3,617 research outputs found

    INDICATION OF META-ANTHRACITE BY MAGNETOTELLURICS IN THE KƐSZEG-RECHNITZ PENNINIC WINDOW : A TEST AREA

    Get PDF
    One of the Penninic Nappes is the KƑszeg-Rechnitz (K-R) tectonic window at the Eastern end of the Eastern Alps. It has a complicated metamorphic history from the Jurassic time. The organic material of the Penninic Ocean was transformed to electrically conductive meta-anthracite. Its amount in the chalcophyllite is estimated by geochemists to 0.2 per cent. Taking this conducting structure as a test area pilot deep magnetotelluric (MT) soundings have been carried out and we determined - the structure of the conductivity anomaly due to 0.2 per cent meta anthracite in the K-R window and its surroundings - the different kinds of MT distortions as lateral (side) effect of the conductor appearing in the crust and mantle - the most probable depth of the conductive asthenosphere at the border of the Pannonian Basin (having extreme shallow asthenosphere). The obtained ~140 km depth is in correlation with value of the asthenospheric map based mainly on seismic data

    Empagliflozin and Cardiovascular and Kidney Outcomes across KDIGO Risk Categories: Post Hoc Analysis of a Randomized, Double-Blind, Placebo-Controlled, Multinational Trial

    Get PDF
    BACKGROUND AND OBJECTIVES: In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG Outcome), empagliflozin, in addition to standard of care, significantly reduced risk of cardiovascular death by 38%, hospitalization for heart failure by 35%, and incident or worsening nephropathy by 39% compared with placebo in patients with type 2 diabetes and established cardiovascular disease. Using EMPA-REG Outcome data, we assessed whether the Kidney Disease Improving Global Outcomes (KDIGO) CKD classification had an influence on the treatment effect of empagliflozin. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Patients with type 2 diabetes, established atherosclerotic cardiovascular disease, and eGFR≄30 ml/min per 1.73 m2 at screening were randomized to receive empagliflozin 10 mg, empagliflozin 25 mg, or placebo once daily in addition to standard of care. Post hoc, we analyzed cardiovascular and kidney outcomes, and safety, using the two-dimensional KDIGO classification framework. RESULTS: Of 6952 patients with baseline eGFR and urinary albumin-creatinine ratio values, 47%, 29%, 15%, and 8% were classified into low, moderately increased, high, and very high KDIGO risk categories, respectively. Empagliflozin showed consistent risk reductions across KDIGO categories for cardiovascular outcomes (P values for treatment by subgroup interactions ranged from 0.26 to 0.85) and kidney outcomes (P values for treatment by subgroup interactions ranged from 0.16 to 0.60). In all KDIGO risk categories, placebo and empagliflozin had similar adverse event rates, the notable exception being genital infection events, which were more common with empagliflozin for each category. CONCLUSIONS: The observed effects of empagliflozin versus placebo on cardiovascular and kidney outcomes were consistent across the KDIGO risk categories, indicating that the effect of treatment benefit of empagliflozin was unaffected by baseline CKD status. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: EMPA-REG OUTCOME, NCT01131676

    Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL

    Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>

    Get PDF
    Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Mechanism of action of probiotics

    Get PDF
    The modern diet doesn't provide the required amount of beneficial bacteria. Maintenance of a proper microbial ecology in the host is the main criteria to be met for a healthy growth. Probiotics are one such alternative that are supplemented to the host where by and large species of Lactobacillus, Bifidobacterium and Saccharomyces are considered as main probiotics. The field of probiotics has made stupendous strides though there is no major break through in the identification of their mechanism of action. They exert their activity primarily by strengthening the intestinal barrier and immunomodulation. The main objective of the study was to provide a deep insight into the effect of probiotics against the diseases, their applications and proposed mechanism of action

    Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

    Get PDF
    Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation
    • 

    corecore