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Abstract

Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane
is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a
specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation
by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and
Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells
involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes.

Methodology/Principal Findings: Here we have used biochemical approaches to characterise the interaction(s) of Munc18c
with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/
SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE
proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex.

Conclusion/Significance: Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in
regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that
two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE
complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family
perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in
order to stimulate SNARE-mediated membrane fusion.
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Introduction

Studies in a variety of eukaryotic systems have led to the

identification of a family of proteins that function in membrane

fusion using a mechanism highly conserved through evolution [1].

In its simplest form, the SNARE hypothesis states that the fusion of

a donor membrane with its target is mediated by the specific

pairing of target (t)-SNAREs with a cognate vesicle (v)-SNARE

[1]. Specific v- and t-SNARE combinations are involved in all

membrane trafficking events in eukaryotic cells [1]. Multiple lines

of evidence indicate that SNARE proteins constitute the minimal

machinery required for bilayer fusion [1]. Importantly, reconsti-

tution of t-SNARE and v-SNARE proteins in synthetic donor and

acceptor liposomes drives fusion of the two populations [2].

Although the use of this in vitro fusion assay clearly indicates that

the formation of specific SNARE complexes is sufficient to catalyse

membrane fusion, this fusion occurs at a rate far slower than that

observed in physiological systems [2]. Biochemical and genetic

approaches have implicated other proteins as being required for

the regulation of SNARE complex formation. One such family is

the Sec1p/Munc18 (SM) proteins [3].

Like the SNAREs, SM proteins are highly conserved through

evolution, and understanding their precise role in membrane fusion

represents an important question in cell biology [3]. Munc18a was

originally identified as a Syntaxin1A (Sx1A)-binding protein whose

binding to Sx1A precludes SNARE complex formation [4,5].

Consistent with this, crystallographic studies have revealed that

Munc18a is an arch shaped molecule that cradles monomeric Sx1A

in a closed conformation that is incompatible with the entry of Sx1A

into SNARE complexes [6]. These data support a model in which

SM proteins hold their cognate syntaxins in a closed conformation

and thus regulate SNARE complex assembly, perhaps by

facilitating the switch of syntaxins from their closed to a more open

conformation [7]. The Munc18a/Sx1A crystal structure reveals

contacts between the inner arch of Munc18a and almost the entire

length of Sx1As cytosolic domain [6].

In striking contrast to the interaction between Munc18a and

Sx1A, the extreme N-terminal region of other syntaxins are both
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necessary and sufficient to capture their cognate SM proteins. For

example, the N-terminal 44 residues of Sed5p are sufficient to bind

the SM protein Sly1p [8,9]. The crystal structure of this

interaction reveals that the N-terminal peptide of the syntaxin

inserts into a hydrophobic pocket on the outer face of the SM

protein [9]. This interaction is consistent with the SM protein

binding to either a closed or open conformation of the syntaxin.

The finding that different SM proteins bind their cognate

syntaxins via strikingly different mechanisms has severely ham-

pered formulation of a unifying hypothesis describing the

mechanism(s) by which SM proteins regulate SNARE-mediated

membrane fusion. We have previously demonstrated that the SM

protein Vps45p uses two distinct modes of binding to interact with

its cognate SNARE proteins throughout the SNARE complex

assembly/disassembly cycle [10,11]. Vps45p dissociates from its

monomeric syntaxin prior to formation of trans-SNARE complex-

es, and then re-associates following membrane fusion and the

conversion of trans-SNARE complexes to cis-SNARE complexes

[10,11]. We suggest that all syntaxin/SM pairs interact using both

of these modes of binding at different stages of the SNARE

assembly/disassembly cycle. This model would allow the SM

protein to prevent futile reformation of SNARE complexes

following the action of the ATPase NSF, and allow the SNARE

proteins to recycle for further rounds of membrane fusion. Since

different syntaxin/SM pairs are likely subject to different levels of

regulation, the rate-limiting step in the SNARE assembly/

disassembly cycle may differ for different membrane trafficking

pathways. Thus, in the case of Sx1A/Munc18a the SNARE

complex controls a tightly regulated fusion pathway (regulated

exocytosis), and Munc18a binds preferentially to Sx1A in the

closed conformation with high affinity [7]. In contrast, Sed5p/

Sly1p is involved in constitutive trafficking pathways, and is likely

regulated in a distinct manner. The binding seen in vitro possibly

reflects the highest affinity interaction, with the lower affinity

interactions overlooked.

This may be exemplified by Munc18a that cradles monomeric

Sx1A in its closed conformation, as shown by the crystal structure

described above [6]. Mutant versions of Sx1A that are unable to

adopt the closed conformation are unable to bind Munc18a in this

manner [7]. However, it has recently been demonstrated that

Munc18a also binds to the assembled Sx1A-SNAP25-VAMP

complex in which Sx1A is in a more open conformation [12], and

also the N-terminal peptide of Sx1A in manner similar to that

observed for Munc18c and Sly1p binding to Sx4 and Sed5p

respectively [13,14]. Similarly, Sec1p, which was originally

thought to bind exclusively to assembled SNARE complexes

[15], has recently been shown to bind to unassembled t-SNAREs

[16]. These observations underscore the need to accommodate

multiple modes of interaction in any model describing SM protein

function.

The insulin-dependent delivery of GLUT4-containing vesicles

to the plasma membrane is a specialised example of regulated

membrane trafficking [17]. GLUT4-containing vesicles are

mobilised to the cell surface in response to insulin binding its

receptor, where they dock and fuse [17]. Studies in both fat and

muscle cells have established that GLUT4-vesicle fusion is

mediated by the SM protein Munc18c which binds with high

affinity to the plasma membrane t-SNARE Sx4 [18]. Sx4 along

with SNAP-23 forms a functional SNARE complex with the v-

SNARE VAMP2, carried by GLUT4-containing vesicles [18].

Numerous studies have established the importance of these

proteins in GLUT4 translocation [17,19]. Homozygous knockout

of Munc18c in mice results in an increased sensitivity of GLUT4

exocytosis in response to insulin, suggesting that Munc18c

negatively regulates GLUT4 exocytosis [20]. In addition, over-

production of Munc18c in 3T3-L1 adipocytes has been shown to

inhibit insulin-stimulated GLUT4 translocation [21–23]. By

contrast, Munc18c heterozygous knockout mice exhibit impaired

insulin sensitivity [24].

We set out to define the role of Munc18c in membrane fusion

driven by Sx4/SNAP23/VAMP2. The in vitro liposome fusion

assay offers a powerful tool with which to finely dissect the

mechanistic basis of SM protein function [12,16]. Here we use this

assay, catalysed by Sx4/SNAP23/VAMP2, to investigate the role

of Munc18c in bilayer fusion.

Results and Discussion

Munc18c exhibits dose-dependent inhibition of Sx4-
mediated liposome fusion

Two different SM proteins have recently been shown to

stimulate SNARE-mediated liposome fusion [12,16]. To assess

whether this phenomenon is widely conserved, we examined the

effect of the SM protein Munc18c on the liposome fusion assay

catalysed by Sx4/SNAP23/VAMP2 SNARE complex formation.

Fig. 1A shows the recombinant proteins used in this experiment.

Bilayer fusion catalysed by this SNARE complex was found to

exhibit similar rates of fusion to that reported for the neuronal

SNARE complex Sx1A/SNAP25/VAMP and the yeast exocytic

SNARE complex Sso1p/Sec9p/Snc2p (Fig 1B) [12,16]. Rates of

fusion catalysed by Sx1A/SNAP25/VAMP and Sso1p/Sec9p/

Snc2p can be significantly enhanced by the addition of their

cognate SM proteins, Munc18a and Sec1p, respectively [12,16].

To investigate the role of Munc18c on Sx4/SNAP23/VAMP2

mediated fusion, we added purified recombinant Munc18c to the

liposome fusion assay presented in Fig 1B. Addition of Munc18c at

molar ratios of either 2:1 or 10:1 Munc18c:t-SNARE complexes

inhibited liposome fusion catalysed by this SNARE complex in a

dose-dependent manner (Fig 1C). Importantly, addition of an

equivalent amount of Munc18a, an SM protein that does not bind

to Sx4, had no effect on fusion (Fig. 1D). To further validate this

result, equimolar amounts of Munc18c and t-SNAREs were

incubated prior to reconstitution into acceptor liposomes.

