664 research outputs found

    Cyclic and Long-term Variation of Sunspot Magnetic Fields

    Full text link
    Measurements from the Mount Wilson Observatory (MWO) are used to study the long-term variations of sunspot field strengths from 1920 to 1958. Following a modified approach similar to that in Pevtsov et al. (2011), for each observing week we select a single sunspot with the strongest field strength measured that week and then compute monthly averages of these weekly maximum field strengths. The data show the solar cycle variation of the peak field strengths with an amplitude of about 500-700 gauss (G), but no statistically significant long-term trends. Next, we use the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for Cycles 15-19. This relationship is then used to create a proxy of peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA network for the period from 1874 to early 2012. Over this interval, the magnetic field proxy shows a clear solar cycle variation with an amplitude of 500-700 G and a weaker long-term trend. From 1874 to around 1920, the mean value of magnetic field proxy increases by about 300-350 G, and, following a broad maximum in 1920-1960, it decreases by about 300 G. Using the proxy for the magnetic field strength as the reference, we scale the MWO field measurements to the measurements of the magnetic fields in Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field strengths extending from 1920 to early 2012. This combined data set shows strong solar cycle variations and no significant long-term trend (linear fit to the data yields a slope of 0.2±-0.2\pm0.8 G year1^{-1}). On the other hand, the peak sunspot field strengths observed at the minimum of the solar cycle show a gradual decline over the last three minima (corresponding to cycles 21-23) with a mean downward trend of \approx 15 G year1^{-1}

    Surface state engineering of molecule-molecule interactions

    Get PDF
    Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improved organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules

    Chiral dynamics of p-wave in K^- p and coupled states

    Get PDF
    We perform an evaluation of the p-wave amplitudes of meson-baryon scattering in the strangeness S=-1 sector starting from the lowest order chiral Lagrangians and introducing explicitly the Sigma^* field with couplings to the meson-baryon states obtained using SU(6) symmetry. The N/D method of unitarization is used, equivalent, in practice, to the use of the Bethe-Salpeter equation with a cut-off. The procedure leaves no freedom for the p-waves once the s-waves are fixed and thus one obtains genuine predictions for the p-wave scattering amplitudes, which are in good agreement with experimental results for differential cross sections, as well as for the width and partial decay widths of the Sigma^*(1385).Comment: LaTeX, 18 pages, 6 figure

    Serum outperforms plasma in small extracellular vesicle microRNA biomarker studies of adenocarcinoma of the esophagus

    Get PDF
    Background: To compare computed tomography coronary angiography (CTCA) with intravascular ultrasound (IVUS) in quantitative and qualitative plaque assessment. Methods: Patients who underwent IVUS and CTCA within 3 months for suspected coronary artery disease were retrospectively studied. Plaque volumes on CTCA were quantified manually and with automated-software and were compared to IVUS. High-risk plaque features were compared between CTCA and IVUS. Results: There were 769 slices in 32 vessels (27 patients). Manual plaque quantification on CTCA was comparable to IVUS per slice (mean difference of 0.06 ± 0.07, p = 0.44; Bland-Altman 95% limits of agreement -2.19–2.08 mm3, bias of -0.06 mm3) and per vessel (3.1 mm3 ± -2.85 mm3, p = 0.92). In contrast, there was significant difference between automated-software and IVUS per slice (2.3 ± 0.09mm3, p < 0.001; 95% LoA -6.78 to 2.25 mm3, bias of -2.2 mm3) and per vessel (33.04 ± 10.3 mm3, p < 0.01). The sensitivity, specificity, positive and negative predictive value of CTCA to detect plaques that had features of echo-attenuation on IVUS was 93.3%, 99.6%, 93.3% and 99.6% respectively. The association of ≥2 high-risk plaque features on CTCA with echo attenuation (EA) plaque features on IVUS was excellent (86.7%, 99.6%, 92.9% and 99.2%). In comparison, the association of high-risk plaque features on CTCA and plaques with echo-lucency on IVUS was only modest. Conclusion: Plaque volume quantification by manual CTCA method is accurate when compared to IVUS. The presence of at least two high-risk plaque features on CTCA is associated with plaque features of echo attenuation on IVUS.Ravi Kiran Munnur, Jordan Andrews ... Dorothy Keefe ... Lorelle Smith ... Joanne Bowen ... Sarah Thompson ... et al

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
    corecore