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Chemical warfare between leafcutter ant
symbionts and a co-evolved pathogen
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Christian Hertweck 3,4, Matthew I. Hutchings 2 & Barrie Wilkinson 1

Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoa-

garicus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and

actively maintained by the ants. The fungus garden is manured with freshly cut leaves and

provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-

cuticle and make antifungal metabolites to help protect the cultivar against disease. If left

unchecked, specialized parasitic Escovopsis fungi can overrun the fungus garden and lead to

colony collapse. We report that Escovopsis upregulates the production of two specialized

metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one,

shearinine D, also reduces worker behavioral defenses and is ultimately lethal when it

accumulates in ant tissues. Our results are consistent with an active evolutionary arms race

between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral

defenses such that colony collapse is unavoidable once Escovopsis infections escalate.
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Ant colonies have nested levels of immune defense
encompassing a lower level (individual ants) and a higher
collective level that is usually referred to as social

immunity1. These social immune defenses are so efficient that
specialized epidemic ant diseases are generally unknown2,3. This
suggests that essentially no pathogens have been encouraged over
evolutionary time to specialize on ants as hosts, except when they
could evolve mechanisms to make infected ants leave the pro-
tective social immunity of their colonies. Well-known examples
are the Ophiocordyceps and Pandora fungi that turn infected ants
into zombies and make them die in remote places that are opti-
mal for pathogen spore dispersal4–7. Consistent with this
impressive general immune-efficiency, there are no specialized
ant diseases known in the attine fungus-farming ants, but their
cultivar gardens are plagued by a single specialized fungal parasite
Escovopsis8 which arose simultaneously with ant agriculture
55–60 million years ago9.

Acromyrmex leafcutter ants form a tripartite superorganismal
mutualism with the fungal cultivar Leucoagaricus gongylophorus
and a defensive actinobacterial symbiont Pseudonocardia
(Fig. 1)10. The cultivar is a functionally polyploid clone11 that the
ants provision with freshly cut leaves and carefully groom to
remove spores and hyphal growth of Escovopsis and generalist
fungal pathogens12. In return for food and housing, the cultivar
has evolved specialized hyphal structures, called gongylidia13

which are rich in lipids and sugars. The gongylidia serve two
functions: they are the sole food source for the ant larvae but are
also ingested by the ant workers to transmit fungal decomposition
enzymes to the ant fecal fluid which is deposited on the fresh leaf
pulp14. Very early in their evolutionary history, the attine ants
started to rear biofilms of antibiotic-producing actinobacteria on
their cuticles, which has generally been interpreted as a

specialized defense against Escovopsis15. However, these biofilms
do not all have Pseudonocardia16 and were not universally
maintained over evolutionary time as some attine genera lost the
cuticular actinobacteria17,18. The most striking contrast of this
kind exists between the two genera of leafcutter ants, where Atta
species use phenylacetic acid from their metapleural gland
secretions to control Escovopsis17, while Acromyrmex species
maintain the cuticular biofilms that are known to reduce the
prevalence of Escovopsis12. The same cuticular biofilms may also
have sanitation benefits for the ant brood (Fig. 1)16,19–23.

The leafcutter ant symbiosis has been particularly well studied
in the Panamanian species Acromyrmex echinatior where the
cuticular biofilm is dominated by either Pseudonocardia octospi-
nosus or Pseudonocardia echinatior, two distinct species of acti-
nobacteria with ca. 50/50 population-wide prevalence24,25. These
Pseudonocardia species are predicted to make different variants of
the broad-spectrum polyene antifungal nystatin26,27, similar to
nystatin-like compounds that have been isolated from Pseudo-
nocardia mutualists cultured by Acromyrmex octospinosus ants
collected in Trinidad and a basal attine species Apterostigma
dentigerum in Costa Rica20,28,29. The Apterostigma mutualist
strains also make a cyclic depsipeptide called dentigerumycin
which has antifungal activity against Escovopsis30.

It has been estimated that about 50% of A. echinatior nests in
Panama are colonized by Escovopsis31 and previous studies have
provided largely anecdotal evidence that worker ants die or
abandon their gardens when the cultivar is overrun by Escov-
opsis8. In A. echinatior, such events reflect a failure of the Pseu-
donocardia biofilm defenses. They occur frequently when
colonies are freshly excavated and kept in lab nests where the ants
cannot dump their waste away from the garden. The resulting
colony collapse suggests that Escovopsis hyphae produce

Pseudonocardia
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Acromyrmex Leucoagaricus
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Fig. 1 Summary of the complex interactions between symbionts of Acromyrmex echinatior leafcutter ants. The ants feed their vertically transmitted bacterial
mutualist strain of Pseudonocardia through tiny subcuticular glands and in return the bacteria provide antifungal compounds to kill the parasite Escovopsis.
They feed cut leaf fragments to their clonal fungal mutualist Leucoagaricus gongylophorus and this fungus provides the sole food source for their larvae. The
parasite Escovopsis also feeds off Leucoagaricus and if left unchecked can overrun and kill the fungal cultivar and the entire ant colony. To prevent this,
worker ants groom their fungal cultivar to remove Escovopsis spores and sterilize them with antifungal compounds made by Pseudonocardia. In this work, we
show that Escovopsis fights back against the defensive mutualists by producing the virulence factors melinacidin IV (1) and shearinine D (2). Both
compounds kill Pseudonocardia and 2 also adversely affects worker ant behavior and is ultimately lethal to the ants. The SEM of Pseudonocardia sp. spores
on the surface of A. echinatior ant was taken by Dr. Kim Findlay (JIC); the images of the Acromyrmex ant and fungus garden were taken by Professor Matt
Hutchings (UEA); the image of the Escovopsis plate was taken by Dr. Neil Holmes (UEA)
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metabolites that affect worker ant behavior and which, at high
enough concentrations, are lethal to the ants. However, in
unstressed colonies the cuticular Pseudonocardia defenses are
highly effective, such that it is usually impossible to isolate
Escovopsis from long-term laboratory colonies maintained under
optimal conditions. P. octospinosus and P. echinatior also produce
a multitude of antibacterial compounds, most likely to defend
their position in the cuticular biofilms against secondary
infections26,27,32, a metabolic activity that may also explain their
general sanitation effects towards ant brood19. These interactions
suggest that the Acromyrmex leafcutter ant symbiosis is the result
of complex arms races between specialized pathogens and a
collective of mutualists33. However, the chemical details of these
interactions remain severely understudied.

Here, we identify two secondary metabolites that are upregu-
lated during Escovopsis weberi infection of the fungal cultivar and
show that they target the defensive Pseudonocardia mutualists in
this system. We report that melinacidin IV (1) and shearinine D
(2) are overproduced during infection and both kill the two
Pseudonocardia species associated with Panamanian A. echinatior
colonies. 2 is a terpene-indole alkaloid closely related to the
penitrems which have been linked to the behavioral changes in
carpenter ants infected with the Ophiocordyceps ‘zombie ant’
fungus34. We show that ingestion of purified 2 by garden worker
ants adversely affects their behavior and is ultimately lethal to the
ants. Furthermore, we show that worker ants from fungus gar-
dens artificially or naturally infected with E. weberi contain levels
of 2 significantly above those of controls. We sequenced and
compared the genomes of five Escovopsis strains isolated from
Atta and Acromyrmex leafcutter ant nests with a previously
published genome sequence from an Atta-associated strain and
found they all encode shearinine-like biosynthetic gene clusters
(BGCs). We hypothesize that shearinines are produced to impede
the ability of leafcutter worker ants to efficiently groom and weed
their fungus gardens.

Results
Upregulation of Escovopsis virulence factors. The pathogenesis
of Escovopsis on the fungal cultivar L. gongylophorus was studied
by co-culturing with E. weberi strain G (Supplementary Table 1)
on potato glucose agar (PGA) plates and comparing the secondary
metabolome to that of axenic cultures of E. weberi. Chemical
profiling of extracts taken from the resulting plates, using ultra
performance liquid chromatography (UPLC) coupled with high-
resolution mass spectrometry (HRMS), revealed the presence of
two major, and a range of minor, metabolites produced during
pathogenesis. The major metabolites had signals at m/z 729.0937
([M+H]+) for compound 1 and 600.3340 ([M+H]+) for com-
pound 2 (Fig. 2). Using liquid chromatography (ultraviolet)-mass
spectrometry (LC(UV)MS) analysis calibrated using isolated
standards (see Supplementary Notes 1 and 2), we confirmed that 1
and 2 were elevated significantly (3.4-fold for 1 and 8.9-fold for 2)
when compared to axenic cultures of E. weberi (Fig. 2). Similar
results were obtained for the pathogenesis of E. weberi strain A
when carried out independently, with upregulation of compounds
1 (2.2-fold) and 2 (2.9-fold) during pathogenesis, and we further
confirmed that 1 and 2 were absent in extracts of the healthy food
fungus (Supplementary Fig. 1).

Identification of the Escovopsis virulence factors. For structure
elucidation we isolated 1 and 2 from large-scale axenic cultures of
E. weberi strain A grown on PGA plates. Ethyl acetate extraction,
silica-based column chromatography and semi-preparative high-
performance liquid chromatography (HPLC) yielded pure sam-
ples of 1 (2.0 mg) and 2 (1.4 mg). HRMS analysis of 1 showed an
intense M+2 signal, indicating a number of incorporated sulfur
atoms. Only half the expected number of signals could be
observed in the 1H and 13C nuclear magnetic resonance (NMR)
spectrum, indicating a symmetrical compound. Combining these
data, a molecular formula of C30H28N6O8S4 was derived. Analysis
of 2D NMR data (heteronuclear single-quantum correlation
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Fig. 2 Escovopsis pathogenesis involves upregulation of small molecule virulence factors. HPLC profiles (λ= 254 nm) of ethyl acetate extracts of a L.
gongylophorus infected with E. weberi strain G; b E. weberi strain G axenic culture. Melinacidin IV, 1; shearinine D, 2

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04520-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2208 | DOI: 10.1038/s41467-018-04520-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(HSQC) and heteronuclear multiple-bond correlation (HMBC))
pointed to a 1,2-substituted phenyl-ring as part of an indole
moiety, while the second part of the molecule was clearly com-
prised of a diketopiperazine. Comparison of all analytical data,
including optical rotation with literature values35, finally con-
firmed 1 as the epipolythiodiketopiperazine (ETP) antibiotic
melinacidin IV, originally isolated from the fungus Acrostalagmus
cinnabarinus var. melinacidinus36 (Fig. 3; Supplementary Note 1).

