198 research outputs found

    Interprétation géométrique de la capacité et des performances de systèmes à diversité

    Get PDF
    - Notre étude a pour cadre les systèmes de transmission à diversité. Nous analysons tout d'abord l'influence d'une erreur d'estimation du canal, et déduisons l'expression analytique de la capacité ainsi dégradée d'un système OPRA (Optimal Power and Rate Adaptation). Ensuite, nous proposons une interprétation géométrique de cette capacité en nous basant sur la théorie des courbes dites de Bézier. Après avoir passé en revue certaines propriétés héritées de cette structure particulière, nous proposons alors une expression matricielle de cette capacité, ainsi qu'une méthodologie de construction graphique. Pour conclure, nous présentons une application concernant le dimensionnement de motif de pilotes, pour des systèmes multi-porteuse à étalement fréquentiel (Multi-Carrier Spread-Spectrum)

    Nouveau décodeur à complexité réduite pour codes convolutifs de rendement 1/2

    Get PDF
    Les codes convolutifs peuvent être décodés de façon optimale à l'aide l'algorithme de Viterbi (VA). Nous proposons un décodeur à entrée souple dans lequel l'algorithme de Viterbi est employé pour identifier le vecteur d'erreur plutôt que le message d'information avec une métrique appropriée. Ce type de décodage permet d'éviter la mise en oeuvre d'un nombre important d'opérations ACS (Add Compare Select). Nous montrons que les performances atteintes sont proches de l'optimum tout en bénéficiant d'une réduction de la complexité qui est d'autant plus importante que le rapport signal à bruit (SNR) est favorable. Par exemple, pour des SNR supérieurs à 3 dB et dans le cas d'une transmission avec la modulation BPSK sur canal gaussien, au moins 88% des ACS peuvent être évités

    Higher Plasma Levels of Advanced Glycation End Products Are Associated With Incident Cardiovascular Disease and All-Cause Mortality in Type 1 Diabetes: A 12-year follow-up study

    Get PDF
    OBJECTIVE - To investigate the associations of plasma levels of advanced glycation end products (AGEs) with incident cardiovascular disease (CVD) and all-cause mortality in type 1 diabetes and the extent to which any such associations could be explained by endothelial and renal dysfunction, low-grade inflammation, and arterial stiffness. RESEARCH DESIGN AND METHODS - We prospectively followed 169 individuals with diabetic nephropathy and 170 individuals with persistent normoalbuminuria who were free of CVD at study entry and in whom levels of N ε -(carboxymethyl)lysine, N ε -(carboxyethyl) lysine, pentosidine and other biomarkers were measured at baseline. The median follow-up duration was 12.3 (interquartile range 7.6-12.5) years. RESULTS - During the course of follow-up, 82 individuals (24.2%) died; 85 (25.1%) suffered a fatal (n = 48) and/or nonfatal (n = 53) CVD event. The incidence of fatal and nonfatal CVD and of all-cause mortality increased with higher baseline levels of AGEs independently of traditional CVD risk factors: hazard ratio (HR) = 1.30 (95% CI = 1.03-1.66) and HR = 1.27 (1.00-1.62), respectively. These associations were not attenuated after further adjustments for markers of renal or endothelial dysfunction, low-grade inflammation, or arterial stiffness. CONCLUSIONS - Higher levels of AGEs are associated with incident fatal and nonfatal CVD as well as all-cause mortality in individuals with type 1 diabetes, independently of other risk factors and of several potential AGEs-related pathophysiological mechanisms. Thus, AGEs may explain, in part, the increased cardiovascular disease andmortality attributable to type 1 diabetes and constitute a specific target for treatment in these patients. 2011 by the American Diabetes Association

