208 research outputs found

    Utilising conservative tracers and spatial surveys to identify controls on pathways and DOC exports in an Arctic catchment

    Get PDF
    Dissolved organic carbon (DOC) is typically the predominant form of carbon exported from headwater streams, it therefore represents a major carbon export from Arctic catchments. The projected deepening of thaw depth in permafrost regions, due to an increase in air temperature, may have a significant effect on the amount of DOC exported from these systems. However, quantification of the impacts of climate driven changes on DOC export are still highly uncertain. Understanding the processes controlling DOC export is therefore crucial in predicting the potential impact of projected environmental changes. The controls of DOC production and transport are heavily influenced by soil and vegetation, which are highly variable across the landscape. To completely understand these systems information regarding spatial variability of plants, soils and thaw depths must be taken into account. In this study sub-weekly sampling of DOC was undertaken throughout 2014 in a headwater (<1 km2) catchment in the Northwest Territories, Canada. Spatial surveys of soil properties, active thaw depth and normalised difference vegetation index (NDVI) were collected and used in conjunction with conservative stable water isotopes tracers and major ions to understand sources, flow pathways and timing of DOC exports from the catchment. Stable isotope tracers act as fingerprints of water allowing sources and pathways to be assessed. Observations reveal changing DOC concentrations throughout the season as the active layer deepens and the connectivity of the soils to the stream network throughout the catchment increases. Linking the DOC data with the conservative tracer response improves the identification of carbon pathways and fluxes from the soils; preliminary analysis indicates DOC is being delivered via deeper more mineral soils later in the season. The results indicate that the active layer depth has a strong influence on the amount of DOC exported from the system, independent of the amount of carbon stored in these deeper soils

    Maintaining natural and traditional cultural green infrastructures across Europe: learning from historic and current landscape transformations

    Get PDF
    CONTEXT: Maintaining functional green infrastructures (GIs) require evidence-based knowledge about historic and current states and trends of representative land cover types. OBJECTIVES: We address: (1) the long-term loss and transformation of potential natural forest vegetation; (2) the effects of site productivity on permanent forest loss and emergence of traditional cultural landscapes; (3) the current management intensity; and (4) the social-ecological contexts conducive to GI maintenance. METHODS: We selected 16 case study regions, each with a local hotspot landscape, ranging from intact forest landscapes, via contiguous and fragmented forest covers, to severe forest loss. Quantitative open access data were used to estimate (i) the historic change and (ii) transformation of land covers, and (iii) compare the forest canopy loss from 2000 to 2018. Qualitative narratives about each hotspot landscape were analysed for similarities (iv). RESULTS: While the potential natural forest vegetation cover in the 16 case study regions had a mean of 86%, historically it has been reduced to 34%. Higher site productivity coincided with transformation to non-forest land covers. The mean annual forest canopy loss for 2000–2018 ranged from 0.01 to 1.08%. The 16 case studies represented five distinct social-ecological contexts (1) radical transformation of landscapes, (2) abuse of protected area concepts, (3) ancient cultural landscapes (4) multi-functional forests, and (5) intensive even-aged forest management, of which 1 and 4 was most common. CONCLUSIONS: GIs encompass both forest naturalness and traditional cultural landscapes. Our review of Pan-European regions and landscapes revealed similarities in seemingly different contexts, which can support knowledge production and learning about how to sustain GIs

    The global politics of a ‘poncy pillowcase’: Migration and borders in Coronation Street

    Get PDF
    This article examines the ways in which popular culture stages and supplies resources for agency in everyday life, with particular attention to migration and borders. Drawing upon cultural studies, and specific insights originating from the Birmingham Centre for Contemporary Cultural Studies, we explore how intersectional identities such as race, ethnicity, class, and gender are experienced in relation to the globalisation of culture and identity in a 2007 Coronation Street storyline. The soap opera genre offers particular insights into how agency emerges in everyday life as migrants and locals navigate the forces of globalisation. We argue that a focus on popular culture can mitigate the problem of isolating migrant experiences from local experiences in migrant-receiving areas

    Distinct Mammalian Precursors Are Committed to Generate Neurons with Defined Dendritic Projection Patterns

    Get PDF
    The mechanisms that regulate how dendrites target different neurons to establish connections with specific cell types remain largely unknown. In particular, the formation of cell-type–specific connectivity during postnatal neurogenesis could be either determined by the local environment of the mature neuronal circuit or by cell-autonomous properties of the immature neurons, already determined by their precursors. Using retroviral fate mapping, we studied the lamina-specific dendritic targeting of one neuronal type as defined by its morphology and intrinsic somatic electrical properties in neonatal and adult neurogenesis. Fate mapping revealed the existence of two separate populations of neuronal precursors that gave rise to the same neuronal type with two distinct patterns of dendritic targeting—innervating either a deep or superficial lamina, where they connect to different types of principal neurons. Furthermore, heterochronic and heterotopic transplantation demonstrated that these precursors were largely restricted to generate neurons with a predetermined pattern of dendritic targeting that was independent of the host environment. Our results demonstrate that, at least in the neonatal and adult mammalian brain, the pattern of dendritic targeting of a given neuron is a cell-autonomous property of their precursors