The 1H NMR spectrum of 2 showed 4 aromatic protons, 14
aliphatic protons and 24 protons that could be assigned to 8
methyl groups. Further, we determined 16 quaternary carbon
atoms, including 1 carbonyl group by analysis of the 13C NMR
spectrum. Accordingly, we could assign a molecular formula of
C37H45NO6, featuring 16 double bond equivalents. Structure
elucidation based on 2D NMR data (HSQC and HMBC) revealed
an indole moiety as part of a highly condensed carbon backbone
and a Michael acceptor system in proximity to an acetal unit.
These features along with the comparison of the chemical shift of
all NMR signals with literature data, nuclear Overhauser effect
spectroscopy (NOESY) analysis, and the measurement of the
optical rotation unambiguously confirmed the identity of 2 as
shearinine D, a terpene-indole alkaloid previously isolated from
the endophytic fungus Penicillium janthinellum (Fig. 3; Supple-
mentary Fig. 2; Supplementary Note 2)37. Predicted BGCs for
terpene-indole alkaloid and ETP metabolites are present in the
published E. weberi genome of strain G38 (Supplementary Figs 3
and 4; Supplementary Tables 2-7), and shearinines D, F and J
have been identified using imaging mass spectrometry of the

Escovopsis strain TZ49 isolated from Trachymyrmex zeteki nests
from the same Panamanian field site39. No function was assigned
to these compounds in the previous study and the species of
Escovopsis was not identified39.

Metabolomics and molecular networking. Having identified two
major classes of secondary metabolites upregulated during E.
weberi infection of the fungal cultivar, we clarified their dis-
tribution among Escovopsis lineages from different attine hosts.
We tested five additional Escovopsis strains isolated from the nests
of the leafcutter ants Atta colombica (strain C), Acromyrmex
echinatior (strains B, E and F), and the higher, non-leafcutter
attine Trachymyrmex cornetzi (strain D) (Supplementary
Table 1). We cultivated five replicates of each strain, plus strain A
as a control, and performed UPLC-MS/MS-based profiling. Data
were uploaded to the Global Natural Product Social Molecular
Networking (GNPS) web platform and used to perform a mole-
cular networking analysis approach40. Molecular networking
captures the similarity of analytes by the comparison of their MS/
MS spectra and this allowed us to identify a number of metabolite
families being produced by the Escovopsis strains (Supplementary
Fig. 5). Molecular networking revealed that additional congeners
of 1 are present in all six strains (Figs. 4 and 5). We observed
compound 3, putatively annotated as melinacidin III (m/z
713.0969 [M+H]+, molecular formula of C30H28N6O7S4; Sup-
plementary Note 3) and a further derivative of melinacidin III,
missing one methyl group (m/z 699.0866
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[M+H]+, molecular formula of C29H26N6O7S4). Two related
signals could be annotated as the ETPs chetracin B (4; m/z
761.0670 [M+H]+, molecular formula of C30H28N6O8S5; Sup-
plementary Note 4) and chetracin C (5; m/z 793.0639 [M+H]+,
molecular formula of C30H28N6O8S6; Supplementary Note 5)
which was verified by NMR41. ETPs 4 and 5 feature polysulfide
bridges of their diketopiperazine moiety of various lengths and
are present in lower amounts in the extracts42 (Fig. 3).

We also identified a complex network of shearinine-like
terpene-indole alkaloid congeners (Fig. 5; Supplementary Fig. 6).
Production levels were sufficiently high to allow isolation of
several compounds from a scaled-up culture of strain C which
resulted in 2 (3.5 mg), along with 6 (shearinine A; 1.0 mg) and 7
(22,23-dehydro-shearinine A; 1.8 mg), in addition to the polyke-
tide metabolite emodin (8; 0.85 mg) (Fig. 3). Compound 6
showed an HRMS signal of m/z= 584.3379 corresponding to a
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molecular formula of C37H45NO5. Comparison of 1H NMR, MS2

data and the retention time of 6 with an authentic reference
confirmed its identity as shearinine A (Supplementary Note 6).
Compound 7 featured an HRMS signal of m/z= 582.3209
[M+H]+ (corresponding to a molecular formula of
C37H43NO5) and could be identified as 22,23-dehydro-shearinine
A by the comparison of 1H and 13C NMR data (Supplementary
Note 7). Additionally, we observed the presence of likely pathway
intermediates such as putative shearinine J and penitrem D
(Fig. 5). The discovery of 8 (Supplementary Note 8) as a
secondary metabolite produced by an Escovopsis sp. is highly
intriguing. Anthraquinones have a long history as a feeding
deterrent for ants43–45 and 8 in particular has proven to be a
broad-spectrum insecticide comprising activity against three
different mosquito species46, the white fly Bemisia tabaci47 and
caterpillar larvae48. Analysis of the sequenced genomes (see
below) showed that all the Escovopsis strains contain the
biosynthetic genes required for production of 8 (Supplementary
Fig. 7; Supplementary Tables 8-10).

To determine the distribution and relative levels of the
annotated metabolites among the different Escovopsis strains,
we used the software Profiling Solutions (Shimadzu) for data
analysis, peak picking, data alignment and filtering of metabolic
profiling data. A heat map was generated showing the abundance
of each ion in the MS profile (Fig. 5). The metabolomics data
clearly showed that ETPs are produced by all six Escovopsis
strains A–F. In contrast, shearinines are only produced by the five
strains isolated from leafcutter ant nests (Atta and Acromyrmex
species) but not by Escovopsis isolated from the higher, non-
leafcutter attine ant T. cornetzi (strain D) (Fig. 5). We validated
our metabolomics data through genome sequencing of strains
A–F, which verified that a shearinine-like BGC is present in
strains A–C and E–F (Supplementary Fig. 3; Supplementary
Tables 2-4); however the BGC was absent from strain D.

Genome sequencing and analysis of Escovopsis strains. To gain
deeper insight into the secondary metabolism of the fungal
pathogen, we sequenced the genomes of the six Escovopsis strains
A–F used in this study. The genome characteristics of these
Escovopsis strains are shown in Supplementary Table 1. As a
reference, we used the published genome of an E. weberi strain
(strain G) isolated from Atta cephalotes collected in Gamboa,
Panama; the same field site used to isolate strains A–F and for the

collection of ant colonies38. According to Meirelles et al.49, there
are nine clades of Escovopsis, with five classified species. Phylo-
genetic analysis (Supplementary Fig. 8, Supplementary Table 11)
using the tef1 gene and internal transcriber spacer (ITS) DNA
sequences shows that strains A and C most closely resemble E.
weberi species from clade I, and strains B, E and F most closely
resemble E. weberi species from clade II. Strain D is distantly
related to the E. weberi strains and most closely resembles
Escovopsis aspergilloides and aligns to clade VII49. We analyzed all
the sequenced Escovopsis genomes using fungiSMASH, an online
resource for the rapid identification of natural product BGCs
from fungi50. We detected 20–23 putative BGCs for each strain
and these mainly comprise terpene, type 1 polyketide synthase
and non-ribosomal peptide synthetase clusters. Based on the
reported BGC for 2 in P. janthinellum51, we identified homo-
logous BGCs in strains A–C and E–G (Supplementary Fig. 3;
Supplementary Tables 2-4). This is consistent with the fact that
these strains all make shearinine-like terpene-indole alkaloids, but
strain D does not. BGCs for the biosynthesis of ETPs like 1 are
present in all seven genomes (Supplementary Fig. 4; Supple-
mentary Tables 5-7) and resemble the BGC responsible for pro-
duction of the ETP chaetocin from Chaetomium virescens52.

Virulence factors 1 and 2 inhibit Pseudonocardia mutualists.
Melinacidins are known to have potent activity against Gram-
positive bacteria and we reasoned it would benefit the parasite to
inhibit the Pseudonocardia mutualists36. As in some more basal
attine branches[16], the Acromyrmex have a tight association with
these bacteria as the ants have specialized crypts with small glands
for housing and feeding the Pseudonocardia mutualist15. To test
our hypothesis, we determined the minimum inhibitory con-
centration (MIC) of compounds 1 and 2 against representative
strains from the two lineages of Pseudonocardia associated with
A. echinatior colonies collected in Gamboa, Panama. Strain
Ae707 belongs to the Ps1 lineage (P. octospinosus) and strain
Ae706 belongs to the Ps2 lineage (P. echinatior)27. Liquid-based
colorimetric assays were performed in microtiter plates to
determine the MIC. Ciprofloxacin was used as a positive control
and all the assays were done in triplicate. The results show that
compounds 1 and 2 are active against both tested Pseudonocardia
mutualist strains. Compound 1 has an MIC of 10 µg ml−1 against
Ae706 and 0.5 µg ml−1 against Ae707, while compound 2 has an
MIC of 5 µg ml−1 against both Ae706 and Ae707 (Fig. 6).
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75 50 25 10
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P. echinatior Ae706 P. octospinosus Ae707
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Fig. 6 Growth of Pseudonocardia mutualists is inhibited by Escovopsis small molecule virulence factors. Microplate assay of 1 (top) and 2 (bottom) against
Pseudonocardia strains Ae706 and Ae707. *PC is the positive control (50 µg ml−1 ciprofloxacin). **NC is the negative control (no inoculation). ***MC, the
bacteria grown in LB with 5% of methanol. The pink color indicates viable bacterial cells
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Effects of dietary intake of 2 on A. echinatior worker ants.
Members of the terpene-indole alkaloid family such as the pas-
palines53 and the janthitrems54–56 are potent mycotoxins and
exhibit insecticidal and tremorgenic activity57. The structurally
related penitrems additionally act as feeding deterrents and mod-
ulators of ion channels in various insects58–60. The tremorgenic
terpene-indole alkaloid 2 has been shown to strongly inhibit the
ion channel BKCa, indicating a potent effect on insect nervous
systems37. The enhanced production levels of 2 during E. weberi
infection of the fungal cultivar suggested that it could be an
important feature in the pathogenesis of E. weberi. Even though the
pathogen infects the fungal cultivar rather than the ants them-
selves, we postulated that 2 is a virulence factor primarily affecting
the worker ants. Fungal virulence factors are highly diverse but the
most well-known example is produced by the fungus Ophio-
cordyceps unilateralis, which causes infected ‘zombie’ ants to adopt
highly unusual behaviors including random walking, repeated
convulsions and final death grips underneath leaves5. The identity
of the virulence factor(s) is not known but transcriptomics data
indicate that O. unilateralis genes with high similarity to those for
the biosynthesis of terpene-indole alkaloids such as penitrems,
close structural analogs of the shearinines, are upregulated during
manipulated biting behavior of infected carpenter ants34.

