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Summary
An interesting hypothesis in the study of neurotrauma
is that repeated traumatic brain injury may result in
cumulative damage to cells of the brain. However, post-
injury sequelae are dif®cult to address at the cellular
level in vivo. Therefore, it is necessary to complement
these studies with experiments conducted in vitro. In
this report, the effects of single and repeated traumatic
injury in vitro were investigated in cultured mouse hip-
pocampal cells using a well characterized model of
stretch-induced injury. Cell damage was assessed by the
level of propidium iodide (PrI) uptake and retention of
¯uorescein diacetate (FDA). Uninjured control wells dis-
played minimal PrI uptake and high levels of FDA
retention. Mild, moderate and severe levels of stretch
caused increasing amounts of PrI uptake, respectively,
when measured at 15 min and 24 h post-injury, indicat-
ing increased cellular damage with increasing amounts
of stretch. For repeated injury studies, cultures received
a second injury 1 h after the initial insult. Repeated
mild injury caused a slight increase in PrI uptake com-
pared with single injury at 15 min and 24 h post-injury,
which was evident primarily in glial cells. However, the
neurites of neurones in cultures that received repeated

insults showed signs of damage that were not evident
after a single mild injury. The release of neurone-spe-
ci®c enolase (NSE) and S-100b protein, two common
clinical markers of CNS damage, was also measured
following the repeated injuries paradigm. When meas-
ured at 6 h post-injury, both NSE and S-100b were
found to be elevated after repeated mild injuries when
compared with the single injury group. These results
suggest that cells of the hippocampus may be suscep-
tible to cumulative damage following repeated mild
traumatic insults. Both glial cells and neurones appear
to exhibit increased signs of damage after repetitive
injury. To our knowledge, this study represents the ®rst
report on the effects of repeated mechanical insults on
speci®c cells of the brain using an in vitro model system.
The biochemical pathways of cellular degradation fol-
lowing repeated mild injuries may differ considerably
from those that are activated by a single mild insult.
Therefore, we hope to use this model in order to investi-
gate secondary pathways of cellular damage after
repeated mild traumatic injury, and as a rapid and eco-
nomical means of screening possibilities for treatment
strategies, including pharmaceutical intervention.
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Introduction
Traumatic brain injury (TBI) continues to be a leading cause

of death in Western industrialized nations (Jennett, 1996). In

the United Kingdom, it is estimated that 200±300 people per

100 000 are hospitalized each year due to TBI (McGregor and

Pentland, 1997). In 1999, a National Institutes of Health

Consensus Development Panel in the United States compiled

an alarming set of statistics on the occurrence of TBI, the

cognitive and physical rami®cations after TBI, and the

current lack of viable prevention and treatment options (NIH

Consensus Development Panel on Rehabilitation of Persons

With Traumatic Brain Injury, 1999). For example, as many as

6.5 million individuals may be living with the consequences

of TBI in the United States alone. One poorly understood

aspect of TBI is mild traumatic brain injury (MTBI).

Thurman and Guerrero (1999) found a 51% decrease in

hospitalizations in the United States for TBI between 1980
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and 1995. They believe that changing admission practices in

hospitals, spurred by a ®xed number of beds and insurance

practices, are excluding many cases of MTBI. Unfortunately,

MTBI is dif®cult to diagnose properly, and the fact that more

medical cases are being treated on an outpatient rather than an

inpatient basis is troubling (Macciocchi et al., 1993;

Robinson, 1996; Thurman and Guerrero, 1999). Similar to

human TBI cases, injured animals have demonstrated de®cits

in memory and learning that correlate with the level of in vivo

injury (Hamm et al., 1992; Hicks et al., 1993). In vivo studies

have shown that cell death and tissue damage, commonly

found after moderate and severe TBI, are not apparent in

MTBI (Dixon et al., 1991; Scheff et al., 1997; DeFord et al.,

2002). Although MTBI may not necessarily produce cell

death (Kanayama et al., 1996; DeFord et al., 2002), animal

models show resultant cellular dysfunction and memory

de®cits (Lyeth et al., 1990; Kanayama et al., 1996; DeFord

et al., 2002; Uryu et al., 2002).

