9 research outputs found

    Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Get PDF
    BACKGROUND: Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. RESULTS: We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip(® )aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. CONCLUSION: This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Transcriptome analysis of Neotyphodium and Epichloë grass endophytes

    No full text
    Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloe festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource, They permit the interrogation of 3806 Neotyphodium genes (Nchip (TM) rnicroarray), and 4195 Neotyphodium and 920 Epichloe genes (EndoChip (TM) microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass-symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloe was performed. (c) 2006 Elsevie

    Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    No full text
    We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture

    Artropolis 93 : Public Art and Art About Public Issues

    No full text
    Contains 12 texts and documents works by nearly 300 Canadian artists in a Vancouver-based public art project. Includes artist's statements. 7 bibl. ref

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore