 equiv.) was solved in 25 mL THF, and potassium-tert.-
butoxylate (t-BuOK, 2 equiv.) was added to that solution and stirred 30 min at rt. The
solution of the deprotonated ligand was added dropwise to the suspension of [(η6-p-
cymene)RuCl2]2 and stirred at room temperature for 24 h. After adding sulfuric acid
(H2SO4, 20 mL, 2M) to the solution, the mixture was stirred for 30 min at rt and after-
wards extracted with dichlormethane (DCM, 3 × 30 mL); the combined organic phases
were washed with water (3 × 20 mL), dried over sodium sulfate and after filtration and
evaporation of the solvent the crude product was purified with column chromatography.

3.2.2. [(n6-p-cymene)Ru(1-phenyl-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru1)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L1 (341 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 540 mg (69.5%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.29
(dd, 3JH-H = 5.8 Hz, 4JH-H = 2.2 Hz, 6H, -cymene-CH-(CH3)2); 2.20 (s, 3H, -cymene-CH3);
2.69 (s, 3H, -SCH3); 2.85 (sp, 1H, -cymene-CH-(CH3)2); 5.29 (d, 3JH-H = 5.9 Hz, 2H, -
cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.50 (dd, 3JH-H = 22.6 Hz, 4JH-H = 5.9 Hz, 2H –
cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.76 (s, 1H, = CH); 7.40 (m, 2H, -Ar-m-H); 7.48
(m, 1H, -Ar-p-H); 7.81 (d, 3JH-H = 7.4 Hz, 2H, -Ar-o-H). 13C{1H} NMR (101 MHz, CD2Cl2):
δ = 17.4 (-SCH3); 18.1 (-cymene-C-CH3); 22.3 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-
(CH3)2); 83.1 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.3 (CH3-C-CH-CH-C-CH-(CH3)2);
85.5 (CH3-C-CH-CH-C-CH-(CH3)2); 100.4 (CH3-C-CH-CH-C-CH-(CH3)2); 102.5 (CH3-C-
CH-CH-C-CH-(CH3)2); 109.1 (=CH); 127.4 (-Ar-o-C); 131.3 (-Ar-p-C); 140.0 (-Ar-C1); 178.0
(-C-O-); 187.8 (-C=S). MS (DEI): m/z = 444, 438, 399, 394, 317, 315, 280, 274. Elemental
analysis: calculated for C20H23ClORuS2 C: 50.04%; H: 4.83%, found: C: 49.92%; H: 4.82%.

3.2.3. [(η6-p-cymene)Ru(1-phenyl-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru2)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L2 (363 mg, 1.62 mmol) was dissolved in THF, t-BuOK
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(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 460 mg (57.3%) as red crystals.1H NMR (600 MHz, CD2Cl2): δ = 1.29
(d, 3JH-H = 7.0 Hz, 6H, -cymene-CH-(CH3)2); 1.40 (t, 3JH-H = 7.5 Hz, 3H, -S-CH2-CH3);
2.21 (s, 3H, -cymene-CH3); 2.85 (m, 1H, -cymene-CH-(CH3)2); 3.28 (q, 3JH-H = 7.5 Hz, 2H,
-S-CH2-CH3); 5.28 (d, 3JH-H = 5.8 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.50
(d, 3JH-H = 5.28 Hz, 2H, –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.75 (s, 1H, =CH); 7.40
(m, 2H, -Ar-m-H); 7.48 (m, 1H, -Ar-p-H); 7.80 (d, 3JH-H = 7.4 Hz, 2H, -Ar-o-H). 13C{1H}
NMR (101 MHz, CD2Cl2): δ = 13.9 (-SCH2CH3); 18.2 (-cymene-C-CH3); 22.4 (-cymene-
CH-(CH3)2); 24.2 (-S-CH2CH3); 30.9 (-cymene-CH-(CH3)2); 83.1 (-cymene:CH3-C-CH-CH-
C-CH-(CH3)2); 83.3 (CH3-C-CH-CH-C-CH-(CH3)2); 85.6 (CH3-C-CH-CH-C-CH-(CH3)2);
85.6 (CH3-C-CH-CH-C-CH-(CH3)2); 100.6 (CH3-C-CH-CH-C-CH-(CH3)2); 102.6 (CH3-C-
CH-CH-C-CH-(CH3)2); 109.4 (=CH); 127.5 (-Ar-o-C); 131.4 (-Ar-p-C); 140.1 (-Ar-C1); 178.0
(-C-O-); 187.1 (-C=S). MS (DEI): m/z = 458, 456, 399, 393, 311, 297. Elemental analysis:
calculated for C21H25ClORuS2 C: 51.05%; H: 5.10%, found: C: 50.97%; H: 5.03%.

3.2.4. [(η6-p-cymene)Ru(1-(3-hydroxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru3)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L3 (367 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 190 mg (23.6%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.26
(d, 3JH-H = 6.4 Hz, 6H, -cymene-CH-(CH3)2); 2.20 (s, 3H, CH3, -cymene-CH3); 2.64 (s,
3H, -SCH3); 2.83 (m, 1H, -cymene-CH-(CH3)2); 5.33 (m, 2H, -cymene:CH3-C-CH-CH-C-
CH-(CH3)2); 5.52 (m, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.71 (s, 1H, =CH); 6.85
(m, 2H, -Ar-o-H); 7.11 (m, 1H, -Ar-m-H); 7.23 (m, 3H, =CH/-Ar-p-H); 10.1 (s, 1H, -COH).
13C{1H} NMR (101 MHz, CD2Cl2): δ = 17.6 (-SCH3); 18.3 (-cymene-C-CH3); 22.4 (-cymene-
CH-(CH3)2); 30.9 (-cymene-CH-(CH3)2); 83.3 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.8
(CH3-C-CH-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2); 85.6 (CH3-C-CH-CH-
C-CH-(CH3)2); 100.8 (CH3-C-CH-CH-C-CH-(CH3)2); 102.3 (CH3-C-CH-CH-C-CH-(CH3)2);
109.2 (=CH); 125.2 (-Ar-m-C); 129.2 (-Ar-o-C); 129.4 (-COH); 156.9 (-Ar-p-C); 178.0 (-ArC1);
187.3 (-C-O-); 207.2 (-C=S). MS (DEI): m/z = 134, 119, 115, 91, 77, 39, 28. Elemental analysis:
calculated for C20H23ClO2RuS2 C: 48.43%; H: 4.67%, found: C: 48.60%; H: 4.83%.