An emerging hypothesis in the study of neurotrauma is that

repeated mild traumatic brain injury (rMTBI) may cause

cumulative damage to the brain, which could ultimately result

in memory and learning dysfunction. Recurrent brain injuries

are not uncommon in many sports (Kelly and Rosenberg,

1997). Some sports include blows to the head (contact sports)

or use the head as part of the accepted way of playing the

game (e.g. `headers' in soccer). The most frequent brain

injury in sports is concussion and accumulation of these

MTBIs. In contact sports such as boxing and some martial

arts, cumulative concussion is common and inevitable

because victory is direct by rendering the opponent uncon-

scious with a grade three concussion. In collision sports, like

soccer, ice hockey, rugby and American football, a high

frequency of cumulative concussion, due to collisions

between players, has been documented (Bailes, 1998). In

American football, for example, players with repeated

concussions perform worse on neuropsychological tests

than those with either a single concussion or no history of

concussion (Collins et al., 1999). Moreover, in soccer, a

mechanism for potential brain injury is repetitive heading of

the ball, a unique aspect of soccer (Matser et al., 2001).

Studies have shown that soccer players who regularly head

the ball have more brain concussions, and have demonstrated

impairment on multiple neuropsychological tests when

compared with matched controls (Matser et al., 1998,

1999). These forces on the brain may be mild, but their

accumulation may be similar to other medical problems

caused by repeated low-level activity, such as lung cancer

from smoking cigarettes (Babbs, 2000). Even in non-collision

sports, such as horse riding, biking, skiing, ice skating and

skateboarding, cumulative concussions are often reported as a

result of collision and falls. Most cumulative concussion

results in deterioration of planning and memory capacity

(Matser et al., 2001), the most common symptom of chronic

TBI in athletes.

Damage to the hippocampus following TBI has

received particular attention. Lowenstein and colleagues

found that an increased degree of impact correlated with

increased hippocampal damage (Lowenstein et al., 1992).

They theorized that this damage could provide a link

between brain injury and resultant disorders such as

memory loss and epilepsy. Jenkins and colleagues

subjected rats to either a single or double insult

paradigm; after 7 days, only those animals that received

the double insult had signi®cant neural loss, speci®cally

in hippocampal area CA1 (Jenkins et al., 1989). Although

there was no axonal injury in any animals when brain

slices were examined at the light microscopic level, a

de®nite threshold of damage was crossed by a double

injury that was not crossed by a single injury. It has been

suggested that post-injury sequelae may differ between

single and repeated brain traumas (Olsson et al., 1971).

Therefore, our objective was to characterize better the

cellular degradation and dysfunction that occurs after

single and repeated MTBI using cultured mouse hippo-

campal cells.

Although few studies have dealt with the issue of

rMTBI, recent reports have examined repeated injury in

the whole animal (Kanayama et al., 1996; Laurer et al.,

2001; DeFord et al., 2002; Uryu et al., 2002). In vivo

studies of repetitive insults are advantageous, in that

changes in animal behaviour post-injury can be measured

and correlated to cell damage. These studies, however,

can only postulate the underlying mechanisms of cogni-

tive impairment at the cellular level following rMTBI.

Thus, it is important to supplement in vivo studies with

well designed in vitro studies. In the current study, we

used and established an in vitro model of mechanical

injury (Ellis et al., 1995; Weber et al., 1999) to address

rMTBI-related cell damage. This model replicates the

acceleration±deceleration stresses incurred during motor

vehicle accidents (Schreiber et al., 1995) and sport-related

concussions (Powell and Barber-Foss, 1999). We used

two ¯uorometric dyes that indicate cell viability and

damage, as has been reported previously (McKinney et al.,

1996; Weber et al., 1999; Pike et al., 2000; Zhao et al.,

2000). We also measured the release of two commonly

used clinical markers of brain damage following cardiac

surgery (Ali et al., 2000) and TBI: neurone-speci®c

enolase (NSE) (Persson et al., 1987; Herrmann et al.,

2001; Pleines et al., 2001; Woertgen et al., 2001; Berger

et al., 2002) and S-100b protein (Persson et al., 1987;

Waterloo et al., 1997; Raabe and Seifert, 1999; Romner

et al., 2000; Herrmann et al., 2001; Pleines et al., 2001;

Berger et al., 2002). Using a combination of these

approaches, we are able to make comparisons with

clinical data and to investigate directly the underlying

cellular damage that may contribute to ®ndings described

at the behavioural level. This model therefore provides an

in vitro correlate to what is described following repeated

injury, both experimentally in vivo and in the human

clinical situation.
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Methods
Animals
All experiments were conducted in accordance with the

European Communities Council Directive and were approved

by the animal welfare committee of Erasmus Medical Center

Rotterdam. Throughout these studies efforts were made to

minimize animal suffering and the number of animals used.