Unbound Munc18c was removed by floatation of liposomes prior

to assay. Fig 1E shows that pre-binding of Munc18c to Sx4/

SNAP23 binary complexes in this manner completely abolished

fusion.

Munc18c binds the v-SNARE VAMP2
Although most research on SM protein function has focussed on

their interaction with their cognate syntaxins, it is becoming

apparent that interactions with non-syntaxin SNAREs also plays

an important role in a conserved feature of SM protein function.

We have previously shown that the yeast SM protein Vps45p not

only binds directly to its cognate syntaxin, Tlg2p, but also to the

assembled SNARE complex and also the v-SNARE Snc2p [11].

Similarly, in addition to binding Sed5p and the assembled SNARE

complex, Sly1p also binds directly to the non-syntaxin SNAREs

Bet1p, Bos1p, Sft1p and Gos1p [25]. Furthermore, in addition to

its high affinity interaction with monomeric Sx1A, Munc18a also

binds to the assembled Sx1A/SNAP25/VAMP2 SNARE complex

[12] and VAMP2 alone [26].

Munc18c has been reported to bind directly to monomeric Sx4,

and also to the assembled Sx4/SNAP23/VAMP2 SNARE

complex [27–29]. Fig 2 demonstrates that Munc18c also binds

directly to the SNARE motif of the v-SNARE VAMP2. Purified

recombinant Munc18c binds to GST-fusion proteins harbouring

the cytosolic domains of Sx4 and VAMP2, but not those of the

Munc18c Regulates Syntaxin 4
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Figure 1. Munc18c inhibits Syntaxin 4/SNAP-23/VAMP2-mediated bilayer fusion in vitro. (A,B) VAMP2 and syntaxin 4/SNAP23 form a
functional complex capable of fusing liposomes. (A) Coomassie blue stained gels of the recombinant proteins used in this study. Shown are
samples of the t- and v- proteoliposomes used for fusion assay (10 ml each), the cytoplasmic domain of VAMP2 (VAMP2-cyto, 5 mg) and 5 mg of
purified Munc18c were separated by SDS-PAGE and stained with Coomassie Blue. (B) Fluorescently labelled donor VAMP2 liposomes, 5 ml, were pre-
incubated at 4uC overnight with 45 ml of unlabelled acceptor syntaxin 4/SNAP23 liposomes (with the addition of 2 ml of A200 to correct for volume)
and fusion between the two vesicle populations monitored by measuring NBD fluorescence at 520 nm every 2 min (filled circles). As a control
fluorescence was monitored with the addition of 2 ml of VAMP2-cyto (open circles). The fluorescence was converted into rounds of fusion as outlined
in [16]. Data shown is representative of over 6 experiments of this type. (C) Munc18c added to v-SNARE and t-SNARE vesicles inhibits fusion in a
dose dependant manner. Munc18c, dialysed against glycerol free A200 buffer, was added directly to the fusion assay set up as outlined in panel A
and the mixture incubated at 4uC overnight. Fusion between the two vesicle populations in the absence (filled circles) and presence of Munc18c at
two different ratios to syntaxin4/SNAP23 (2:1, filled triangles, 10:1, filled squares) was monitored by measuring NBD fluorescence at 520 nm every
2 min. As a control, fluorescence was monitored in each population in the presence of 2 ml of VAMP2-cyto (open circles, open triangles and open
squares respectively). The fluorescence was converted into rounds of fusion as outlined [16]. The experiment shown was repeated four times with
quantitatively similar results. (D) Munc18a does not inhibit fusion. Unlabeled acceptor liposomes containing the syntaxin4/SNAP23 t-SNARE

Munc18c Regulates Syntaxin 4
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unrelated v-SNAREs VAMP4 and VAMP8 (Fig 2A). Quantifica-

tion revealed that Munc18c binding to VAMP4 or VAMP8 was

consistently less than 14% of that observed for VAMP2. The

interaction of other SM proteins with v-SNAREs is mediated

through the SNARE motif [11,25]. Similarly, Fig 2B shows that

Munc18c binds directly to the SNARE motif of VAMP2.