3.2.5. [(η6-p-cymene)Ru(1-(4-hydroxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru4)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L4 (367 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-THF. Yield: 190 mg (23.6%) as red crystals. 1H NMR (400 MHz, CD2Cl2): δ = 1.20
(m, 6H, -cymene-CH-(CH3)2); 2.10 (s, 3H, -cymene-CH3); 2.59 (s, 3H, -SCH3); 2.75 (m, 1H,
-cymene-CH-(CH3)2); 5.45 (d, 3JH-H = 5.7 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2);
5.67 (d, 3JH-H = 20.4 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.65 (s, 1H, =CH);
6.80 (m, 2H, -Ar-o-H); 7.76 (m, 2H, -Ar-m-H): 10.1 (s, 1H, -COH). 13C{1H} NMR (101 MHz,
CD2Cl2): δ = 17.5 (-SCH3); 18.2 (-cymene-C-CH3); 22.2/22.6 (-cymene-CH-(CH3)2); 30.8 (-
cymene-CH-(CH3)2); 82.9 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 84.4 (CH3-C-CH-CH-C-
CH-(CH3)2); 85.1 (CH3-C-C-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2); 100.6
(CH3-C-CH-CH-C-CH-(CH3)2); 102.2 (CH3-C-CH-CH-C-CH-(CH3)2); 108.5 (=CH); 125.2
(-Ar-o-C); 129.9 (-Ar-C1); 130.9 (-Ar-m-C); 160.7 (-COH); 177.8 (-C-O-); 185.0 (-C=S). MS
(ESI): m/z = 463, 461, 415, 315, 281 Elemental analysis: calculated for C20H23ClO2RuS2 C:
48.43%; H: 4.67%, found: C: 48.17%; H: 4.76%.

3.2.6. [(η6-p-cymene)Ru(1-(3-hydroxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru5)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L5 (390 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 340 mg (41.0%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.26
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(d, 3JH-H = 6.9 Hz, 6H, -cymene-CH-(CH3)2); 1.37 (t, 3JH-H = 7.5 Hz, 3H. –SCH2CH3); 2.21
(s, 3H, CH3, -cymene-CH3); 2.83 (m, 1H, -cymene-CH-(CH3)2); 3.23 (q, 3JH-H = 7.5 Hz, 2H,
-SCH2CH3); 5.33 (m, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.52 (m, 2H –cymene:CH3-
C-CH-CH-C-CH-(CH3)2); 6.68 (s, 1H, =CH); 6.83 (m, 2H, -Ar-o-H); 7.08 (m, 1H, -Ar-m-H);
7.20 (m, 3H, =CH/-Ar-p-H). 13C{1H} NMR (101 MHz, CD2Cl2): δ = 13.5 (-SCH2CH3); 18.0
(-cymene-C-CH3); 22.1 (-cymene-CH-(CH3)2); 25.6 (-SCH2CH3); 30.5 (-cymene-CH-(CH3)2);
82.9 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.4 (CH3-C-CH-CH-C-CH-(CH3)2); 85.0
(CH3-C-CH-CH-C-CH-(CH3)2); 85.3 (CH3-C-CH-CH-C-CH-(CH3)2); 100.7 (CH3-C-CH-CH-
C-CH-(CH3)2); 101.7 (CH3-C-CH-CH-C-CH-(CH3)2); 109.0 (=CH); 124.8 (-Ar-m-C); 129.0
(-COH); 156.5 (-Ar-p-C); 177.9 (-ArC1); 187.1 (-C-O-). MS (ESI): m/z = 518, 576, 474, 414, 328,
294, 292. Elemental analysis: calculated for C21H25ClO2RuS2 C: 49.45%; H: 4.94%, found:
C: 49.29%; H: 5.02%.

3.2.7. [(η6-p-cymene)Ru(1-(4-hydroxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Ru6)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(385 mg, 0.62 mmol) was used. L6 (300 mg, 1.25 mmol) was dissolved in THF, t-BuOK
(140 mg, 1.25 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-THF. Yield: 100 mg (15.6%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.22
(d, 3JH-H = 6.9 Hz, 6H, -cymene-CH-(CH3)2); 1.33 (t, 3JH-H = 7.4 Hz, 3H, -SCH2CH3); 2.14 (s,
3H, -cymene-CH3); 2.79 (sp, 3JH-H = 6.9, 1H, -cymene-CH-(CH3)2); 3.19 (q, 3JH-H = 7.4 Hz,
2H, -SCH2CH3); 5.23 (d, 3JH-H = 5.7 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.45 (d,
3JH-H = 17.4 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.67 (s, 1H, =CH); 6.80 (d, 2H,
3JH-H = 8.7 Hz, -Ar-o-H); 7.68 (d, 3JH-H = 8.4 Hz, 2H, -Ar-m-H): 8.62 (s, 1H, -COH). 13C{1H}
NMR (101 MHz, CD2Cl2): δ = 13.9 (-SCH2CH3); 18.0 (-cymene-C-CH3); 22.3 (-cymene-
CH-(CH3)2); 24.1(-SCH2CH3); 30.8 (-cymene-CH-(CH3)2); 83.0 (-cymene:CH3-C-CH-CH-
C-CH-(CH3)2); 83.1 (CH3-C-CH-CH-C-CH-(CH3)2); 85.4 (CH3-C-CH-CH-C-CH-(CH3)2);
85.6 (CH3-C-CH-CH-C-CH-(CH3)2); 100.4 (CH3-C-CH-CH-C-CH-(CH3)2); 102.3 (CH3-C-
CH-CH-C-CH-(CH3)2); 115.5 (=CH); 126.5 (-Ar-o-C); 129.2 (-Ar-C1); 131.5 (-Ar-m-C); 160.7
(-COH); 177.8 (-C-O-); 185.0 (-C=S). MS (ESI): m/z = 476, 474, 414, 331, 301, 293. Elemental
analysis: calculated for C21H25ClO2RuS2 C: 49.45%; H: 4.94%, found: C: 49.40%; H: 5.00%.