Cell culture
Primary hippocampal cultures were prepared from E18 FVB/N

mouse embryos. Embryonic cultures were used in order to

optimize neuronal and glial growth. Pregnant female mice

were killed by rapid cervical dislocation and the embryonic

sacs were surgically removed. Embryonic mouse brains were

dissected out of the skulls and placed on ice in 15 ml ice-cold

Hanks' balanced salt solution (HBSS; Invitrogen, Carlsbad,

CA, USA) supplemented with 10 mg/ml gentamicin (Sigma,

St Louis, MO, USA). The hippocampi were separated from

the cortices and placed in 10 ml of fresh HBSS. The tissue was

washed and then centrifuged at 200 g at 4°C for 3 min; the

supernatant was removed, 10 ml fresh HBSS was added, and

the tissue was washed and centrifuged again. The supernatant

was discarded and 2 ml 0.25% trypsin±EDTA (Invitrogen) in

HBSS was added, supplemented with 8 ml fresh HBSS. The

tissue was incubated at 37°C for 15 min, followed by

centrifugation at 200 g at 4°C for 3 min. The supernatant was

removed and the tissue was washed with 10 ml BME (Basal

Medium Eagles; Invitrogen) growth media containing 10%

horse serum (Invitrogen), 10 mg/ml gentamicin, 0.5% glucose

(Sigma), 1 mM sodium pyruvate (Sigma) and 1% N2

supplements (Invitrogen) and then centrifuged at 225 g at

4°C for 5 min. The cells were triturated with 4 ml fresh growth

media using a 10 ml plastic pipette until all large aggregates

were dissociated, followed by further trituration with the same

pipette equipped with a 100 ml plastic pipette tip. The

suspension was ®ltered through a 70 mm nylon cell strainer,

the cells were counted, and the suspension was diluted with

growth media to a concentration of 500 000 cells/ml. Cells

were plated in 1 ml aliquots onto collagen-coated six-well

FlexPlates (FlexCell, Hillsborough, NC, USA) coated over-

night with poly-L-ornithine (500 mg/ml; Sigma). Cultures

were maintained in a humidi®ed incubator (5% CO2, 37°C).

Neuronally enhanced cultures were obtained by replacing half

of the media at 2, 6 and 9 days in vitro with serum-free culture

media [BME containing 10 mg/ml gentamicin, 0.5% glucose,

1 mM sodium pyruvate, 1% N2 supplement and 2% B27

supplement (Invitrogen)]. Glia formed a con¯uent monolayer

that adhered to the membrane substrate. Anti-MAP-2

(microtubule-associated protein 2) immunostaining was ini-

tially performed on cultures to verify the existence of

morphologically distinct neurones. MAP-2 staining revealed

neuronal phenotypes growing in the upper layer of cultures

that adhered to the underlying glial layer, which is consistent

with previous reports in hippocampal cultures (Pike et al.,

2000; Zhao et al., 2000). Cells were used for experiments

within 9±13 days in vitro.

Cell injury
Primary mouse hippocampal cultures were injured using a

model 94A Cell Injury Controller (Bioengineering Facility,

Virginia Commonwealth University, Richmond, VA, USA)

as described previously (Ellis et al., 1995). In brief, the

Silastic membrane of the FlexPlate well is rapidly and

transiently deformed by a 50 ms pulse of compressed

nitrogen, which deforms the Silastic membrane and adherent

cells to varying degrees controlled by pulse pressure. The

extent of cell injuryÐproduced by deforming the Silastic

membrane on which the cells are grownÐis dependent on the

degree of deformation, or stretch. Based on previous work

(Ellis et al., 1995), three levels of cell injury were chosen

(5.5, 6.5 and 7.5 mm deformations) and de®ned as mild,

moderate and severe, respectively. These degrees of mem-

brane deformation result in a biaxial strain or stretch of 31, 38

and 54%, respectively. This range of cell stretch has been

shown to be relevant to what would occur in humans after

rotational acceleration/deceleration injury (Schreiber et al.,

1995). Uninjured control wells were contained in the same

FlexPlates as injured wells, and thus underwent the same

manipulations, except that they did not receive rapid

deformation of the Silastic membrane.

Cell viability
Cell injury was assessed using the two dyes ¯uorescein

diacetate (FDA; Sigma) and propidium iodide (PrI; Sigma) as

reported previously (McKinney et al., 1996; Weber et al.,

1999; Pike et al., 2000; Zhao et al., 2000). FDA is known to

stain healthy, viable cells and ¯uoresces green, while PrI

cannot pass through intact cellular membranes. If membranes

are damaged, however, cells lose their ability to retain FDA.