The SM:v-SNARE interaction between Vps45p and Snc2p can

be disrupted by the presence of the syntaxin Tlg2p [11]. With this

in mind, we performed a series of competition experiments using

untagged Sx4 and VAMP2 cytosolic domains (Fig 3). The addition

of increasing amounts of VAMP2 had no effect on pre-formed

complexes of Sx4:Munc18c (Fig 3A). In contrast, addition of Sx4

(but not the non-cognate syntaxin, Sx16) readily displaced

VAMP2 from VAMP2:Munc18c complexes (Fig 3B).

SM proteins clearly play a central role in SNARE-mediated

membrane traffic. Here we have focussed on the SM protein,

Munc18c, which regulates fusion mediated by the Sx4/SNAP23/

VAMP2 complex. This complex regulates the delivery of GLUT4-

containing vesicles to the surface of insulin-sensitive cells. In this

study, we have shown that Munc18c inhibits membrane fusion

catalysed by its cognate SNARE complex. Our findings are

consistent with the observation that homozygous knockout of

Munc18c in mice results in an increased sensitivity of GLUT4

exocytosis in response to insulin, suggesting that Munc18c

negatively regulates GLUT4 exocytosis [20]. In addition, over-

production of Munc18c in 3T3-L1 adipocytes has been shown to

inhibit insulin-stimulated GLUT4 translocation [21–23].

However, others have reported a positive role for Munc18c in

the insulin-stimulated delivery of GLUT4 to the plasma

membrane of adipocytes [22,23]. It is important to note that

other SM proteins, Munc18a and Sec1p, accelerate fusion

catalysed by their cognate SNARE complexes in the liposome

fusion assay [12,16]. Given the structural similarities between SM

proteins [3], it seems unlikely that different members of this family

perform opposing regulatory functions. Hence, our finding that

Munc18c inhibits rather than stimulates membrane fusion may

indicate that Munc18c requires a further level of regulation in

order to stimulate SNARE-mediated membrane fusion. One

possibility is that SM proteins adopt distinct conformations within

the cell. Indeed, we have previously characterised a dominant

negative version of the yeast endocytic SM protein Vps45p which

appears to be locked in a conformation that binds to the assembled

SNARE complex [11]. It may be that the recombinant Munc18c

used here favours an inactive conformation in vitro, whereas the

proteins used to demonstrate a stimulatory effect of Munc18a and

Sec1p favour an active conformation. It is possible that Munc18c,

like other SM proteins [30], is subject to post-translational

modifications which may dictate its conformation. Indeed,

Munc18c has been shown to be phosphorylated in response to

multiple agonists in several cell types [31–33]. Intriguingly,

phosphorylation of Munc18c has recently been shown to decrease

its interaction with Sx4 and promote an interaction with Doc2b
[34]. Future research will focus on how such regulatory

mechanisms operate on Munc18c to control the insulin-stimulated

delivery of GLUT4 to the plasma membrane of adipocytes.

Materials and Methods

Plasmids and reagents
Rat GST-tagged Sx4 and GST-VAMP 2 and 3 were from R.

Scheller. Human VAMP8 and human VAMP4 were from A.

Peden. Anti-Sx4, VAMP2, VAMP4 and VAMP8 and Munc18c

were from Synaptic Systems. Lipids were from Avanti Polar Lipids

and Triton 6100 and n-octyl-b-D-glucopyranoside (OG) were

from Sigma. A mutant of VAMP2 lacking the first 30 amino acids

was generated by PCR and expressed in pGEX4T-1 as an N-

terminal GST-fusion protein. Protein A-tagged Sx16 cytosolic

domain was generated by PCR from human syntaxin 16A

(obtained from H. Stenmark) [35].