3.2.8. [(η6-p-cymene)Ru(1-(2-methoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru7)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L7 (389 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-THF. Yield: 700 mg (84.6%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.23
(d, 3JH-H = 6.9 Hz, 6H, -cymene-CH-(CH3)2); 2.19 (s, 3H,-cymene-CH3); 2.62 (s, 3H, -
SCH3); 2.85 (sp, 1H, 3JH-H = 6.9 Hz, -cymene-CH-(CH3)2); 3.83 (s, 3H, -OCH3); 5.24 (d,
3JH-H = 6.1 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.46 (d, 3JH-H = 23.8 Hz, 2H
–cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.64 (s, 1H, =CH); 6.92 (d, 3JH-H = 8.3 Hz, 1H, -Ar-o-
H); 6.97 (m, 1H, -Ar-m-H); 7.38 (dd, 3JH-H = 7.7 Hz, 4JH-H = 1.8 Hz, 1H, -Ar-p-H); 7.50 (dd,
3JH-H = 7.6 Hz, 4JH-H = 1.7 Hz, 1H, -Ar-m-H). 13C{1H} NMR (101 MHz, CD2Cl2): δ = 17.5 (-
SCH3); 18.1 (-cymene-C-CH3); 22.4/22.4 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2);
56.0 (-OCH3); 82.8 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.3 (CH3-C-CH-CH-C-CH-
(CH3)2); 85.4 (CH3-C-CH-CH-C-CH-(CH3)2); 100.7 (CH3-C-CH-CH-C-CH-(CH3)2); 102.6
(CH3-C-CH-CH-C-CH-(CH3)2); 111.9 (-Ar-o-C); 113.4 (=CH); 120.9 (-Ar-m-C); 129.2 (-Ar-
C1); 130.6 (-Ar-m-C); 131.7 (-Ar-p-C); 156.9 (-Ar-C-OCH3); 179.0 (-C-O-); 185.9 (-C=S). MS
(DEI): m/z = 503, 477, 475, 428, 341, 315, 281, 275. Elemental analysis: calculated for
C21H25ClO2RuS2 C: 49.45%; H: 4.94%, found: C: 49.79%; H: 5.13%.

3.2.9. [(η6-p-cymene)Ru(1-(3-methoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru8)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L8 (389 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
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10:THF 1-THF. Yield: 450 mg (54.5%) as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.32
(d, 3JH-H = 6.9 Hz, 6H, -cymene-CH-(CH3)2); 2.25 (s, 3H, CH3, -cymene-CH3); 2.70 (s, 3H,
-SCH3); 2.91 (sp, 3JH-H = 6.9 Hz, 1H, -cymene-CH-(CH3)2); 3.85 (s, 3H, -OCH3); 5.29 (d,
3JH-H = 24.0 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.46 (d, 3JH-H = 22.1 Hz, 2H
–cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.76 (s, 1H, =CH); 6.99 (m, 1H, -Ar-o-H); 7.25–7.31
(m, 2H, -Ar-m-H); 7.34–7.40 (m, 2H, -Ar-p-H). 13C{1H} NMR (101 MHz, CD2Cl2): δ = 17.1
(-SCH3); 17.9 (-cymene-C-CH3); 22.5 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2); 55.1
(-OCH3); 82.7 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 82.8 (CH3-C-CH-CH-C-CH-(CH3)2);
85.2 (CH3-C-CH-CH-C-CH-(CH3)2); 85.7 (CH3-C-CH-CH-C-CH-(CH3)2; 100.0 (CH3-C-CH-
CH-C-CH-(CH3)2); 102.5 (CH3-C-CH-CH-C-CH-(CH3)2); 109.7 (=CH); 116.7 (-Ar-o-C); 120.0
(-Ar-m-C); 129.0 (-Ar-p-C); (-Ar-C1); 141.4 (-Ar-m-C);159.3 (-Ar-OCH3); 177.4 (-C-O-); 187.6
(-C=S). MS (ESI): m/z = 563, 474, 428. Elemental analysis: calculated for C21H25ClO2RuS2
C: 49.45%; H: 4.94%, found: C: 49.94%; H: 5.14%.

3.2.10. [(η6-p-cymene)Ru(1-(4-methoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru9)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L9 (389 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-DCM 4:THF 1-THF. Yield: 240 mg (29.1%) as red crystals. 1H NMR (600 MHz,
CD2Cl2): δ = 1.53 (d, 3JH-H = 7.8 Hz, 6H, -cymene-CH-(CH3)2); 2.20 (s, 3H, CH3, -cymene-
CH3); 2.67 (s, 3H, -SCH3); 2.85 (sp, 3JH-H = 7.8 Hz, 1H, -cymene-CH-(CH3)2); 3.85 (s,
3H, -OCH3); 5.27 (d, 3JH-H = 21.6 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.48 (d,
3JH-H = 18.7 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.74 (s, 1H, =CH); 6.90 (d,
3JH-H = 8.8 Hz, 2H, -Ar-H); 7.81 (d, 3JH-H = 8.0 Hz, 2H, -Ar-H). 13C{1H} NMR (101 MHz,
CD2Cl2): δ = 18.2 (-SCH3); 18.2 (-cymene-C-CH3); 22.4/22.4 (-cymene-CH-(CH3)2); 30.9
(-cymene-CH-(CH3)2); 55.8 (-OCH3); 83.1 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.3
(CH3-C-CH-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2); 100.7 (CH3-C-CH-CH-
C-CH-(CH3)2); 102.6 (CH3-C-CH-CH-C-CH-(CH3)2); 113.9 (-Ar-o-C); 113.4 (=CH); 120.9
(-Ar-m-C); 129.6 (-Ar-C1); 130.6 (-Ar-m-C); 131.7 (-Ar-p-C); 156.9 (-Ar-OCH3); 179.0 (-C-O-);
185.9 (-C=S). MS (ESI): m/z = 503, 477, 475, 429, 315, 281. Elemental analysis: calculated for
C21H25ClO2RuS2 C: 49.45%; H: 4.94%, found: C: 49.60%; H: 5.08%.