To characterize the effect of 2 on A. echinatior ants, we
established viable sub-populations of five worker ants in a single
Petri dish. These were each supplied with a glucose solution
supplemented with concentrations of up to 2 mM of 2 dissolved in
50% methanol (Supplementary Fig. 9 Supplementary Movies 1
and 2) or methanol only as a control. After 10 days, the percentage
mortality of the worker ants was significantly affected by the
concentration of dietary 2 (Supplementary Fig. 10,
Kruskall–Wallis test: H= 12.6431DF=3, P= 0.027) with greater
levels of mortality occurring at higher concentrations. Survival
analysis also demonstrated that the probability of survival over
time was significantly reduced at increasing concentrations of 2,
even after controlling for different runs of the experiment
(Supplementary Fig. 11, Cox’s mixed effects model: hazard
ratio= 3.83, z= 0.289, P < 0.001). Supplementation with 50%
methanol alone had no effect on ant mortality and all the ants
survived the experiment. Additionally, in a control experiment, all
ants survived 10 days of exposure to reduced glucose

concentrations (dietary concentrations were reduced from 5% to
3% glucose) confirming that mortality was not due to starvation
caused by a reduced sugar content at higher concentrations of 2.
In addition to the effects on mortality, we also observed reduced
mobility, disorientated movement and loss of balance; ants could
no longer successfully traverse the sides and lid of the petri dishes
as the level of 2 increased. Time-lapse videos showed that mobility
decreased as the concentration of 2 increased, and that each ant
spent a longer amount of time sitting stationary on the cotton
wool. For example, individual ants in the highest concentration
treatment group (2mM) were stationary for a significantly longer
period of time compared to the control treatment group; an
average ( ± SE) of 62.8 ± 1.74 s out of the total 65 s of film,
compared to an average of 8.8 ± 2.1 s in the control group,
respectively (t(7.73)= 19.74, P ≤ 0.001, Welch's t-test) (Supplemen-
tary Fig. 12, Supplementary Movies 1 and 2).

To determine the amount of 2 ingested during these experiments,
we developed a multiple reaction monitoring (MRM) MS-based
method. An authentic reference of 2 was used along with the
internal standard yohimbine to scan for selective MS/MS mass
transitions. This confirmed that significantly higher concentrations
of 2 are present in the worker ant tissues compared to those in
control worker ants (P= 0.001, Dunn’s test) (Fig. 7), and we
observed large differences in the tolerated dose of up to 70 ngmg−1

of bodyweight (Supplementary Fig. 13). Effects such as unstable
movements and reduced mobility were observed in ants from a
minimum level of approximately 10 ng of ingested 2 per mg of
bodyweight. We also quantified the levels of 2 in worker ants taken
from A. echinatior sub-colony infection experiments, and from ants
in a captive A. colombica colony that naturally suffered an
uncontrolled outbreak of Escovopsis infection (Fig. 7). This
confirmed that ants in infected colonies had ingested large amounts
of 2. The levels of 2 in ants during infection with strain E, and also
in ants from naturally infected nests, were not significantly different
from levels observed in ants that were fed a 5% glucose solution
containing 0.1mM of 2 (Dunn’s test: P= 0.4844 in both cases
respectively) (Fig. 7). Worker ants from control colonies fed 5%
glucose solution or from colonies infected with strain D
isolated from T. cornetzi were indistinguishable (Dunn’ test: P=
0.397), consistent with the lack of shearinine production by strain D
(Fig. 7).
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Fig. 7 Accumulation of virulence factor 2 in Acromyrmex ants during nest infection by Escovopsis. Levels of 2 detected in leafcutter worker ants (±s.e.m.)
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Discussion
Two major classes of specialized metabolites are produced during
infection of the fungal cultivar L. gongylophorus by the parasitic
fungus E. weberi in leafcutter ant nests. Terpene-indole alkaloid 2
is a virulence factor that targets the worker ants and mutualist
Pseudonocardia bacteria, while ETPs like 1 target the mutualist
bacteria only. Combined results from untargeted metabolomics
analysis, molecular networking and genome sequencing indicates
the occurrence of ETPs and terpene-indole alkaloids in all six E.
weberi strains isolated from the most highly derived attine genera,
Atta and Acromyrmex, which comprise the leafcutter ants. We
conclude that terpene-indole alkaloids play an important role
during the phenomenon of fungus garden collapse in leafcutter
ant colonies through the manipulation of worker ant behavior.
Impairing the ability of A. echinatior to efficiently remove
infected material by grooming their nests increases the chances of
E. weberi accelerating chronic low-level infections into acute
infestations that will overwhelm entire fungus gardens and allow
the parasite to sporulate. This goes some way to explaining pre-
vious observations in which fungus gardens are sometimes
overwhelmed by E. weberi, resulting in the deaths of worker ants
before the fungus garden is destroyed. We also hypothesize that
both compounds form part of an arsenal in a microbial battle
between E. weberi and the antifungal-producing Pseudonocardia
mutualists20,27–30. Our study provides direct evidence of an arms
race between this specialized mycoparasite and the defensive
actinobacterial mutualists of Acromyrmex leafcutter ants and
their domesticated cultivars.

During the process of review for this manuscript, another study
was published where the authors identified that an attine-derived
Escovopsis strain produces terpene-indole alkaloid shearinines, as
well as emodin61.

Methods
Collection of A. echinatior. All ants were sampled from colonies collected during
fieldwork in the Gamboa area of the Soberania National Park, Panama (Supple-
mentary Table 1).

Isolation of Escovopsis strains. For strains originating from A. echinatior colonies,
Escovopsis was isolated from the waste dumps of lab colonies, or by incubating
sections of fungus garden, in Petri dishes with moist cotton wool. Strain identity
was verified by PCR amplification and sequencing of the 18S gene using the primer
set 18S 1A and 18S 564 (Supplementary Table 12). For strains originating from A.
colombica and T. cornetzi colonies, small sections of cultivar fungus were placed on
PGA plates under sterile conditions. When viable Escovopsis spores were visible,
they were harvested and streaked on to PGA plates under sterile conditions, and
then restreaked until pure cultures were obtained. Stocks were made from lawns of
each purified Escovopsis strain grown on 25ml PGA plates. The spores were
harvested by applying 2 ml of sterile glycerol solution (20%, v/v) to the surface of
the plate and agitating using sterile cotton buds. The spore suspension from each
plate was then transferred to a 2 ml screw cap tubes and stored at −80 °C.