In addition, PrI will enter cells and stain the nucleus, resulting

in a bright red ¯uorescence. Stock solutions of FDA (20 mg

FDA/ml acetone) and PrI [5 mg PrI/ml phosphate-buffered

saline (PBS)] were created, from which a working solution

was prepared (10 ml FDA stock and 3 ml PrI stock, diluted in

10 ml PBS). The culture medium was removed from the well

and replaced with 1 ml PBS and 200 ml FDA/PrI working

solution. The working solution was added to the culture well

immediately after injury, or the injured cells were returned to

the incubator and the solution was added immediately before

measurement (for experiments conducted at 1 and 24 h). The

cells were stained for 3 min at room temperature, and the PBS

and stain were removed. A 15-mm glass coverslip was

centred over the stained cells, and images were captured

using red (Texas Red) and green (¯uorescein isothiocyanate)

®lters on a Leica DMRBE ¯uorescence microscope, equipped

with a Hamamatsu C4880 CCD camera. FDA and PrI images

were taken separately, pseudocoloured and overlaid. Images

were adjusted for contrast and brightness using Adobe
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Photoshop 4.0 (Adobe Systems, San Jose, CA, USA). Five

sequential 1003 images were counted and averaged per well.

All images were taken from the centre portion of the well, as

this region was previously shown to receive equal impact

from the cell injury controller (Ellis et al., 1995). All PrI and

FDA cell counting was performed blind. Data are expressed

as the percentage of total cell number that stained positively

for PrI. In control cultures, PrI staining was low, accounting

Fig. 1 Effect of stretch injury on hippocampal cultures. FDA and PrI images were taken separately,
pseudocoloured and overlaid. Images were adjusted for contrast and brightness using Adobe Photoshop 4.0.
(A) Control, uninjured cultures demonstrate retention of FDA and minimal PrI uptake, indicating healthy,
viable cells. (B±D) Images taken 15 min post-injury: (B) mild injury, 5.5 mm deformation; (C) moderate
injury, 6.5 mm deformation; (D) severe injury, 7.5 mm deformation. Cultures demonstrated an increased
amount of PrI staining, the majority of which occurred in the underlying monolayer, suggesting that it was
glial in origin. Note that the neuronal somata appear intact following injury; however, neuronal processes
appear beaded at the higher injury levels, as shown in C. (A±D) Magni®cation: 3100. (E) PrI uptake is
positively correlated to the degree of stretch. Data shown are at 15 min and 24 h post-injury. Uptake of PrI
increased with mild (5.5 mm; n = 5), moderate (6.5 mm; n = 3) and severe (7.5 mm; n = 4) levels of
stretch at 15 min post-injury compared with control (n = 5). At 24 h, PrI levels remained elevated at all
levels of injury (5.5 mm, n = 5; 6.5 mm, n = 5; 7.5 mm, n = 3) compared with control (n = 5). Moderate
and severe levels of stretch caused a decrease in total cell number at 15 min and 24 h post-injury due to
detachment of cells from the membrane that did not occur after mild injury. *P < 0.01 compared with
control; @P < 0.05 compared with 5.5 mm injury. (F) Neuronal cell phenotypes in injured hippocampal
cultures. Data are shown at 15 min and 24 h post-injury. Mild injury caused only a slight reduction, while
moderate and severe levels of stretch caused a signi®cant reduction in neuronal phenotypes at 15 min and
24 h post-injury. *P < 0.05 compared with control (n is same as E).
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for ~ 5% of total cell number, consistent with previous reports

(Zhao et al., 2000).

NSE and S-100b assays
NSE and S-100b protein levels were measured in culture

media at 6 and 24 h post-injury using lumino-immunometric

(LIA-mat) assay kits (Sangtec Medical, Bromma, Sweden).

These kits have been used previously to detect NSE and S-

100b levels in experimental animals and human patients

(Romner et al., 2000; Herrmann et al., 2001; Woertgen et al.,

2001). NSE is found in the cytoplasm of neurones, concen-

trations of which can be measured in CSF and serum once it

has been released from the cytoplasm by cell damage. S-100b
is a calcium-binding protein found in astrocytes and Schwann

cells (Herrmann et al., 2001). All experiments were com-

pleted using cultures at 9±10 days in vitro. Following the

assays, the remaining culture medium was removed, and the

cells adhering to the Silastic membrane were solubilized with

1 ml 0.1% NaOH to determine protein concentration. Total

protein count was determined by the bicinchoninic (BCA)

assay (Pierce, Rockford, IL, USA). Final results are expressed

as nanograms of NSE or S-100b released into the culture

media per milligram of protein. NSE levels were determined

in three separate culture preparations, while the S-100b assay

was performed on four separate culture preparations.

Data analysis
The data were analysed using the statistical program GB Stat

(Dynamic Microsystems, Silver Spring, MD, USA). Data

were computed as means 6 standard error (SE) values.

Statistical signi®cance was established by one-way analysis

of variance (ANOVA) followed by Fisher's protected least

signi®cant difference test. Data are considered signi®cant at P

< 0.05.