3.2.11. [(η6-p-cymene)Ru(1-(2-methoxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru10)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L10 (389 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-THF. Yield: 700 mg (84.6%) as red crystals. 1H NMR (600 MHz, CD2Cl2): δ = 1.23 (d,
3JH-H = 6.9 Hz, 6H, -cymene-CH-(CH3)2); 1.38 (t, 3JH-H = 7.5 Hz, 3H, -SCH2CH3); 2.19 (s, 3H,
-cymene-CH3); 2.84 (sp, 3JH-H = 6.9 Hz, 1H, -cymene-CH-(CH3)2); 3.20 (q, 3JH-H = 7.5 Hz,
2H, -SCH2CH3); 3.83 (s, 3H, -OCH3); 5.24 (d, 3JH-H = 6.0 Hz, 2H, -cymene:CH3-C-CH-
CH-C-CH-(CH3)2); 5.45 (d, 3JH-H = 22.3 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2);
6.63 (s, 1H, =CH); 6.92 (d, 3JH-H = 8.3 Hz, 1H, -Ar-o-H); 6.97 (t, 1H, -Ar-m-H); 7.38 (dd,
3JH-H = 7.8 Hz, 4JH-H = 1.8 Hz, 1H, -Ar-p-H); 7.51 (dd, 3JH-H = 7.6 Hz, 4JH-H = 1.8 Hz,
1H, -Ar-m-H). 13C{1H} NMR (101 MHz, CD2Cl2): δ = 13.9 (-SCH2CH3); 18.0 (-cymene-C-
CH3); 22.3/22.4 (-cymene-CH-(CH3)2); 25.9 (-SCH2CH3); 30.8 (-cymene-CH-(CH3)2); 55.9
(-OCH3); 82.7 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 83.2 (CH3-C-CH-CH-C-CH-(CH3)2);
85.4 (CH3-C-CH-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2); 100.8 (CH3-C-
CH-CH-C-CH-(CH3)2); 102.5 (CH3-C-CH-CH-C-CH-(CH3)2); 111.9 (-Ar-o-C); 113.6 (=CH);
120.8 (-Ar-m-C); 129.2 (-Ar-C1); 130.6 (-Ar-m-C); 131.7 (-Ar-p-C); 156.9 (-Ar-C-OCH3); 179.2
(-C-O-); 185.0 (-C=S). MS (DEI): m/z = 502, 493, 489, 483, 428, 328, 296, 294. Elemental
analysis: calculated for C22H27ClO2RuS2 C: 50.42%; H: 5.19%, found: C: 50.74%; H: 5.25%.
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3.2.12. [(η6-p-cymene)Ru(1-(3-methoxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru11)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L11 (412 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 700 mg (82.4%) as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.32
(d, 3JH-H = 7.9 Hz, 6H, -cymene-CH-(CH3)2); 1.41 (t, 3JH-H = 7.4 Hz, 3H, -SCH2CH3); 2.91
(sp, 3JH-H = 7.9 Hz, 1H, -cymene-CH-(CH3)2); 3.01 (q, 3JH-H = 7.4 Hz, 2H, -SCH2CH3); 3.85
(s, 3H, -OCH3); 5.28 (d, 3JH-H = 22.7 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.51
(d, 3JH-H = 26.3 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.74 (s, 1H, =CH); 6.99
(d, 3JH-H = 8.22 Hz, 1H, -Ar-o-H); 7.23-7.41 (m, 4H, -Ar-m/p-H). 13C{1H} NMR (101 MHz,
CDCl3): δ = 13.7 (-SCH2CH3); 18.0 (-cymene-C-CH3); 22.5 (-cymene-CH-(CH3)2); 25.6
(-SCH2CH3); 30.5 (-cymene-CH-(CH3)2); 55.4 (-OCH3); 82.6 (-cymene:CH3-C-CH-CH-C-
CH-(CH3)2); 82.8 (CH3-C-CH-CH-C-CH-(CH3)2); 85.1 (CH3-C-CH-CH-C-CH-(CH3)2); 85.6
(CH3-C-CH-CH-C-CH-(CH3)2; 100.1 (CH3-C-CH-CH-C-CH-(CH3)2); 102.6 (CH3-C-CH-CH-
C-CH-(CH3)2); 109.7 (=CH); 116.8 (-Ar-o-C); 119.9 (-Ar-m-C); 126.3 (-Ar-p-C); 135.2 (-Ar-C1);
141.4 (-Ar-m-C);159.4 (-Ar-OCH3); 178.0 (-C-O-); 186.8 (-C=S). MS (ESI): m/z = 490, 488, 458,
428, 294. Elemental analysis: calculated for C22H27ClO2RuS2 C: 50.42%; H: 5.19%, found:
C: 50.51%; H: 5.22%.

3.2.13. [(η6-p-cymene)Ru(1-(4-methoxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru12)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L12 (412 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
6:THF 1-DCM 4:THF 1-THF. Yield: 790 mg (93.1%) as red crystals. 1H NMR (600 MHz,
CDCl3): δ = 1.32 (d, 3JH-H = 7.8 Hz, 6H, -cymene-CH-(CH3)2); 1.41 (t, 3JH-H = 7.5 Hz, 3H,
-SCH2CH3); 2.90 (sp, 3JH-H = 7.8 Hz, 1H, -cymene-CH-(CH3)2); 3.30 (q, 3JH-H = 7.5 Hz, 2H,
-SCH2CH3); 3.86 (s, 3H, -OCH3); 2.85 (sp, 1H, -cymene-CH-(CH3)2); 3.85 (s, 3H, -OCH3);
5.29 (d, 3JH-H = 25.0 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.50 (d, 3JH-H = 22.5
Hz, 2H–cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.78 (s, 1H, =CH); 6.89 (d, 3JH-H = 8.8 Hz,
2H, -Ar-H); 7.80 (d, 3JH-H = 8.5 Hz, 2H, -Ar-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 13.8
(-SCH2CH3); 18.1 (-cymene-C-CH3); 22.4 (-cymene-CH-(CH3)2); 25.6 (-SCH2CH3); 30.5
(-cymene-CH-(CH3)2); 55.4 (-OCH3); 82.9 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 85.0
(CH3-C-CH-CH-C-CH-(CH3)2); 85.3 (CH3-C-CH-CH-C-CH-(CH3)2); 99.9 (CH3-C-CH-CH-
C-CH-(CH3)2); 102.3 (CH3-C-CH-CH-C-CH-(CH3)2); 113.4 (-Ar-o-C); 113.4 (=CH); 126.3
(-Ar-m-C); 129.5 (-Ar-C1); 132.4 (-Ar-m-C); 132.4 (-Ar-p-C); 162.1 (-Ar-OCH3); 177.7 (-C-O-);
184.8 (-C=S). MS (ESI): m/z = 490, 488, 482, 428, 294. Elemental analysis: calculated for
C22H27ClO2RuS2 C: 50.42%; H: 5.19%, found: C: 50.52%; H: 5.09%.

3.2.14. [(η6-p-cymene)Ru(1-(2-ethoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru13)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L13 (412 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 130 mg (23.7%) as red oil. 1H NMR (600 MHz, CDCl3): δ = 1.23 (d,
3JH-H = 7.1 Hz, 6H, -cymene-CH-(CH3)2); 1.35 (t, 3JH-H = 7.5 Hz, 3H, -OCH2CH3); 2.16 (s, 3H,
CH3, -cymene-CH3); 2.57 (s, 3H, -SCH3); 2.82 (sp, 3JH-H = 7.1 Hz, 1H, -cymene-CH-(CH3)2);
4.29 (q, 3JH-H = 7.5 Hz, 2H, -OCH2CH3); 5.18 (d, 3JH-H = 16.0 Hz, 2H, -cymene:CH3-C-CH-
CH-C-CH-(CH3)2); 5.39 (d, 3JH-H = 38.8 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2);
6.76 (s, 1H, =CH); 6.78 (d, 3JH-H = 8.4 Hz, 1H, -Ar-o-H); 6.87 (m, 1H, -Ar-m-H); 7.25 (m, 1H,
-Ar-p-H); 7.57 (dd, 3JH-H = 7.7 Hz, 4JH-H = 1.7 Hz, 1H, -Ar-m-H). 13C{1H} NMR (101 MHz,
CDCl3): δ = 14.9 (-OCH2CH3); 17.9 (-SCH3); 17.9 (-cymene-C-CH3); 22.2 (-cymene-CH-
(CH3)2); 30.4 (-cymene-CH-(CH3)2); 64.5 (-OCH2CH3); 82.6 (-cymene:CH3-C-CH-CH-C-
CH-(CH3)2); 82.7 (CH3-C-CH-CH-C-CH-(CH3)2); 85.2 (CH3-C-CH-CH-C-CH-(CH3)2); 85.5
(CH3-C-CH-CH-C-CH-(CH3)2; 100.2 (CH3-C-CH-CH-C-CH-(CH3)2); 102.5 (CH3-C-CH-CH-
C-CH-(CH3)2); 112.8 (=CH); 113.8 (-Ar-o-C); 117.2 (-Ar-p-C); 120.5 (-Ar-o-C); 130.6 (-Ar-C=C);
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131.2 (-Ar-m-C); 131.4 (-Ar-C1); 155.9 (-C-O-); 177.7 (-C=S). MS (DEI): m/z = 524, 458, 119.
Elemental analysis: calculated for C22H27ClO2RuS2 C: 50.42%; H: 5.19%, found: C: 50.39%;
H: 5.32%.