Cultivation of E. weberi and isolation of metabolites. Cultivation of E. weberi
strain A was performed by streaking spores onto a PGA plate, allowing confluent
growth and then spreading from that plate on to 590 new PGA plates using a damp
cotton wool bud. PGA was obtained from Sigma Aldrich (the final composition
was 4 g l−1 potato extract, 20 g l−1 dextrose and 15 g l−1 agar). After incubation for
33 days at 20 °C the plates were frozen at −80 °C for 2 h, thawed, and the leaking
aqueous phase filtered. Residual agar was extracted with ethyl acetate (2 × 500 ml).
The aqueous phase was extracted with ethyl acetate (3 × 250 ml) and all organic
fractions were combined. The organic extract was dried over anhydrous sodium
sulfate, filtered, and concentrated under reduced pressure. The residue was purified
by silica gel open column chromatography (gradient: n-hexane/ethyl acetate: 4/1 to
0/1). Terpene-indole alkaloids and ETPs were present in the 100% ethyl acetate
fraction. Semi-preparative HPLC was used for final purification of metabolites
using a Gemini® 5 µm NX-C18 110 Å, 150 × 10.0 mm column (Phenomenex). An
elution gradient was used starting from H2O (0.1% formic acid)/MeOH 60/40, to
40/60 within 1 min, to 5/95 within 10 min, to 0/100 within 0.5 min, 0/100 hold for
6.5 min and to 60/40 within 0.5 min.

Co-cultivation of E. weberi strain G and L. gongylophorus. E. weberi was used to
infect L. gongylophorus and compared to the axenic culture in three biological

replicates. Initially, a plug of 8 mm of L. gongylophorus fungus garden was placed
on the edge of a 9 cm diameter petri dish filled with 25 ml of PGA and grown for
5 days at 25 °C. An 8mm diameter plug taken from a confluent PGA plate of E.
weberi strain G was then added on the center of the plate and cocultured with L.
gongylophorus for 5 days under the same conditions. The agar was extracted with
ethyl acetate (25 ml) and dried with anhydrous sodium sulfate. After filtration, the
solvent was removed under reduced pressure from an aliquot (4 ml). The residue
was dissolved in methanol (1 ml) for further analysis. Aliquots (15 μl) were ana-
lyzed for the content of 1 and 2 as described below.

Quantitative analysis was performed using a Shimadzu Prominence system with
LC-20AT pumps, a SIL-20ACHT autosampler and a SPD-M20A PDA detector.
Chromatography was achieved using a Nucleodur® C18 HTec, 5 µm, 110 Å, 150 ×
10.0 mm column (Macherey-Nagel). A gradient was used starting from H2O (0.1%
formic acid)/ACN 99.5/0.5 within 1 min, to 0/100 within 35 min, 0/100 hold for 5
min, and to 99.5/0.5 within 1 min. 1 and 2 showed retention times of 23.2 min and
28.7 min respectively. Quantitative analysis was performed by integrating the areas
under the peaks (at 254 nm). Mean area of 1 for the co-culture (n= 3; 34156 ±
4839 au2) and for the axenic culture (n= 3; 10120 ± 4052 au2); mean area of 2 for
the co-culture (n= 3; 10504 ± 1798 au2) and for the axenic culture (n= 3; 1175 ±
182 au2). This result confirmed that from a similar experiment which had been run
previously and independently in Norwich and which gave similar results
(Supplementary Fig. 1).

Spectroscopy. NMR was performed on a Bruker AVANCE III 400MHz spec-
trometer. Chemical shifts are reported in parts per million (ppm) relative to the
solvent residual peak of chloroform-d1 (1H: 7.24 ppm, singlet; 13C: 77.00 ppm,
triplet) or DMSO-d6 (1H: 2.50 ppm, quintet; 13C: 39.52 ppm, septet). The Specific
optical rotation was measured with a Model 341 Polarimeter (PerkinElmer Inc.). A
Lambda 35 UV/Vis spectrometer (PerkinElmer) was used for ultraviolet/visible
(UV/Vis) spectroscopy. Unless otherwise mentioned, UPLC-MS measurements
were performed on a Nexera X2 liquid chromatograph (LC-30AD) system (Shi-
madzu) connected to an autosampler (SIL-30AC), a Prominence column oven
(CTO-20AC) and a Prominence photo diode array detector (SPD-M20A). The
UPLC System was connected to a LCMS-IT-TOF Liquid Chromatograph mass
spectrometer (Shimadzu). A Kinetex® 1.7 µm C18 100 Å, 100 × 2.1 mm column
(Phenomenex) was used for chromatographic separation and the column oven
temperature was set to 30 °C. The mobile phase was a mixture of solvent A (0.1%
formic acid in water) and solvent B (methanol) with a gradient as follows: solvent
A/B initial condition 90/10, hold at 90/10 for 1 min, linear gradient up to 0/100
within 9.00 min, hold for 2.00 min, returned to 90/10 within 0.5 min, hold at 90/10
for 0.5 min. MS spectra were acquired within a mass range of m/z 170–1700 using
an ion accumulation time of 20 ms per spectrum. We used the following para-
meters for MS analysis: temperature of the curved desolvation line 250 °C; tem-
perature of the heat block 300 °C; nebulizer gas flow 1.5 l min−1; interface (probe)
voltage −3.5 kV for negative mode and 4.5 kV for positive mode. The detector
voltage of the time-of-flight (TOF) mass analyzer was set to 1.66 kV and the
collision-induced dissociation energy to 50%. The instrument was calibrated using
sodium trifluoroacetate cluster ions according to the manufacturer’s instructions.
Spectra are shown in Supplementary Figs. 14-31.