Results
Increased level of stretch injury correlates to
increased PrI uptake
Prototypical pseudocolour images of control and injured

mouse hippocampal cultures at 15 min post-injury are

presented in Fig. 1A±D. The microscope required that

FDA and PrI images be taken separately, pseudocoloured

and overlaid. The neuronal layer was chosen to be the

focal plane, and thus the underlying glial monolayer

appears slightly blurred. As shown in Fig. 1A, uninjured

cultured cells show high retention of FDA and present

normal cellular morphology; the same was true for

control cultures at 24 h (images not shown). There is

little PrI staining, indicating that most cells are healthy

and viable, with intact cell membranes. Fifteen minutes

after injury, however, cultures demonstrated an increasing

amount of PrI staining, the majority of which occurred in

the underlying layer, suggesting that it was primarily glial

in origin (images at 24 h not shown). The increased

staining was minimal after mild injury (5.5 mm; Fig. 1B),

where FDA retention appears unchanged, especially in the

neuronal layer. Moderate injury (6.5 mm; Fig. 1C)

created increased PrI staining in the glial layer and

`beaded' neurites in the neuronal layer. However, the

neuronal somata appear intact after injury. Moderate

injury also caused detachment of some cells from the

Silastic membrane, which resulted in a decrease in total

cell number measured at 15 min post-injury. After severe

injury (7.5 mm; Fig. 1D), most cells are stained with PrI,

possibly in both the neuronal and glial layers. As with

moderate injury, severe stretch led to an even greater

detachment of cells from the membrane at 15 min post-

injury, evident by a decrease in total cell number and the

empty gaps not found in control cultures.

A summary of the effects of increasing levels of stretch

magnitude on PrI uptake in hippocampal cultures at both 15

min and 24 h post-injury is represented in Fig. 1E. At 15 min

post-injury, the number of cells stained with PrI increased

with increasing levels of stretch (n = 3±5). At 24 h post-

injury, the amount of PrI-positive cells was elevated

compared with matched controls at all levels of injury (n =

3±5). Moderate and severe levels of stretch exhibited a

decrease in PrI-stained cells compared with 15 min post-

injury. There was no change in the total cell number at 24 h

compared with 15 min after injury, suggesting that the

decrease in the percentage of injured cells was not due to glial

proliferation. Therefore, it appears that many glial cells

regain their capacity to exclude PrI by 24 h post-injury.

In addition to the total number of injured cells after

injury, we also investigated the effects of injury on the

number of neuronal cell phenotypes, as summarized in

Fig. 1F (n = 3±5). FDA-stained neuronal cells growing in

the upper layer of the cultures were identi®ed as having a

morphology consistent with that of MAP-2 immunostain-

ing (as described in Methods). Cell density in the cultures

was consistent, as there was no signi®cant difference

between the number of neuronal cell phenotypes in

uninjured control images between 15 min and 24 h, or

from different culture preparations. There was no change

in the number of neuronal cells after mild (5.5 mm)

injury, indicating minimal, if any, neuronal death, or of

cells lifting from the membrane. Following moderate and

severe injury, however, the number of neuronal cells was

decreased dramatically, indicating either a loss of FDA

retention or lifting of the neurones from the cell

membrane. The latter explanation is more likely, con-

sidering the fact that cell lifting from the membrane was

evident at these levels of injury as described above. There

was no further change in neuronal cell phenotypes at 24

h compared with 15 min, suggesting no further increase

in neuronal cell death or of cells lifting from the

membrane.
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Repetitive mild stretch injury causes cumulative
cell damage
In this set of experiments, cultures that received a double

insult were injured 1 h after the initial injury. Cultures that

received a single insult were evaluated at 1 h post-injury,

while cultures receiving repeated insults were evaluated

immediately after the second insult. Cultures were also

evaluated at 24 h post-injury (or 23 h after the second insult,

see experimental timeline represented in Fig. 2).

Prototypical pseudocolour images of mouse hippocampal

cells that received either one or two stretch injuries are

presented in Fig. 3A±D. As shown in Fig. 3A, PrI uptake

following mild injury (5.5 mm) at 1 h post-injury was similar

to that seen at 15 min post-injury (see Fig. 1B), while a double

insult increased PrI uptake (Fig. 3B). In cultures that received

two mild injuries, many of the neurones showed beaded

neurites as seen previously only after higher levels of injury

(see Fig. 1C). The marked difference between single and

double mild (5.5 mm) injury can be better seen in Fig. 3C and

D, respectively.