    Accumulation of advanced glycation end (AGEs) products in intensive care patients: an observational, prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress plays an important role in the course and eventual outcome in a majority of patients admitted to the intensive care unit (ICU). Markers to estimate oxidative stress are not readily available in a clinical setting. AGEs accumulation has been merely described in chronic conditions, but can also occur acutely due to oxidative stress. Since AGEs have emerged to be stable end products, these can be a marker of oxidative stress. Skin autofluorescence (AF) is a validated marker of tissue content of AGEs. We hypothesized that AGEs accumulate acutely in ICU patients.</p> <p>Methods</p> <p>We performed an observational prospective study in a medical surgical ICU in a university affiliated teaching hospital. All consecutively admitted ICU patients in a 2 month period were included. Skin AF was measured using an AGE reader in 35 consecutive ICU patients > 18 yrs. As a comparison, historical data of a control group (n = 231) were used. These were also used to calculate age-adjusted AF-levels (AF<sub>adj</sub>). Values are expressed as median and interquartile range [P<sub>25</sub>-P<sub>75</sub>]. Differences between groups were tested by non parametric tests. P < 0.05 was considered statistically significant.</p> <p>Results</p> <p>AF<sub>adj </sub>values were higher in ICU patients (0.33 [0.00 - 0.68]) than in controls (-0.07 [-0.29 - 0.24]; P < 0.001). No differences in skin AF<sub>adj </sub>were observed between acute or planned admissions, or presence of sepsis, nor was skin AF<sub>adj </sub>related to severity of disease as estimated by APACHE-II score, length of ICU, hospital stay or mortality.</p> <p>Conclusion</p> <p>Acute AGE accumulation in ICU patients was shown in this study, although group size was small. This can possibly reflect oxidative stress in ICU patients. Further studies should reveal whether AGE-accumulation will be a useful parameter in ICU patients and whether skin AF has a predictive value for outcome, which was not shown in this small study.</p

    Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia

    Get PDF
    Oxidative stress, through the production of reactive oxygen species (ROS), has been proposed as the root cause underlying the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus (T2DM). It has also been implicated in the progression of long-term diabetes complications, including microvascular and macrovascular dysfunction. Excess nourishment and a sedentary lifestyle leads to glucose and fatty acid overload, resulting in production of ROS. Additionally, reaction of glucose with plasma proteins forms advanced glycation end products, triggering production of ROS. These ROS initiate a chain reaction leading to reduced nitric oxide availability, increased markers of inflammation and chemical modification of lipoproteins, all of which may increase the risk of atherogenesis. With the postulation that hyperglycaemia and fluctuations in blood glucose lead to generation of ROS, it follows that aggressive treatment of fasting and postprandial hyperglycaemia is important for prevention of micro and macrovascular complications in T2DM

    A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations

    Get PDF
    International audienceWe formulate a discrete Lagrangian model for a set of interacting grains, which is purely elastic. The considered degrees of freedom for each grain include placement of barycenter and rotation. Further, we limit the study to the case of planar systems. A representative grain radius is introduced to express the deformation energy to be associated to relative displacements and rotations of interacting grains. We distinguish inter‐grains elongation/compression energy from inter‐grains shear and rotations energies, and we consider an exact finite kinematics in which grain rotations are independent of grain displacements. The equilibrium configurations of the grain assembly are calculated by minimization of deformation energy for selected imposed displacements and rotations at the boundaries. Behaviours of grain assemblies arranged in regular patterns, without and with defects, and similar mechanical properties are simulated. The values of shear, rotation, and compression elastic moduli are varied to investigate the shapes and thicknesses of the layers where deformation energy, relative displacement, and rotations are concentrated. It is found that these concentration bands are close to the boundaries and in correspondence of grain voids. The obtained results question the possibility of introducing a first gradient continuum models for granular media and justify the development of both numerical and theoretical methods for including frictional, plasticity, and damage phenomena in the proposed model

    RAGE Expression in Human T Cells: A Link between Environmental Factors and Adaptive Immune Responses

    Get PDF
    The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it may participate in activation of innate immune responses but its role in adaptive human immune responses has not been described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher levels of IL-17A, CD107a, and IL-5 than RAGE− cells from the same individual with T1D. Our studies have identified the expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune responses

    Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement

    Get PDF
    Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis

    Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)

    Get PDF
    International audienceBACKGROUND: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial). Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. RESULTS: We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary) or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed two distinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. SIGNIFICANCE: Dentition diversity in Cypriniformes constitutes an excellent model to study the evolution of complex morphological structures. This morphological survey clearly advocates for extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology
    corecore