Genome sequencing and assembly. Lawns of Escovopsis were grown on top of
sterilized cellophane discs on PGA medium. After 2 weeks of incubation at room
temperature, the fungal mycelium was scrapped off into sterile tubes. Mycelial
material was crushed in a pestle and mortar with liquid N2. Crushed freeze-dried
material was then used with the QIAGEN DNeasy Plant mini kit to isolate DNA.
Illumina sequencing of DNA was carried out at the DNA Sequencing Facility,
Department of Biochemistry, University of Cambridge, UK, using TruSeq PCR-free
and Nextera Mate Pair libraries and a MiSeq 600 sequencer. Genome assembly was
performed using Roche Newbler v3.0, scaffolds were polished using PILON version
1.13, and reads were mapped using Burrows–Wheeler transformation version
0.7.12-r1039. BGCs were identified using BLAST 2.2.31+ with amino acid or
nucleotide sequences from the published, annotated BGCs.

Sample preparation for MS analysis. Escovopsis strains were grown on PGA
medium in five biological replicates for 30 days at 20 °C. Mycelium and agar was
disintegrated, transferred into a beaker and extracted with a 1:1 mixture of acet-
onitrile and methanol (15 ml). The supernatant was filtered, evaporated and the
residue dissolved in methanol. Samples were analyzed as described in the Spec-
troscopy section above.

Molecular networking analysis. UPLC-HRMS chemical profiling data obtained
from the Shimadzu IT-TOF system were converted to the mzXML format,
uploaded to the GNPS server with FileZilla 3.25.1, and processed using the GNPS
web platform. Cytoscape 3.4.0 was used to analyze, organize and visualize data. For
the molecular networking analysis we used the following parameters: precursor ion
mass tolerance 2.0 Da; fragment ion mass tolerance 0.5 Da; advanced network
option: pairs min cosine: 0.5; minimum matched fragment Ions: 2; minimum
cluster size: 1; network TopK: 50; maximum connected component size (Beta): 100;
advanced library search options: library search min matched peaks: 2; score
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threshold: 0.7; analog search disabled; maximum analog search mass difference:
100.0; advanced filtering options: filter below Std Dev: 0.0; minimum peak inten-
sity: 0.0; filter precursor window, filter peaks in 50 Da window and filter library.

MIC determination. Stock solutions of 1 and 2 were prepared in methanol and
further diluted in Luria-Bertani (LB) broth to give concentration in the range 1.5
ng ml−1 to 100 µg ml−1. Aliquots of each solution (100 µl) were transferred to a 96-
well microplate followed by the inoculation of 5 µl of a 1:10 (v/v) 0.5 McFarland
suspension of two different Pseudonocardia mutualist strains isolated previously
from A. echinatior colonies collected in Gamboa, Panama27. The final concentra-
tion of the bacteria was approximately 5 × 104 colony-forming units per ml per
well. After 20 h of incubation time at 30 °C and 150 rpm, 5 µl of resazurin solution
(6.75 mgml−1 in deionized water) was added and the color changes were observed
prior to 4 h of incubation to determine the MIC. Ciprofloxacin was used as a
positive control. To exclude an inhibitory effect of the solvent, control experiments
with methanol in LB were performed. All the assays were performed in triplicate.

Dietary supplementation with 2. Purified 2 was dissolved in 50% methanol to
give a stock concentration of 5 mM which was diluted with a 5% glucose solution
to concentrations of 0.1 mM, 0.25 mM, 0.5 mM, 1 mM and 2mM, respectively.
Individual A. echinatior worker ants were removed from colonies and placed in 9
cm petri dishes containing a 3 × 2 cm piece of cotton wool soaked in water to
maintain humidity. Groups of five ants were supplied with one of the five different
concentrations of 2 in 5% glucose (300 µl) or methanol only in 5% glucose (300 µl)
as a control for 10 days. In a separate control experiment, ants were exposed to 300
µl of 5, 4.9, 4.75, 4.5, 4 and 3% glucose solutions for 10 days. These reduced
concentrations corresponded to the reduced amount of glucose in treatments
receiving higher concentrations of compound 2 in the first experiment.

Solutions were supplied to ants in an Eppendorf lid. Water was added to the
cotton wool daily and Eppendorf caps were topped up with the respective
treatment every 3–4 days. Dead ants in each concentration treatment were scored
daily, collected and frozen. Differences in individual motility and the occurrence of
unusual movements were monitored by eye via time-lapse videos, which ran over 3
h with 10 s intervals between frames (this amounted to approximately 1 min of
video). The amount of time spent stationary by each individual ant was timed (in
seconds) between the highest concentration treatment group (2 mM) and the
control group, over the course of each time-lapse video. All ants were collected at
their time of death or at the end of the 10 days. Samples were immediately frozen at
−80 °C and stored until further analysis.