The effects of repeated insults on cultured hippocampal

cells are summarized in Fig. 3E. At both 1 and 24 h post-

injury, PrI uptake was signi®cant after a single mild (5.5 mm)

insult compared with matched controls (n = 7 for all

conditions). In addition, there was an increase in PrI-positive

cells following a double mild (5.5 mm) insult as compared

with a single injury. Although a signi®cant reduction in

neuronal cell phenotypes was not evident initially after

double injury, as shown in Fig. 3F, we found a signi®cant

decrease of neuronal cell phenotypes of 32 6 6% compared

with controls at 24 h following a double insult (n = 7 for all

conditions). This suggests a reduction in neuronal FDA

retention or detachment of some neurones from the mem-

brane, which could be indicative of a delayed neuronal injury

or death.

Release of NSE and S-100b after single and
repeated mild injuries
We initially measured NSE and S-100b release at 1 h after

injury. In the case of NSE, there was no elevation of release

following any injury level versus control (data not shown).

For S-100b we did not ®nd reportable levels of this protein

after any degree of stretch. We then measured NSE and S-

100b release at 6 and 24 h post-injury, consistent with time

points previously reported in vivo (Woertgen et al., 2001).

Figure 4 summarizes the release of NSE into the culture

media in nanograms per milligram of protein. NSE release

was signi®cant compared with controls after both single and

double 5.5 mm injury; the release of NSE after double insults

was also signi®cant compared with a single injury at 6 h post-

injury. NSE levels remained elevated 24 h after both single

and repeated injuries (n = 5 for all conditions).

The release of S-100b after injury is depicted in Fig. 5.

Unlike NSE, in which there were detectable levels of protein

in culture media in the majority of uninjured control wells, we

found detectable levels of S-100b (at least 0.2 ng/ml) in only

31% of control wells. After injury, however, there were

detectable levels of S-100b in the culture media of 65% of the

wells. Similar to previous studies (Romner et al., 2000), for

the purpose of statistical analysis, we report S-100b levels

after injury from culture wells that are S-100b positive (at

least 0.2 ng/ml). At 6 h post-injury there was a signi®cant

increase in release of S-100b after repeated mild injury

compared with single injury. At 24 h post-injury, S-100b
levels were still elevated; however, the level of S-100b
following repeated injury was not signi®cant compared with

single injury (P = 0.08) due to an increased standard error (n =

8 for all conditions).

Discussion
Cognitive impairment is one of the most devastating de®cits

after moderate and severe TBI, and greatly in¯uences the

quality of life of survivors. De®cits in cognitive ability are

also seen after MTBI (McAllister, 1992). Not only has

experimental and clinical data demonstrated that the

hippocampus plays a critical role in learning and memory,

studies also indicate that the hippocampus is uniquely

vulnerable to injury following even mild brain trauma

(Lyeth et al., 1990; Lowenstein et al., 1992). An emerging

hypothesis in the study of neurotrauma is that rMTBI may

cause cumulative damage to the brain, and in the absence of

cell death, is believed to contribute to ensuing cognitive

de®cits. The investigation of rMTBI is in its infancy, and

while in vivo models provide essential information regarding

behaviour, and pathological and physiological sequelae on

macroscopic and microscopic levels, they cannot easily

address questions concerning dysfunction at the cellular and

subcellular levels. Important in vitro studies are required to

complement in vivo research in order to understand better the

cellular mechanisms that contribute to rMTBI-related sub-

Fig. 2 Timeline for repeated injury experiments. Cultures that received a double insult were injured 1 h after the initial injury.
Experimental measurements were conducted at the indicated time-points.
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lethal cellular dysfunction. In the current report we used an

in vitro model of stretch-induced injury (Ellis et al., 1995) to

examine cellular events following rMTBI.