3.2.15. [(η6-p-cymene)Ru(1-(3-ethoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru14)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L14 (412 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 471 mg (55.5%) as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.27
(d, 3JH-H = 10.3 Hz, 6H, -cymene-CH-(CH3)2); 1.40 (t, 3JH-H = 6.9 Hz, 3H, -OCH2CH3);
2.07 (s, 3H, CH3, -cymene-CH3); 2.66 (s, 3H, -SCH3); 2.86 (sp, 3JH-H = 10.3 Hz, 1H, -
cymene-CH-(CH3)2); 4.03 (q, 3JH-H = 6.9 Hz, 2H, -OCH2CH3); 5.22 (d, 3JH-H = 8.8 Hz,
2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.43 (d, 3JH-H = 8.6 Hz, 2H –cymene:CH3-
C-CH-CH-C-CH-(CH3)2); 6.71 (s, 1H, =CH); 6.94 (dd, 3JH-H = 12.18 Hz, 4JH-H = 3.0 Hz,
1H, -Ar-p-H); 7.22 (m, 1H, -Ar-m-H); 7.30 (s, 1H, -Ar-o-H); 7.33 (d, 1H, 3JH-H = 11.7 Hz,
-Ar-o-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 14.8 (-OCH2CH3); 17.2 (-SCH3); 17.9 (-
cymene-C-CH3); 22.2 (-cymene-CH-(CH3)2); 30.5 (-cymene-CH-(CH3)2); 63.6 (-OCH2CH3);
82.6 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 82.7 (CH3-C-CH-CH-C-CH-(CH3)2); 85.0
(CH3-C-CH-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2; 99.9 (CH3-C-CH-CH-
C-CH-(CH3)2); 102.5 (CH3-C-CH-CH-C-CH-(CH3)2); 109.4 (=CH); 113.5 (-Ar-o-C); 117.2
(-Ar-p-C); 119.7 (-Ar-o-C); 128.9 (-Ar-C=C); 129.1 (-Ar-m-C); 141.3 (-Ar-C1); 158.7 (-C-O-
); 187.4 (-C=S). MS (ESI): m/z = 488, 442, 314, 282. Elemental analysis: calculated for
C22H27ClO2RuS2 C: 50.42%; H: 5.19%, found: C: 50.98%; H: 5.32%.

3.2.16. [(η6-p-cymene)Ru(1-(4-ethoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru15)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L15 (412 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 471 mg (55.5%) as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.25
(d, 3JH-H = 10.26 Hz, 6H, -cymene-CH-(CH3)2); 1.39 (t, 3JH-H = 7.0 Hz, 3H, -OCH2CH3);
2.19 (s, 3H, CH3, -cymene-CH3); 2.64 (s, 3H, -SCH3); 2.85 (sp, 3JH-H = 10.26 Hz, 1H, -
cymene-CH-(CH3)2); 4.03 (q, 3JH-H = 7.0 Hz, 2H, -OCH2CH3); 5.21 (d, 3JH-H = 8.7 Hz, 2H,
-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.43 (d, 3JH-H = 8.7 Hz, 2H –cymene:CH3-C-CH-
CH-C-CH-(CH3)2); 6.79 (s, 1H, =CH); 6.81 (d, 3JH-H = 13.38 Hz, 2H, -Ar-m-H); 7.76 (d,
3JH-H = 13.14 Hz, 2H, -Ar-o-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 14.6 (-OCH2CH3);
17.1 (-SCH3); 17.9 (-cymene-C-CH3); 22.2 (-cymene-CH-(CH3)2); 30.4 (-cymene-CH-(CH3)2);
63.5 (-OCH2CH3); 82.7 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 82.8 (CH3-C-CH-CH-C-
CH-(CH3)2); 84.9 (CH3-C-CH-CH-C-CH-(CH3)2); 85.2 (CH3-C-CH-CH-C-CH-(CH3)2; 99.7
(CH3-C-CH-CH-C-CH-(CH3)2); 102.2 (CH3-C-CH-CH-C-CH-(CH3)2); 108.7 (=CH); 113.8
(-Ar-m-C); 128.9 (-Ar-C=C); 129.1 (-Ar-o-C); 132.1 (-Ar-C1); 161.4 (-Ar-p-C); 185.3 (-C=S).
MS (ESI): m/z = 488, 442, 314, 282. Elemental analysis: calculated for C22H27ClO2RuS2 C:
50.42%; H: 5.19%, found: C: 50.67%; H: 5.32%.