    Identifying future research directions for biodiversity, ecosystem services and sustainability: perspectives from early-career researchers

    Get PDF
    We aimed to identify priority research questions in the field of biodiversity, ecosystem services and sustainability (BESS), based on a workshop held during the NRG BESS Conference for Early Career Researchers on BESS, and to compare these to existing horizon scanning exercises. This work highlights the need for improved data availability through collaboration and knowledge exchange, which, in turn, can support the integrated valuation and sustainable management of ecosystems in response to global change. In addition, clear connectivity among different research themes in this field further emphasizes the need to consider a wider range of topics simultaneously to ensure the sustainable management of ecosystems for human wellbeing. In contrast to other horizon scanning exercises, our focus was more interdisciplinary and more concerned with the limits of sustainability and dynamic relationships between social and ecological systems. The identified questions could provide a framework for researchers, policy makers, funding agencies and the private sector to advance knowledge in biodiversity and ES research and to develop and implement policies to enable sustainable future development

    A Single Amino Acid Mutation in SNAP-25 Induces Anxiety-Related Behavior in Mouse

    Get PDF
    Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser187 of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser187 of SNAP-25 with Ala using “knock-in” technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects

    Mammalian cell transfection: the present and the future

    Get PDF
    Transfection is a powerful analytical tool enabling study of the function of genes and gene products in cells. The transfection methods are broadly classified into three groups; biological, chemical, and physical. These methods have advanced to make it possible to deliver nucleic acids to specific subcellular regions of cells by use of a precisely controlled laser-microcope system. The combination of point-directed transfection and mRNA transfection is a new way of studying the function of genes and gene products. However, each method has its own advantages and disadvantages so the optimum method depends on experimental design and objective

    Activity-Dependent Shedding of the NMDA Receptor Glycine Binding Site by Matrix Metalloproteinase 3: A PUTATIVE Mechanism of Postsynaptic Plasticity

    Get PDF
    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS

    Imaging cytoplasmic cAMP in mouse brainstem neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>cAMP is an ubiquitous second messenger mediating various neuronal functions, often as a consequence of increased intracellular Ca<sup>2+ </sup>levels. While imaging of calcium is commonly used in neuroscience applications, probing for cAMP levels has not yet been performed in living vertebrate neuronal tissue before.</p> <p>Results</p> <p>Using a strictly neuron-restricted promoter we virally transduced neurons in the organotypic brainstem slices which contained pre-Bötzinger complex, constituting the rhythm-generating part of the respiratory network. Fluorescent cAMP sensor Epac1-camps was expressed both in neuronal cell bodies and neurites, allowing us to measure intracellular distribution of cAMP, its absolute levels and time-dependent changes in response to physiological stimuli. We recorded [cAMP]<sub>i </sub>changes in the micromolar range after modulation of adenylate cyclase, inhibition of phosphodiesterase and activation of G-protein-coupled metabotropic receptors. [cAMP]<sub>i </sub>levels increased after membrane depolarisation and release of Ca<sup>2+ </sup>from internal stores. The effects developed slowly and reached their maximum after transient [Ca<sup>2+</sup>]<sub>i </sub>elevations subsided. Ca<sup>2+</sup>-dependent [cAMP]<sub>i </sub>transients were suppressed after blockade of adenylate cyclase with 0.1 mM adenylate cyclase inhibitor 2'5'-dideoxyadenosine and potentiated after inhibiting phosphodiesterase with isobutylmethylxanthine and rolipram. During paired stimulations, the second depolarisation and Ca<sup>2+ </sup>release evoked bigger cAMP responses. These effects were abolished after inhibition of protein kinase A with H-89 pointing to the important role of phosphorylation of calcium channels in the potentiation of [cAMP]<sub>i </sub>transients.</p> <p>Conclusion</p> <p>We constructed and characterized a neuron-specific cAMP probe based on Epac1-camps. Using viral gene transfer we showed its efficient expression in organotypic brainstem preparations. Strong fluorescence, resistance to photobleaching and possibility of direct estimation of [cAMP] levels using dual wavelength measurements make the probe useful in studies of neurons and the mechanisms of their plasticity. Epac1-camps was applied to examine the crosstalk between Ca<sup>2+ </sup>and cAMP signalling and revealed a synergism of actions of these two second messengers.</p

    Specificity of Transmembrane Protein Palmitoylation in Yeast

    Get PDF
    Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs), characterized by the presence of a conserved 50- aminoacids domain called “Asp-His-His-Cys- Cysteine Rich Domain” (DHHC-CRD). There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether
    corecore