One aim of the present study was to characterize success-

fully a model of stretch injury (Ellis et al., 1995) in mouse

hippocampal cells that can be reliably used to investigate the

pathology of repeated injury at the cellular level. We ®rst

demonstrated that cultured mouse hippocampal cells respond

to stretch injury in a manner similar to rat cortical (McKinney

et al., 1996; Weber et al., 1999) and rat septo-hippocampal

cultures (Pike et al., 2000). As with these other reports, we

found that an increase in PrI uptake was a reliable indicator of

injury severity. Pike and colleagues found similar differences

between mild and moderate/severe degrees of stretch in rat

septo-hippocampal cultures (Pike et al., 2000). At these

higher injury levels, cultured cells had a tendency to detach

from the cell membrane, to develop beaded neurites, and to

have a reduced number of neuronal phenotypes. Also similar

Fig. 3 Effect of repeated stretch injury on hippocampal cultures. Cultures that received a single insult
were evaluated at 1 h post-injury, while cultures receiving repeated injuries were evaluated immediately
after the second insult. FDA and PrI images were taken separately, pseudocoloured and overlaid. Images
were adjusted for contrast and brightness using Adobe Photoshop 4.0. (A) PrI uptake following mild
injury at 1 h post-injury was similar to that at 15 min post-injury (see Fig. 1B). (B) A double mild insult
increased PrI uptake. Note that many cells have beaded neurites that resemble cultures that received a
higher level of injury (see Fig. 1C). (A and B) Magni®cation: 3100. (C and D) Enlargements of A and
B, respectively. Magni®cation: 3200. (E) PrI uptake following repeated stretch injury. Data shown are at
1 and 24 h post-injury. *P < 0.05 compared with control; **P < 0.01 compared with control (n = 7 for all
conditions). (F) Neuronal cell phenotypes after repeated injury of hippocampal cultures. Data are shown
at 1 and 24 h post-injury. There was a signi®cant reduction in neuronal phenotypes after 5.5 mm double
injury at 24 h. *P < 0.05 compared with control (n = 7 for all conditions).
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to previous studies (McKinney et al., 1996; Weber et al.,

1999), we found a reduction in PrI-positive cells 24 h

following moderate and severe levels of injury compared

with 15 min post-injury, suggesting that there may have been

glial proliferation after injury, which would decrease the

percentage of cells that would stain positively for PrI.

However, FDA staining indicated that there was no change in

total cell number between 15 min and 24 h post-injury.

Therefore, the most likely explanation for this ®nding is that

injured glial cells may have gained the ability to repair their

cellular membranes by 24 h after injury, which has been

suggested previously by other investigators (Ellis et al., 1995;

Rzigalinski et al., 1997).

To our knowledge, this is the ®rst study to investigate

repetitive mechanical injury on cells of the brain using an

in vitro system of trauma. There were few examples of in vivo

reports in the literature with which to determine the injury

time points used in the current study; therefore we injured

cells 1 h after an initial insult, similar to a previously reported

double insult paradigm (Jenkins et al., 1989). Single and

repeated mild injury caused a signi®cant amount of PrI uptake

at 1 h and at 24 h post-injury, which appeared to be present

primarily in the glial layer, suggesting no immediate, overt

damage to neuronal membranes. In addition, repeated insults

caused a slight increase in PrI uptake compared with a single

insult. Although the majority of neurones after repeated

insults had normal-appearing somata, neurites appeared

beaded and damaged, a ®nding that was not observed

following a single mild insult. The damaged neurites

following repeated injury were similar to dendritic abnor-

malities observed in hippocampal neurones following mod-

erate TBI in vivo (Folkerts et al., 1998), and they strongly

resembled those observed after greater magnitudes of stretch.

These results suggest that there is cumulative damage to

cultured hippocampal neurones following repetitive injury.

In agreement with this evidence of sublethal cellular

damage, we found that NSE levels were elevated after

repeated insults compared with a single insult 6 h after injury,

a time-point at which peak levels of NSE have been reported

following TBI in vivo (Woertgen et al., 2001). Levels of NSE

remained elevated compared with uninjured controls 24 h

after injury. This ®nding is clinically relevant, as elevated

levels of NSE can persist for several hours or days after MTBI

and increased NSE levels are often correlated with neuro-

psychological dysfunction (Herrmann et al., 2001). Also

similar to clinical reports (Waterloo et al., 1997; Raabe and

Seifert, 1999; Ali et al., 2000; Herrmann et al., 2001; Pleines

et al., 2001; Berger et al., 2002), we found elevated levels of

S-100b following injury in vitro. Levels of S-100b increased

after repeated injury compared with single mild insults.

S-100b can also remain elevated for several days post-injury

in vivo (Pleines et al., 2001). Although the mechanisms for

elevated S-100b are unknown following TBI, increased

S-100b levels in peripheral blood after trauma may be

indicative of damage to the blood±brain barrier or could

indicate the activation of secondary damage pathways (Raabe

and Seifert, 1999; Herrmann et al., 2001). In addition, S-100b
stimulates glial proliferation (Reeves et al., 1994), which

could possibly lead to swelling of the brain after trauma.

However, it is also possible that S-100b is playing a

somewhat protective role; for example, S-100b may be an

important mediator of glia±neuronal interactions, and it has

been shown to stimulate neurite extension (Reeves et al.,

Fig. 4 Release of NSE following single and repeated mild injury.
NSE release is shown for control wells, after 5.5 mm single injury
and after 5.5 mm double injury, at both 6 and 24 h post-injury.
NSE is represented as nanograms released into the culture media
per milligram of protein in the culture well. *P < 0.05 compared
with control; @P < 0.05 compared with 5.5 mm single insult (n =
5 for all conditions).