3.2.17. [(η6-p-cymene)Ru(1-(3-butoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru16)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L14 (458 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 438 mg (49.0%) as red oil. 1H NMR (600 MHz, CDCl3): δ = 0.92
(t, 3H, -OCH2CH2CH2CH3); 1.28 (d, 3JH-H = 7.4 Hz, 6H, -cymene-CH-(CH3)2); 1.48 (m,
2H, -OCH2CH2CH2CH3); 1.76 (m, 2H, -OCH2CH2CH2CH3); 2.17 (s, 3H, CH3, -cymene-
CH3); 2.62 (s, 3H, -SCH3); 2.87 (sp, 3JH-H = 7.4 Hz, 1H, -cymene-CH-(CH3)2); 3.98 (m, 2H,
-OCH2CH2CH2CH3); 5.24 (d, 3JH-H = 5.7 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2);
5.43 (d, 3JH-H = 5.6 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.72 (s, 1H, =CH); 6.95
(dd, 3JH-H = 8.16 Hz, 4JH-H = 2.2 Hz, 1H, -Ar-p-H); 7.23 (m, 1H, -Ar-m-H); 7.30 (s, 1H, -Ar-
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o-H); 7.33 (d, 1H, 3JH-H = 7.8 Hz, -Ar-o-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 13.8
-OCH2CH2CH2CH3); 16.9 (-SCH3); 17.9 (-cymene-C-CH3); 19.8 (-OCH2CH2CH2CH3);
22.3 (-cymene-CH-(CH3)2); 30.5 (-cymene-CH-(CH3)2); 31.2 (-OCH2CH2CH2CH3); 67.8
(-OCH2CH2CH2CH3); 82.6 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 82.7 (CH3-C-CH-CH-
C-CH-(CH3)2); 85.1 (CH3-C-CH-CH-C-CH-(CH3)2); 85.5 (CH3-C-CH-CH-C-CH-(CH3)2;
99.8 (CH3-C-CH-CH-C-CH-(CH3)2); 102.6 (CH3-C-CH-CH-C-CH-(CH3)2); 109.4 (=CH);
113.5 (-Ar-o-C); 117.3 (-Ar-p-C); 119.0 (-Ar-o-C); 128.9 (-Ar-C=C); 128.9 (-C=C-); 129.0 (-Ar-
m-C); 141.3 (-C1); 158.9 (-C-O-); 187.3 (-C=S). MS (ESI): m/z = 519, 516, 469, 315, 281, 278.
Elemental analysis: calculated for C24H31ClO2RuS2 C: 52.21%; H: 5.66%, found: C: 52.60%;
H: 5.62%.

3.2.18. [(η6-p-cymene)Ru(1-(4-butoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Ru17)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)RuCl2]2
(500 mg, 0.81 mmol) was used. L17 (458 mg, 1.62 mmol) was dissolved in THF, t-BuOK
(182 mg, 1.62 mmol) was added. Column chromatography mobile phase: DCM-DCM
10:THF 1-THF. Yield: 357 mg (40.0%) as red crystals. 1H NMR (600 MHz, CDCl3): δ = 0.95
(m, 3H, -OCH2CH2CH2CH3); 1.26 (d, 3JH-H = 7.0 Hz, 6H, -cymene-CH-(CH3)2); 1.46 (m,
2H, -OCH2CH2CH2CH3); 1.74 (m, 2H, -OCH2CH2CH2CH3); 2.19 (s, 3H, CH3, -cymene-
CH3); 2.64 (s, 3H, -SCH3); 2.85 (sp, 3JH-H = 7.0 Hz, 1H, -cymene-CH-(CH3)2); 3.96 (m, 2H,
-OCH2CH2CH2CH3); 5.25 (d, 3JH-H = 8.7 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2);
5.47 (d, 3JH-H = 8.7 Hz, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.72 (s, 1H, =CH);
6.81 (d, 3JH-H = 8.8 Hz, 1H, -Ar-m-H); 7.76 (d, 3JH-H = 8.6 Hz, 2H, -Ar-o-H). 13C{1H} NMR
(101 MHz, CDCl3): δ = 13.7 (-OCH2CH2CH2CH3); 17.1 (-SCH3); 17.9 (-cymene-C-CH3);
19.1 (-OCH2CH2CH2CH3); 22.3 (-cymene-CH-(CH3)2); 31.1 (-cymene-CH-(CH3)2); 33.6
(-OCH2CH2CH2CH3); 67.8 (-OCH2CH2CH2CH3); 82.7 (-cymene:CH3-C-CH-CH-C-CH-
(CH3)2); 82.8 (CH3-C-CH-CH-C-CH-(CH3)2); 84.9 (CH3-C-CH-CH-C-CH-(CH3)2); 85.2
(CH3-C-CH-CH-C-CH-(CH3)2; 99.7 (CH3-C-CH-CH-C-CH-(CH3)2); 102.2 (CH3-C-CH-CH-
C-CH-(CH3)2); 108.7 (=CH); 113.9 (-Ar-o-C); 128.9 (-Ar-C=C); 129.4 (-Ar-o-C); 132.0 (-Ar-C1);
161.6 (-C-O-); 185.2 (-C=S). MS (ESI): m/z = 519, 516, 469, 315, 281, 278. Elemental analysis:
calculated for C24H31ClO2RuS2 C: 52.21%; H: 5.66%, found: C: 52.29%; H: 5.76%.

3.2.19. [(η6-p-cymene)Os(1-(3-hydroxyphenyl)-3-(ethylthio)-3-thioxo-prop-1-en-1-olate-O,S)Cl] (Os3)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)OsCl2]2
(500 mg, 0.63 mmol) was used. 3′-Hydroxy-β-hydroxydithiocin-namic acid methyl ester
(286 mg, 1.26 mmol) was dissolved in THF, t-BuOK (140 mg, 1.26 mmol) was added.
Column chromatography mobile phase: DCM-DCM 10:THF 1-THF. Yield: 520 mg (54.8%)
as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.28 (d, 3JH-H = 6.7 Hz, 6H, -cymene-
CH-(CH3)2); 2.31 (s, 3H, CH3, -cymene-CH3); 2.64 (s, 3H, -SCH3); 2.76 (sp, 3JH-H = 6.7 Hz,
1H, -cymene-CH-(CH3)2); 5.64 (s, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.82 (s, 2H
–cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.88 (s, 1H, =CH); 6.91 (m, 1H, -Ar-o-H); 7.12 (t, 1H,
-Ar-m-H); 7.26–7.28 (m, 2H, -Ar-o-H/-Ar-p-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 17.5
(-SCH3); 18.1 (-cymene-C-CH3); 22.8 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2);
77.2 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 77.4 (CH3-C-CH-CH-C-CH-(CH3)2); 92.9
(CH3-C-CH-CH-C-CH-(CH3)2); 93.2 (CH3-C-CH-CH-C-CH-(CH3)2); 110.7 (CH3-C-CH-CH-
C-CH-(CH3)2); 114.4 (=CH); 118.3 (-Ar-m-C); 118.9 (-Ar-o-C); 129.2 (-COH); 156.1 (-Ar-p-C);
174.7 (-ArC1); 174.7 (-C-O-). MS (DEI): m/z = 586, 408. Elemental analysis: calculated for
C20H23ClO2OsS2 C: 41.05%; H: 3.96%, found: C: 41.04%; H: 4.49%.