Purification of SNARE complexes and Munc18c
To purify the syntaxin 4/SNAP23 complex, plasmids contain-

ing the entire coding sequence of syntaxin 4 (pQE30) and an N-

terminal GST-SNAP23 fusion (pET41a) were co transformed into

BL21 DE3 cells and selected on dual antibiotic plates. Colonies

were used to start an overnight culture, and the next day a further

culture was grown (containing 500 mg/ml ampicillin and 50 mg/

ml kanamycin). This overnight culture was then used to inoculate

12 L of Terrific broth containing 200 mg ampicillin and 25 mg

kanamycin, and was grown at 37uC with shaking at 250 rpm. An

additional 100 mg ampicillin was added each hour. Protein

expression was induced by the addition of IPTG to 1 mM when

the cells reached an OD600 of approximately 0.6, and incubated

overnight at 25uC with shaking at 250 rpm.

The protein complex was purified using glutathione sepharose

(Amersham). The cells were broken by two passes through a

French press at 950 p.s.i. in buffer A200 (25 mM HEPES pH 7.4,

200 mM KCL, 10% (w/v) glycerol and 2 mM b-mercaptoetha-

nol) containing 4% Triton, complete protease inhibitors (Roche)

and 2 mM PMSF. Insoluble matter was removed by centrifuga-

tion at 30,0006g for 1 h. The supernatant was incubated with

5 ml of pre-equilibrated glutathione sepharose overnight at 4uC.

The beads were washed with 100 ml of A200 containing 1%

Triton. The Triton was then exchanged for OG by washing the 10

times with 15 ml of A200 containing 1%OG. The beads were

resuspended in an equal volume of A200 containing 1% OG and

125 Units of thrombin were added. The beads were incubated

with rotation for 4 h at room temperature, following which the

supernatant was collected, aliquoted, snap frozen and stored at

280uC until use.

VAMP2 was expressed as a C-terminally tagged His6-myc

fusion protein. The culture was grown to an OD600 of 0.8.

complex (20 ml) were mixed with labelled VAMP2 liposomes (2.8 ml) in a total reaction volume of 70 ml with or without Munc18a or Munc18c. The
final concentration of t-SNAREs in the reaction was 3.7 mM protein and 1.6 mM VAMP2. Munc18a or Munc18c were added at 10 mM. SNARE liposome
were preincubated with SM proteins for 3 h at 4uC prior to fusion at 37uC and fusion assayed as in B. (E) Munc18c pre-incubated with t-SNAREs prior
to reconstitution inhibits fusion facilitated by VAMP2 and syntaxin 4/SNAP23. Equimolar amounts of Munc18c, dialysed against A200 buffer, and
t-SNARE complex were mixed overnight at 4uC. As a control the same amount of t-SNARE was mixed overnight at 4uC with A200 buffer alone. OG was
added to maintain the concentration at 1%. Reconstitution was then carried out as described and aliquots (10 ml) of t-SNARE vesicles analyzed by
SDS-PAGE and Coomassie staining (left panel) the left hand panel. Fusion was monitored between vesicles containing t-SNAREs alone (filled circles)
and t-SNAREs premixed with Munc18c (filled triangles) with v-SNARE vesicles. Data from a representative experiment is shown (right hand panel),
repeated three times with quantitatively similar data. As a control, fusion was also monitored between vesicles containing t-SNAREs alone and v-
SNARE vesicles in the presence of excess VAMP2-cyto (open squares). N.B. Lower quantities of input SNAREs were employed due to dilution of t-
SNAREs with Munc18c during the reconstitution, hence the fusion rates in this experiment are lower than those in B and C. Note that the addition of
Munc18c reduced fusion by the same amount as VAMP2-cyto in these experiments.
doi:10.1371/journal.pone.0004074.g001
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Figure 2. Munc18c binds directly to the cytosolic domains of Syntaxin 4 and VAMP2. (A) 5 mg of either GST, or GST fused to the cytosolic
domain of Sx4, VAMP2, VAMP 4 or VAMP 8, immobilised on glutathione Sepharose were incubated overnight at 4 C with 5 mg His-tagged Munc18c in
a volume of 500 ml. After extensive washing in binding buffer, SDS-PAGE and immunoblot analysis was used to determine which of the GST proteins
Munc18c had bound to. Upper panel represents a Coomassie stained gel of input proteins; lower panel shows an immunoblot for bound Munc18c
(B) The ability of Munc18c to bind to a version of GST-VAMP2 harbouring only the SNARE motif of the v-SNARE was assessed as in (A). Data are
representative of four experiments of this type.
doi:10.1371/journal.pone.0004074.g002
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PLoS ONE | www.plosone.org 5 December 2008 | Volume 3 | Issue 12 | e4074