Fig. 5 Release of S-100b following single and repeated mild
injury. S-100b release is shown for 5.5 mm single injury and 5.5
mm double injury at both 6 and 24 h post-injury. S-100b is
represented as nanograms released into the culture media per
milligram of protein in the culture well. *P < 0.05 compared with
5.5 mm single insult (n = 8 for all conditions).
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1994). Therefore, glial cells may release S-100b in an attempt

to save, or to repair, dying or damaged neurones.

Collectively, the data suggest sublethal cellular damage to

the majority of hippocampal cells. This is an important

®nding in light of the fact that following TBI in vivo, memory

function can be impaired in the absence of hippocampal cell

death (Lyeth et al., 1990). Although neuronal death was not

readily apparent following single or repeated mild injury, we

cannot rule out the possibility that at least some of the

neurones following repeated injury go on to die, based on the

®nding that there was a reduction in neuronal phenotypes 24 h

post-injury. Other types of traumatic insults, such as elevated

glutamate exposure, trophic factor withdrawal or ischaemia,

can cause fragmented and beaded neurites, reportedly due to

apoptotic enzyme activation (Mattson and Duan, 1999;

Mattson et al., 2000; Zhao et al., 2000). This could eventually

lead to withdrawal or degeneration of neurites, which could

then cause the neurones to lift from the membrane. Also,

neurites can become fragmented and beaded under necrotic

conditions, and plasma membranes can become comprom-

ised. Therefore, lifting of neurones from the membrane or a

delayed uptake of PrI could be responsible for the reduction

in neuronal phenotypes 24 h after repeated injury. However,

further detailed studies of cell death potential, whether

apoptotic or necrotic, need to be carried out in this model. It

should also be noted that, in these experiments no hypoxia

was superimposed on the cells. As ischaemia is often a major

contributor to cellular damage following TBI, another

important set of experiments in the future will be to

investigate single or repeated mechanical injury in addition

to a secondarily produced ischaemic insult. This may lead to

further ®ndings elucidating interactions between mechanical

and ischaemic damage at the cellular level.

Repeated brain injuries occur in a number of populations.

Perhaps the most relevant population is that of athletes.

Collision sports such as American football, ice hockey,

soccer, rugby and boxing present a population of athletes of

all ages who encounter rMTBI. In soccer players, for

example, the number of concussions was inversely related

to the performance on several neuropsychological tests

(Matser et al., 1999); these athletes, when compared with

matched controls from non-contact sports, had lower scores

on memory, planning and visuoperceptual tests (Matser et al.,

1998). In addition, repeated MTBI can increase the suscep-

tibility to chronic TBI as well as neurodegenerative diseases

(Jordan, 2000; Uryu et al., 2002). For example, there is

established evidence of the development of dementia

pugilistica in professional boxers (Jordan, 2000). The reasons

for these ®ndings could start to be unravelled by using a

combination of studies at the cellular and whole-animal level.

As with human MTBI, the occurrence of haemorrhage or

blood±brain barrier compromise in animal models following

MTBI or rMTBI is controversial. Clinical studies describe

MTBI patients who present no signs of haemorrhage but who

still perform poorly on neuropsychological examinations. In

fact, it is the MTBI patient population that presents with few

or any signs of medical complications (e.g. haemorrhage on

CT scan) yet demonstrates cognitive de®cits that have the

medical and scienti®c community puzzled (Macciocchi et al.,

1993). In the presence or absence of blood±brain barrier

compromise, cytoskeletal alteration has been reported fol-

lowing MTBI and rMTBI (Jenkins et al., 1989; Dixon et al.,

1991; Kanayama et al., 1996; Folkerts et al., 1998; Saatman

et al., 1998; Laurer et al., 2001). In addition, it appears that

the effects of a second MTBI may not be additive but

synergistic (Kanayama et al., 1996; Laurer et al., 2001;

DeFord et al., 2002; Uryu et al., 2002).

In conclusion, our overall results suggest that repeated mild

injury causes increased amounts of cellular damage when

compared with single insults of the same magnitude. It is

possible that pathways of cellular degradation differ between

single and multiple TBI. The stretch-injury model used in our

study, as well as similar models that cause secondary damage

(Adamchik et al., 2000), could provide a relatively fast and

economical method for investigating secondary pathways of

damage or for screening potential pharmacological treat-

ments for rMTBI. Also, because we have now characterized

this model in mouse hippocampal cells, it is possible to

investigate the effects of injury on cultures from various

transgenic mice in the hopes of gaining further information on

possible treatment strategies. Although acute TBI has

received much more attention, both clinically and experi-

mentally, an increasing number of studies on repetitive TBI

are currently being conducted. We are optimistic that better

prevention and intervention treatments for rMTBI will soon

be devised based on both in vivo and in vitro experimentation.
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