3.2.20. [(η6-p-cymene)Os(1-(2-methoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Os7)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)OsCl2]2
(140 mg, 0.17 mmol) was used. 3′-Methoxy-β-hydroxydithiocin-namic acid methyl ester
(85 mg, 0.35 mmol) was dissolved in THF, t-BuOK (39.7 mg, 0.35 mmol) was added.
Column chromatography mobile phase: DCM-DCM 6:THF 1-THF. Yield: 80 mg (8.2%)
as red crystals. 1H NMR (600 MHz, CDCl3): δ = 1.31 (d, 3JH-H = 7.0 Hz, 6H, -cymene-
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CH-(CH3)2); 2.31 (s, 3H,-cymene-CH3); 2.65 (s, 3H, -SCH3); 2.80 (sp, 3JH-H = 7.0 Hz, 1H,
-cymene-CH-(CH3)2); 3.85 (s, 3H, -OCH3); 5.59 (d, 3JH-H = 5.1 Hz, 2H, -cymene:CH3-C-CH-
CH-C-CH-(CH3)2); 5.80 (m, 2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.87 (s, 1H, =CH);
7.02 (dd, 3JH-H = 8.2 Hz, 4JH-H = 1.9 Hz, 1H, -Ar-o-H); 6.97 (m, 1H, -Ar-m-H); 7.28 (m, 1H,
-Ar-p-H); 7.35-7.40 (m, 1H, -Ar-m-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 17.4 (-SCH3);
17.9 (-cymene-C-CH3); 22.7/22.9 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2); 55.4
(-OCH3); 73.9 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 73.9 (CH3-C-CH-CH-C-CH-(CH3)2);
76.8 (CH3-C-CH-CH-C-CH-(CH3)2); 92.6 (CH3-C-CH-CH-C-CH-(CH3)2); 93.7 (CH3-C-CH-
CH-C-CH-(CH3)2); 110.9 (-Ar-o-C); 112.7 (=CH); 116.6 (-Ar-m-C); 129.3 (-Ar-C1); 141.2
(-Ar-m-C); 159.5 (-Ar-C-OCH3); 174.9 (-C-O-); 186.7 (-C=S). MS (ESI): m/z = 565, 517, 371.
Elemental analysis: calculated for C21H24ClO2OsS2 C: 42.09%; H: 4.21%, found: C: 42.75%;
H: 4.14%.

3.2.21. [(η6-p-cymene)Os(1-(2-ethoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Os13)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)OsCl2]2
(500 mg, 0.63 mmol) was used. 3′-Ethoxy-β-hydroxydithiocinnamic acid methyl ester
(302 mg, 1.26 mmol) was dissolved in THF, t-BuOK (150 mg, 1.26 mmol) was added.
Column chromatography mobile phase: DCM-DCM 10:THF 1-THF. Yield: 720 mg (72.4%)
as red oil. 1H NMR (600 MHz, CDCl3): δ = 1.31 (d, 3JH-H = 7.0 Hz, 6H, -cymene-CH-(CH3)2);
1.44 (t, 3JH-H = 7.2 Hz, 3H, -OCH2CH3); 2.31 (s, 3H, CH3, -cymene-CH3); 2.66 (s, 3H, -SCH3);
2.80 (sp, 3JH-H = 7.0 Hz, 1H, -cymene-CH-(CH3)2); 4.08 (q, 3JH-H = 7.5 Hz, 2H, -OCH2CH3);
4.37 (t, 3JH-H = 7.2 Hz, 3H, OCH2CH3); 5.59 (d, 3JH-H = 15.0 Hz, 2H, -cymene:CH3-C-
CH-CH-C-CH-(CH3)2); 5.80 (m, 2H, –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.87 (s, 1H,
=CH); 7.01 (dd, 3JH-H = 8.1 Hz, 4JH-H = 2.4 Hz, 1H, -Ar-o-H); 7.25-7.39 (m, 3H, -Ar-m-
H/-Ar-p-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 14.8 (-OCH2CH3); 17.4 (-SCH3); 17.9
(-cymene-C-CH3); 22.8 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2); 63.6 (-OCH2CH3);
73.8 (-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 73.9 (CH3-C-CH-CH-C-CH-(CH3)2); 76.7
(CH3-C-CH-CH-C-CH-(CH3)2); 77.2 (CH3-C-CH-CH-C-CH-(CH3)2; 92.6 (CH3-C-CH-CH-
C-CH-(CH3)2); 92.6 (CH3-C-CH-CH-C-CH-(CH3)2); 111.0 (=CH); 113.3 (-Ar-o-C); 117.2
(-Ar-p-C); 119.5 (-Ar-o-C); 129.2 (-Ar-C=C); 141.2 (-Ar-C1); 158.9 (-C-O-); 175.1 (-C=S). MS
(EI): m/z = 614, 579. Elemental analysis: calculated for C22H27ClO2OsS2 C: 43.09%; H:
4.44%, found: C: 43.20%; H: 4.38%.

3.2.22. [(η6-p-cymene)Os(1-(3-ethoxyphenyl)-3-(methylthio)-3-thioxo-prop-1-en-1-olate-O,S)] (Os14)

Synthesis was performed according to general procedure 1. [(η6-p-cymene)OsCl2]2
(500 mg, 0.63 mmol) was used. 4′-Ethoxy-β-hydroxydithiocinnamic acid methyl ester (302
mg, 1.26 mmol) was dissolved in THF, t-BuOK (150 mg, 1.26 mmol) was added. Column
chromatography mobile phase: DCM-DCM 10:THF 1-THF. Yield: 160 mg (16.1%) as red
crystals. 1H NMR (600 MHz, CDCl3): δ = 1.31 (d, 3JH-H = 6.5 Hz, 6H, -cymene-CH-(CH3)2);
1.57 (t, 3JH-H = 7.0 Hz, 3H, -OCH2CH3); 2.31 (s, 3H, CH3, -cymene-CH3); 2.58 (s, 3H, -
SCH3); 2.80 (sp, 3JH-H = 6.5 Hz, 1H, -cymene-CH-(CH3)2); 4.10 (q, 3JH-H = 7.0 Hz, 2H,
-OCH2CH3); 5.59 (d, 3JH-H = 17.1 Hz, 2H, -cymene:CH3-C-CH-CH-C-CH-(CH3)2); 5.79 (m,
2H –cymene:CH3-C-CH-CH-C-CH-(CH3)2); 6.85-6.95 (m, 3H, =CH/-Ar-m-H); 7.81-7.96
(m, 3H, -Ar-p-H/s, 1H, -Ar-o-H). 13C{1H} NMR (101 MHz, CDCl3): δ = 14.7 (-OCH2CH3);
17.9 (-SCH3); 22.8 (-cymene-CH-(CH3)2); 30.8 (-cymene-CH-(CH3)2); 63.6 (-OCH2CH3); 73.8
(-cymene:CH3-C-CH-CH-C-CH-(CH3)2); 74.0 (CH3-C-CH-CH-C-CH-(CH3)2); 76.7 (CH3-C-
CH-CH-C-CH-(CH3)2); 77.0 (CH3-C-CH-CH-C-CH-(CH3)2; 114.1 (-Ar-o-C); 114.1 (-Ar-p-C);
129.3 (-Ar-C=C); 130.6 (-Ar-C1). MS (DEI): m/z = 614, 579. Elemental analysis: calculated
for C22H27ClO2OsS2 C: 43.09%; H: 4.44%, found: C: 42.82%; H: 4.28%.