Protein expression was then induced by the addition of 1 mM

IPTG for 3 h at 37uC. Cells were resuspended, broken and the cell

lysate centrifuged as outlined for syntaxin 4/SNAP23. The

VAMP2 was then purified using Ni-NTA agarose. The beads

were then washed once with 100 ml of A200 containing 1% Triton

6100 and 15 mM imidazole. The Triton 6100 was then

exchanged for OG by washing the beads 10 times with 10 ml of

A200 containing 1% OG and 15 mM imidazole. The protein was

eluted from the beads with 3 ml of A200 containing 1% OG and

500 mM imidazole for 30 minutes at 4uC. The supernatant was

collected, aliquoted, snap frozen and stored at 280uC until use.

Munc18c was expressed as an N terminal His6-fusion protein

from the vector pQE30 in M15 cells co-transformed with a vector

encoding GroEL. Cells were grown to an OD600 of 0.6 and

expression of Munc18c was induced by adding 0.2 mM IPTG

overnight at 25uC. Cells were broken by sonication in A400 buffer

(25 mM HEPES pH 7.4, 400 mM KCl, 10% (w/v) glycerol, 2 mM

b-mercaptoethanol) containing 10 mM Imidazole, EDTA-free

complete protease inhibitors and 2 mM PMSF. Insoluble matter

was removed by centrifguation. The supernatant was incubated

with pre equilibrated Ni-NTA Agarose for 2 h. The beads were

washed with 150 ml of A400 containing 15 mM Imidazole. Protein

was eluted in A400 buffer with 500 mM imidazole for 1 h then

dialysed against A200 without glycerol overnight.

Reconstitution and in vitro fusion assays
Lipid stocks were prepared in chloroform and stored at 280uC

under nitrogen. For t-SNARE liposomes, a 15 mM lipid stock was

made up in chloroform containing 85 mol% POPC and 15 mol%

DOPS. For v-SNARE liposomes a 3 mM lipid stock was made up

in chloroform containing 82 mol% POPC, 15 mol% DOPS,

1.5 mol% NBD-DPPE and 1.5 mol% rhodamine-DPPE [2].

100 ml of 15 mM unlabelled lipid stock, for t-SNARE

liposomes, or 500 ml of 3 mM labelled lipid stock, for v-SNARE

liposomes was placed at the bottom of a 12675 mm glass test tube.

The chloroform was then evaporated using a stream of nitrogen

for 15 min in a fume hood. To ensure that the lipid films were

completely dry the samples were then dried for a further 30 min

under vacuum. Purified t- or v-SNARE (500 ml) purified as

outlined above was then added to each tube. The lipid film was

then resuspended, by vortexing for 15 min. After the lipid film was

completely resuspended the detergent was diluted below its critical

micellar concentration by the addition of 1 ml of Buffer A200

containing 1 mM DTT, drop-wise while the sample was

continuously vortexed. To remove any remaining detergent, the

samples were placed into pre-equilibrated 3 ml Float-a-Lyzers

with a molecular weight cut off of 10,000 and dialysed against 4 L

of Buffer A200 containing 1 mM DTT and 4 g of Bio-Beads, with

stirring at 4uC overnight. Samples were recovered the following

day, and placed at the bottom of a SW60 tube on ice for

subsequent separation using gradient centrifugation.