Experimental Escovopsis sub-colony infections. Two separate sub-colonies of A.
echinatior were created by taking pieces of fungus garden, measuring approxi-
mately 6 cm3, from captive colony Ae088. For each sub-colony, the fungus was
placed in a plastic container inside a larger plastic box. Each fungus piece was
covered in 20 × 3 µl drops of Escovopsis spore suspension. Spores were prepared by
growing confluent Escovopsis lawns on PGA plates and removing spores with a
cotton bud and 500 µl of sterile water. Each sub-colony received a different strain of
Escovopsis, either strain D (isolated from a Trachymyrmex cornetzi nest) or strain E
(isolated from an Acromyrmex echinatior nest). The same number (25 of each
caste) of forager and fungus garden worker ants were placed into each sub-colony.
The ants were additionally supplied with bramble leaves and cotton wool soaked in
water. After 2 weeks, samples of ants, fungus garden and waste dump were taken
from sub-colonies and used for chemical analysis.

MS-based quantitation of 1 and 2. Individual A. echinatior ants and samples of L.
gongylophorus were stored at −80 °C immediately after collection. To prepare
samples for testing, they were warmed to room temperature and their weight
determined by a high precision balance. Ants were washed in methanol (for 5 s) to
remove potential contamination with 2 on their outer surface. Subsequently, each
sample was transferred to a centrifuge tube (15 ml; Corning Incorporated), frozen
in liquid nitrogen and mechanically disintegrated by the back end of a disposable
spreader. The residue was extracted with 980 µl of methanol. The internal standard,
yohimbine (20 µl of a 10 nM solution in methanol), was added. Samples were
thoroughly mixed, centrifuged, the supernatant removed, evaporated under
reduced pressure and stored at −80 °C. The samples were redissolved in methanol
(500 µl) prior to analysis.

Spectra were acquired on a Xevo TQS tandem quadrupole mass spectrometer.
We developed a MRM MS method for the quantitation of shearinine natural
products featuring at a capillary voltage of 2.00 V; source temperature of 150 °C;
desolvation temperature of 500 °C; desolvation gas flow of 800 l h−1; cone gas flow
of 150 l h−1; nebulizer pressure of 7 bar; and a collision gas flow of 0.15 ml min−1.
For analysis of 2 we optimized the cone voltage (to 30 V) and the collision energies
for each of the four transitions (Supplementary Table 13). During parameter
optimization, we continuously injected a solution of 2 (0.1 µM in methanol) into a
flow of 0.4 ml min−1 of 65% acetonitrile (eluting conditions of the analyte). We
used the mass transition 600.4 > 238.2 for quantitation.

For quantitation of 1 we optimized the cone voltage (to 36 V) and the collision
energies for each transition (Supplementary Table 13). During parameter
optimization, we continuously injected a solution of 1 into a flow of 0.4 ml min−1

of 65% acetonitrile (eluting conditions of 1) into the electrospray ionization source.
We used the mass transition 729.1 > 282.1 for quantitation. For the internal
standard Yohimbine we again optimized the cone voltage (to 98 V) and the
collision energies for each transition (Supplementary Table 13). During parameter
optimization, we continuously injected a solution of Yohimbine into a flow of 0.4
ml min−1 of 35% acetonitrile (eluting conditions of the internal standard). We used
the mass transition 355.3 > 212.2 (22 V) for quantitation.

Metabolite separation was achieved using an ACQUITY UPLC system (Waters)
system and a Kinetex® 1.7 µm C18 100 Å, 50 × 2.1 mm column (Phenomenex).
Chromatographic conditions were as follows: starting conditions, H2O (0.1%
formic acid)/acetonitrile: 80/20, hold for 0.3 min, up to 30/70 within 1.7 min, up to
0/100 within 1 min, hold for 1.3 min, to 80/20 within 0.1 min, hold for 0.6 min. The
total run time was 5 min. A flow rate of 0.4 ml min−1 and a column temperature of
40 °C was used. For each analysis 2 µl of sample was injected using partial-loop
needle overfill (PLNO) mode. The weak wash consisted of 500 µl of 10%
acetonitrile and 90% water (containing 0.01% formic acid) and the strong wash
solution 500 µl consisted of 100% acetonitrile (containing 0.01% formic acid).

Calibration standards were prepared by diluting a stock solution of 1 or 2 (1
mM in methanol) to give calibrants with concentrations of 1 nM, 5 nM, 10 nM, 25
nM, 50 nM, 75 nM, 100 nM, 250 nM, 500 nM, 750 nM and 1 µM. The calibration
curve was generated by injecting 2 µl of each standard (PLNO) directly after
analysis of the respective samples of each day.

Data availability. The authors declare that the data supporting the findings
reported in this study are available within the article and the Supplementary
Information, or are available from the authors on reasonable request. New
nucleotide sequence data have been deposited in NCBI GenBank under the
accession codes as follows: E. weberi strain A (NIGB00000000); E. weberi strain B
(NQYR00000000); E. weberi strain C (NQYS00000000); Escovopsis strain D
(NIGD00000000); E. weberi strain E (NQYQ00000000); E. weberi strain F
(NIGC00000000). Raw reads have been deposited at the NCBI Sequencing Reads
Archive with accession codes as follows: E. weberi strain A (SRP117677); E. weberi
strain B (SRP120297); E. weberi strain C (SRP120188); Escovopsis strain D
(SRP136533); E. weberi strain E (SRP122917); E. weberi strain F (SRP117700).
Nucleotide sequences and annotations of the BGCs identified in E. weberi strain G
are available in the Third Party Annotation Section of the DDBJ/ENA/GenBank
databases under the accession numbers TPA: BK010418-BK010420. The ITS
sequence for Escovopsis strain D was amplified with ITS1 and ITS4, sequenced and
deposited with Genbank accession: MG897412.
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