3.3. Structure Determination

The intensity data for the compounds were collected on a Nonius KappaCCD diffrac-
tometer using graphite-monochromated Mo-Kα radiation. Data were corrected for Lorentz
and polarization effects; absorption was taken into account on a semi-empirical basis using
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multiple-scans [108,109]. The structures were solved by direct methods (SHELXS) and
refined by full-matrix least squares techniques against Fo2 (SHELXL-97) [110]. All hydro-
gen atoms (with exception of the methyl-group at C13 of Ru14 and the methylene-group
at C11 of L18 were located by difference Fourier synthesis and refined isotropically. All
other hydrogen atoms were included at calculated positions with fixed thermal parameters.
Crystallographic data as well as structure solution and refinement details are summarized
in Table 4. MERCURY was used for structure representations [111].

3.4. Stability Determinations

NMR spectra were measured via NMR spectroscopy on Bruker Avance 400 MHz.
Substances were solved in dmso-d6 or CD2Cl2 and measured directly at 37 ◦C or room
temperature for 72 h. NS = 128 scans, t = 709 s/2891 s break, 72 measurements.

3.5. Biological Assays

Ovarian cancer cell lines were cultured under standard conditions (5% CO2, 37 ◦C,
90% humidity) in RPMI medium supplemented with 10% FCS, 100 U/mL penicillin
and 100 µg/mL streptomycin (Life Technologies, Dreieich, Germany). Cisplatin (Sigma,
Taufkirchen, Germany) was freshly dissolved at 1 mg/mL in 0.9% NaCl solution and
diluted appropriately. New ruthenium(II) complexes and ligands were dissolved in dmso.
Platinum-resistant A2780 and SKOV3 cells were established by repeated rounds of 3-day
incubations with increasing amounts of Cisplatin starting with 0.1 µM. The concentration
was doubled after 3 incubations, interrupted by recovery phases with normal medium.
Cells that survived the third round of 12.8 µM Cisplatin were defined as resistant cultures.
Determinations of IC50 values were carried out using the CellTiter96 non-radioactive pro-
liferation assay (MTT assay, Promega, Mannheim, Germany). After seeding 5000 cells per
well in a 96-well plate, cells were allowed to attach for 24 h and were incubated for 48 h with
different concentrations of the substances ranging from 0 to 500 µM for Ruthenium and 0
to 1000 µM for ligand tests (0, 1, 10, 50, 100, 500, 1000 µm), for Cisplatin from 0 to 100 µM
(0.1, 1, 5, 10, 50, 100 µM). Each measurement was done in triplicate and repeated 3 times.
The proportion of viable cells was quantified by the MTT assay and after background
subtraction relative values compared to the mean of medium controls were calculated.
Non-linear regression analyses applying the Hill slope were run in GraphPad 5.0 software.

To examine cell cycle distribution and cell death rates, 30,000 cells were seeded in
12 well plates. After attaching for 24 h cells were treated with Cisplatin, Ru3 and Ru14 for
48 h at various concentrations for cell cycle and cell death analyses. For cell death analysis,
immediately after treatment cells were stained with Propidium Iodid (PI) (1 µg/mL) on ice
and the number of dead cells was measured using BD Canto II. For cell cycle distribution,
cells recovered for 24 h after treatment. Afterwards, cells were fixed in ice-cold, 50% EtOH
for 24 h at−20 ◦C. For DNA staining, fixed cells were incubated in PBS with 0.05% Triton-X,
0.1 µg/mL RNaseA and 50 µg/mL PI for 1 h at 4 ◦C in dark. DNA content was measured
using BD Canto II.

For the determination of DNA damage induced by the treatment with different sub-
stances, histone γH2AX-foci were visualized by immunocytochemical staining. Cells were
seeded on coverslips to reach 60–70% confluence after 24 h. After incubation (24 h) with
different substances at IC50 concentrations for the resistant cells, cells were washed 3×with
PBS and fixed for 10 min in 4% paraformaldehyde. Cells were again washed 3 times and
then permeabilised by incubation with 0.25% Triton-X in PBS for 5min. Primary antibody
against γH2AX (clone JBW301, Merck-Millipore, Darmstadt, Germany; diluted 1:2000) was
incubated for 1 h at RT, and coverslips were washed 3 times afterwards. Alexa488-labelled
secondary anti-mouse antibody (Life Technologies) was used in a 1:1000 dilution in PBS
and applied for 1 h at RT. Cells were washed 3 times, counterstained with DAPI, washed
again, and embedded in mounting medium (Vectorshield, Vector Laboratories, Burlingame,
CA, USA). Slides were stored at 4 ◦C in darkness until microscopic evaluation was done
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using a Zeiss LSM 710 laser scanning microscope using a 63× oil-immersion objective.
Image analysis was done using ImageJ and the FindFoci PlugIn [112].

4. Conclusions

In this work, we investigated 18 cinnamic acid derivatives, 17 ruthenium(II) com-
plexes, and 4 osmium(II) complexes, and all of these compounds have been characterized
by different methods, including X-ray diffraction analysis. NMR spectra signals have been
compared to previously reported platinum(II) complexes and show significant changes in
the ligand systems after complexation to metals. Stability determinations for some ruthe-
nium(II) compounds were done with NMR spectroscopy, showing that these compounds
are not stable in the solvent dmso, but in different other organic solvents. The biological
activity of these complexes have been investigated mainly by IC50 measurements for all
substances, as well as by cell cycle arrest, cell death, and DNA damage analyses for two
of the ruthenium(II) complexes. Regarding the IC50 values, we can add to the previously
reported SARs of ruthenium(II) and osmium(II) complexes by Keppler and coworkers that
bearing an O,S-chelating ligand results in lower IC50 values for osmium(II) complexes
compared to their ruthenium(II) analogues, but the ruthenium(II) compounds exhibit lower
resistance factors [4]. Nevertheless, regarding non-cancerous cell lines, both complexes
show a selective activity to cancer cell lines and high IC50 values on non-cancerous cells,
pointing to possibly lower toxicity and side effects. The high cancer cell specific cytotoxic
activity, also against cisplatin resistant cells combined with the diminished effects on cell
cycle arrest and DNA damage point to a different mode of action. This may potentially
involve the induction of ROS and mitochondrial dysfunction. Focusing on the structure-
activity-relationship of the ruthenium(II) compounds, it is shown that longer alkyl chains
at the aromatic ring lead to higher cytotoxic activity of these compounds. For the os-
mium complexes, most active compound is Os3, with a hydroxy-group at meta-position.
Therefore, some of these compounds will be selected for further development, including
in vivo experiments.
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