87 research outputs found

    Spatio-Temporal Differentiation and Sociality in Spiders

    Get PDF
    Species that differ in their social system, and thus in traits such as group size and dispersal timing, may differ in their use of resources along spatial, temporal, or dietary dimensions. The role of sociality in creating differences in habitat use is best explored by studying closely related species or socially polymorphic species that differ in their social system, but share a common environment. Here we investigate whether five sympatric Anelosimus spider species that range from nearly solitary to highly social differ in their use of space and in their phenology as a function of their social system. By studying these species in Serra do Japi, Brazil, we find that the more social species, which form larger, longer–lived colonies, tend to live inside the forest, where sturdier, longer lasting vegetation is likely to offer better support for their nests. The less social species, which form single-family groups, in contrast, tend to occur on the forest edge where the vegetation is less robust. Within these two microhabitats, species with longer-lived colonies tend to occupy the potentially more stable positions closer to the core of the plants, while those with smaller and shorter-lived colonies build their nests towards the branch tips. The species further separate in their use of common habitat due to differences in the timing of their reproductive season. These patterns of habitat use suggest that the degree of sociality can enable otherwise similar species to differ from one another in ways that may facilitate their co-occurrence in a shared environment, a possibility that deserves further consideration

    Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    Get PDF
    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity

    Environmental barriers to sociality in an obligate eusocial sweat bee

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.All data generated or analysed during this study are included in this published article and its supplementary materials.Understanding the ecological and environmental contexts in which eusociality can evolve is fundamental to elucidating its evolutionary origins. A sufficiently long active season is postulated to have been a key factor facilitating the transition to eusociality. Many primitively eusocial species exhibit an annual life cycle, which is thought to preclude the expression of eusociality where the active season is too short to produce successive worker and reproductive broods. However, few studies have attempted to test this idea experimentally. We investigated environmental constraints on the expression of eusociality in the obligate primitively eusocial sweat bee Lasioglossum malachurum, by transplanting nest foundresses from the south to the far north of the United Kingdom, far beyond the natural range of L. malachurum. We show that transplanted bees can exhibit eusociality, but that the short length of the season and harsher environmental conditions could preclude its successful expression. In one year, when foundresses were transplanted only after provisioning first brood (B1) offspring, workers emerged in the north and provisioned a second brood (B2) of reproductives. In another year, when foundresses were transplanted prior to B1 being provisioned, they were just as likely to initiate nesting and provisioned just as many B1 cells as foundresses in the south. However, the life cycle was delayed by approximately 7 weeks and nests suffered 100% B1 mortality. Our results suggest that short season length together with poor weather conditions represent an environmental barrier to the evolution and expression of eusociality in sweat bees.This work formed part of a studentship (1119965) awarded to PJD funded by the Natural Environment Research Council and the University of Sussex, supervised by JF

    Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae)

    Get PDF
    Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition, which might provide opportunity for females to manipulate the social behavior of their offspring. Megalopta genalis is a mass-provisioning facultatively eusocial sweat bee for which production of males and females in social and solitary nests is concurrent and asynchronous. Female offspring may become either gynes (reproductive dispersers) or workers (non-reproductive helpers). We predicted that if maternal manipulation plays a role in M. genalis caste determination, investment in daughters should vary more than for sons. The mass and protein content of pollen stores provided to female offspring varied significantly more than those of males, but volume and sugar content did not. Sugar content varied more among female eggs in social nests than in solitary nests. Provisions were larger, with higher nutrient content, for female eggs and in social nests. Adult females and males show different patterns of allometry, and their investment ratio ranged from 1.23 to 1.69. Adult body weight varied more for females than males, possibly reflecting increased variation in maternal investment in female offspring. These differences are consistent with a role for maternal manipulation in the social plasticity observed in M. genalis

    Colony-level differences in the scaling rules governing wood ant compound eye structure

    Get PDF
    Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population

    The Antiquity and Evolutionary History of Social Behavior in Bees

    Get PDF
    A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives

    Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient

    Get PDF
    The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city.Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants.Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable
    corecore