734 research outputs found
Fifty-kDa Hyaluronic Acid Upregulates Some Epidermal Genes without Changing TNF-α Expression in Reconstituted Epidermis
Background: Due to its strong water binding potential, hyaluronic acid (HA) is a well-known active ingredient for cosmetic applications. However, based on its varying molecular size, skin penetration of HA may be limited. Recent studies have demonstrated that low-molecular-weight HA (LMW HA) may show a certain proinflammatory activity. We thus aimed to characterize an LMW-sized HA molecule that combines strong anti-aging abilities with efficient skin penetration but lacks potential proinflammatory effects. Methods: Total RNA and total protein were isolated from reconstituted human epidermis following incubation with HAs of various molecular weights (20, 50, 130, 300, 800 and 1,500 kDa). Tumor necrosis factor-alpha expression was determined using quantitative PCR. Genonnic and proteomic expression of various junctional proteins was determined using Affymetrix and common Western blotting techniques. Results: LMW HA of approximately 50 kDa did not significantly alter tumor necrosis factor-alpha expression compared to 20-kDa HA, but revealed significantly higher skin penetration rates than larger sized HA associated with increased expression of genes and proteins known to be involved in tight junction formation and keratinocyte cohesion. Conclusion: LMW HA of approximately 50 kDa shows better penetration abilities than larger-sized HA. In addition, LMW HA influences the expression of various genes including those contributing to keratinocyte differentiation and formation of intercellular tight junction complexes without showing proinflammatory activity. These observations contribute to current knowledge on the effects of LMW HA on keratinocyte biology and cutaneous physiology. Copyright (C) 2011 S. Karger AG, Base
Spectral Analysis of the Chandra Comet Survey
We present results of the analysis of cometary X-ray spectra with an extended
version of our charge exchange emission model (Bodewits et al. 2006). We have
applied this model to the sample of 8 comets thus far observed with the Chandra
X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed
comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1
(LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005
(Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include
a broad variety of comets, solar wind environments and observational
conditions. The interaction model is based on state selective, velocity
dependent charge exchange cross sections and is used to explore how cometary
X-ray emission depend on cometary, observational and solar wind
characteristics. It is further demonstrated that cometary X-ray spectra mainly
reflect the state of the local solar wind. The current sample of Chandra
observations was fit using the constrains of the charge exchange model, and
relative solar wind abundances were derived from the X-ray spectra. Our
analysis showed that spectral differences can be ascribed to different solar
wind states, as such identifying comets interacting with (I) fast, cold wind,
(II), slow, warm wind and (III) disturbed, fast, hot winds associated with
interplanetary coronal mass ejections. We furthermore predict the existence of
a fourth spectral class, associated with the cool, fast high latitude wind.Comment: 16 pages, 16 figures, and 7 Tables; accepted A&A (Due to space
limits, this version has lower resolution jpeg images.
Many-body approach to proton emission and the role of spectroscopic factors
The process of proton emission from nuclei is studied by utilizing the
two-potential approach of Gurvitz and Kalbermann in the context of the full
many-body problem. A time-dependent approach is used for calculating the decay
width. Starting from an initial many-body quasi-stationary state, we employ the
Feshbach projection operator approach and reduce the formalism to an effective
one-body problem. We show that the decay width can be expressed in terms of a
one-body matrix element multiplied by a normalization factor. We demonstrate
that the traditional interpretation of this normalization as the square root of
a spectroscopic factor is only valid for one particular choice of projection
operator. This causes no problem for the calculation of the decay width in a
consistent microscopic approach, but it leads to ambiguities in the
interpretation of experimental results. In particular, spectroscopic factors
extracted from a comparison of the measured decay width with a calculated
single-particle width may be affected.Comment: 17 pages, Revte
ABCtoolbox: a versatile toolkit for approximate Bayesian computations
BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue
Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo
The background in the neutrinoless double beta decay experiment GERDA
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of
76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the
Q-value of the decay, Q_bb. To avoid bias in the signal search, the present
analysis does not consider all those events, that fall in a 40 keV wide region
centered around Q_bb. The main parameters needed for the neutrinoless double
beta decay analysis are described. A background model was developed to describe
the observed energy spectrum. The model contains several contributions, that
are expected on the basis of material screening or that are established by the
observation of characteristic structures in the energy spectrum. The model
predicts a flat energy spectrum for the blinding window around Q_bb with a
background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part
of the data not considered before has been used to test if the predictions of
the background model are consistent. The observed number of events in this
energy region is consistent with the background model. The background at Q-bb
is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha
emitting isotopes from the 226Ra decay chain. The individual fractions depend
on the assumed locations of the contaminants. It is shown, that after removal
of the known gamma peaks, the energy spectrum can be fitted in an energy range
of 200 kev around Q_bb with a constant background. This gives a background
index consistent with the full model and uncertainties of the same size
decay of Ge into excited states with GERDA Phase I
Two neutrino double beta decay of Ge to excited states of Se
has been studied using data from Phase I of the GERDA experiment. An array
composed of up to 14 germanium detectors including detectors that have been
isotopically enriched in Ge was deployed in liquid argon. The analysis
of various possible transitions to excited final states is based on coincidence
events between pairs of detectors where a de-excitation ray is
detected in one detector and the two electrons in the other.
No signal has been observed and an event counting profile likelihood analysis
has been used to determine Frequentist 90\,\% C.L. bounds for three
transitions: : 1.6 yr,
: 3.7 yr and : 2.3 yr. These bounds are more
than two orders of magnitude larger than those reported previously. Bayesian
90\,\% credibility bounds were extracted and used to exclude several models for
the transition
Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I
A search for neutrinoless decay processes accompanied with
Majoron emission has been performed using data collected during Phase I of the
GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del
Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were
searched for. No signals were found and lower limits of the order of 10
yr on their half-lives were derived, yielding substantially improved results
compared to previous experiments with Ge. A new result for the half-life
of the neutrino-accompanied decay of Ge with significantly
reduced uncertainties is also given, resulting in yr.Comment: 3 Figure
Background free search for neutrinoless double beta decay with GERDA Phase II
The Standard Model of particle physics cannot explain the dominance of matter
over anti-matter in our Universe. In many model extensions this is a very
natural consequence of neutrinos being their own anti-particles (Majorana
particles) which implies that a lepton number violating radioactive decay named
neutrinoless double beta () decay should exist. The detection
of this extremely rare hypothetical process requires utmost suppression of any
kind of backgrounds.
The GERDA collaboration searches for decay of Ge
(^{76}\rm{Ge} \rightarrow\,^{76}\rm{Se} + 2e^-) by operating bare detectors
made from germanium with enriched Ge fraction in liquid argon. Here, we
report on first data of GERDA Phase II. A background level of
cts/(keVkgyr) has been achieved which is the world-best if
weighted by the narrow energy-signal region of germanium detectors. Combining
Phase I and II data we find no signal and deduce a new lower limit for the
half-life of yr at 90 % C.L. Our sensitivity of
yr is competitive with the one of experiments with
significantly larger isotope mass.
GERDA is the first experiment that will be background-free
up to its design exposure. This progress relies on a novel active veto system,
the superior germanium detector energy resolution and the improved background
recognition of our new detectors. The unique discovery potential of an
essentially background-free search for decay motivates a
larger germanium experiment with higher sensitivity.Comment: 14 pages, 9 figures, 1 table; ; data, figures and images available at
http://www.mpi-hd.mpg/gerda/publi
- …