3,743 research outputs found

    Enacting Productive Dialogue: Addressing the Challenge that Non-Human Cognition Poses to Collaborations Between Enactivism and Heideggerian Phenomenology

    Get PDF
    This chapter uses one particular proposal for interdisciplinary collaboration – in this case, between early Heideggerian phenomenology and enactivist cognitive science – as an example of how such partnerships may confront and negotiate tensions between the perspectives they bring together. The discussion begins by summarising some of the intersections that render Heideggerian and enactivist thought promising interlocutors for each other. It then moves on to explore how Heideggerian enactivism could respond to the challenge of reconciling the significant differences in the ways that each discourse seeks to apply the structures it claims to uncover

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Consumption experience, choice experience and the endowment effect

    Get PDF
    We report experiments investigating how experience influences the endowment effect. Our experiments feature endowments which are bundles of unfamiliar consumption goods. We examine how a subject’s willingness to swap items from their endowment is influenced by prior experiences of tasting the goods in question and by prior experiences of choosing between them. We do not find a statistically significant endowment effect in our baseline treatment and, because of this, we are unable to test for an effect of consumption experience. We do find an endowment effect when the endowment is acquired in two instalments and, in this setting, we find some evidence that choice experience increases trading. In a follow up experiment, we find evidence that the absence of an endowment effect in our baseline treatment is due to subjects being more willing to swap when they do not have to give up the last unit of their endowment

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur

    Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    Get PDF
    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities

    Numerical modeling of the impact of pump wavelength on Yb-doped fiber amplifier performance

    Get PDF
    Ytterbium-doped optical amplifiers have become common tools for industrial applications due to their high efficiency, relatively low cost and potentially very high output power level. The efficiency of an ytterbium-doped fiber amplifier depends mainly on the absorption of pump radiation, and, therefore, optimum pump wavelengths have been proposed such as 915 nm. However, the semiconductor pump diodes batch supplied by manufacturers may exhibit a spread in the output wavelength. This paper theoretically investigates the performance of Yb-doped amplifiers for different pump wavelengths and defines the pump power penalty when the pump source does not emit at the optimum wavelength. The penalty has been defined as normalized excess pump power required to achieve the desired gain

    Individual rules for trail pattern formation in Argentine ants (Linepithema humile)

    Get PDF
    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology (accepted

    The Bankart repair versus the Putti-Platt procedure: A randomized study with WOSI score at 10-year follow-up in 62 patients

    Get PDF
    Background and purpose This randomized study compared clinical results after surgery for posttraumatic shoulder instability with either an anatomical repair or an older, less anatomical but commonly used method. The less anatomical procedure has been considered quicker and less demanding, but it has been questioned regarding the clinical result. We therefore wanted to compare the clinical outcome of the two different procedures. Our hypothesis was that the anatomical repair would give less residual impairment postoperatively

    Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen

    Get PDF
    Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus-garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defences and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defences such that colony collapse is unavoidable once Escovopsis infections escalate

    Survival and dispersal of a defined cohort of Irish cattle

    Get PDF
    An understanding of livestock movement is critical to effective disease prevention, control and prediction. However, livestock movement in Ireland has not yet been quantified. This study has sought to define the survival and dispersal of a defined cohort of cattle born in Co. Kerry during 2000. The cohort was observed for a maximum of four years, from January 1, 2000 to December 31, 2004. Beef and dairy animals moved an average 1.31 and 0.83 times, respectively. At study end, 18.8% of the beef animals remained alive on Irish farms, including 6.7% at the farm-of-birth, compared with 48.6% and 27.7% for dairy animals respectively. Beef animals werae dispersed to all Irish counties, but mainly to Cork, Limerick, Tipperary and Galway. Dairy animals mainly moved to Cork, Limerick, and Tipperary, with less animals going to Galway, Meath and Kilkenny. The four-year survival probability was 0.07 (male beef animals), 0.25 (male dairy), 0.38 (female beef), and 0.72 (female dairy). Although there was considerable dispersal, the number of moves per animal was less than expected
    • …
    corecore