Proteoliposomes were recovered by floatation on a Nycodenz

gradient. An equal volume of 80% nycodenz in buffer A200

containing 1 mM DTT was mixed with the recovered dialysate to

produce a 40% nycodenz mixture. This was overlaid with 1.5 ml

of 30% nycodenz in buffer A200 containing 1 mM DTT. This

layer was then overlaid with 250 ml of glycerol free A200 and

centrifuged at 65,0006g for 4 h at 4uC. Proteoliposomes were

recovered by removal of 400 ml from the top of the gradient, snap

frozen and stored at 280uC.

Figure 3. Syntaxin 4 disrupts the interaction of Munc18c with VAMP2. (A) 5 mg of M18c was immobilised on Ni-NTA agarose and incubated
overnight with an excess (10 mg) of Sx4 cytosolic domain (residues 1–273) (final concentration 0.7 mM Munc18c, 3.3 mM Sx4 in the initial incubation).
After extensive washing, the pre-formed complex was subsequently incubated with increasing concentrations of VAMP2 cytosolic domain (residues
1–92) as indicated. Upper panel shows a Coomassie stained gel of the input proteins; lower panel shows an immunoblot of the beads probed with
anti-Munc18c, or stained with Coomassie to show levels of Sx4. (B) 5 mg of M18c was immobilised on Ni-NTA agarose and incubated overnight with
an excess (10 mg) of VAMP2 cytosolic domain (final concentration 0.7 mM Munc18c, 7 mM VAMP2 in the initial incubation). The upper panel (input)
shows an immunoblot analysis of these beads after extensive washing confirming the presence of both Munc18c and VAMP2. This preformed
complex was then incubated alone or with 250 mg of Sx4 cytosolic domain or (as a control) 250 mg Sx16 cytosolic domain (residues 1–269) (both t-
SNAREs at a final concentration 16.7 mM), as indicated. Immunoblot analysis was again used to determine the amount of Munc18c and VAMP2 that
remained bound following this challenge (lower panel). Data shown are representative of three experiments of this type.
doi:10.1371/journal.pone.0004074.g003

Munc18c Regulates Syntaxin 4
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Typically fusion assays were set up by mixing 5 ml of v-SNARE

liposome with 45 ml of t-SNARE liposome directly in a well of a 96

well microtitre plate, on ice. This was then sealed and incubated

overnight at 4uC. For assays requiring the addition of soluble v-

SNARE, 2 ml of purified protein in buffer A200 was added to the

t-SNARE liposomes on ice for 10 minutes prior to the addition of

v-SNARE liposomes. To correct for the resulting difference in

volume 2 ml of A200 was added to all other wells in that run. The

fluorescence was measured for 2 h with the excitation set to

460 nm and the emission recorded at 520 nm at 2 min intervals at

37uC. After this period, the plate was removed and 10 ml of 2.5%

(w/v) n-dodecylmaltoside was added to each well. The plate was

gently mixed for 2 min and then fluorescence was recorded for

40 min at 2 min intervals.

Pull-Down Assays
5 mg of GST-tagged proteins (GST alone, N-terminal tagged

Sx4, VAMP2, VAMP4 and VAMP8), were incubated with 10 ml of

glutathione sepharose in binding buffer (150 mM Potassium

acetate, 1 mM MgCl2, 0.05% Tween 20, 20 mM HEPES

pH 7.4) in 200 ml for 1.5 h at 4uC with rotation. Unbound protein

was removed by 3 washes with 1 ml binding buffer. 5 mg of HIS-

tagged Munc18c protein and binding buffer was added to each tube

(final volume 500 ml) and incubated at 4uC overnight with rotation.

20 ml was removed in order to examine protein input. Unbound

protein was removed by 3 washes with 1 ml binding buffer plus

0.2% fish skin gelatin (Sigma), followed by 3 washes with 1 ml of

binding buffer plus 5% (w/v) glycerol and 4 washes with 1 ml of

binding buffer alone. After the final wash, all remaining supernatant

was removed and 15 ml of 16 SDS-PAGE sample buffer (with

20 mM DTT) was added to and samples boiled for 5 min. After

centrifugation at 14,0006g for 5 min, the supernatant was removed

and analysed by SDS-PAGE and/or immunoblotting as outlined in

[36]. For the experiments shown in Fig 3, the GST moiety was

cleaved using thrombin as described [16].
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