7,014 research outputs found

    Shocked molecular hydrogen towards the Tornado nebula

    Full text link
    We present near-infrared and millimetre-line observations of the Tornado nebula (G357.7-0.1). We detected 2.12 micron_m H2 1-0 S(1) line emission towards the suspected site of interaction with a molecular cloud revealed by the presence of an OH(1720 MHz) maser. The distribution of the H2 emission is well correlated with the nonthermal radio continuum emission from the Tornado, and the velocity of the H2 emission spans over 100 km/s, which both imply that the H2 emission is shock excited. We also detected millimetre-lines from 12CO and 13CO transitions at the velocity of the maser, and mapped the distribution of the molecular cloud in a 2 x 2 arcmin^2 region around the maser. The peak of the molecular cloud aligns well with an indentation in the nebula's radio continuum distribution, suggesting that the nebula's shock is being decelerated at this location, which is consistent with the presence of the OH(1720 MHz) maser and shocked H2 emission at that location.Comment: 10 pages, 8 figures, minor changes, accepted to MNRA

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    Hall magnetohydrodynamics of partially ionized plasmas

    Full text link
    The Hall effect arises in a plasma when electrons are able to drift with the magnetic field but ions cannot. In a fully-ionized plasma this occurs for frequencies between the ion and electron cyclotron frequencies because of the larger ion inertia. Typically this frequency range lies well above the frequencies of interest (such as the dynamical frequency of the system under consideration) and can be ignored. In a weakly-ionized medium, however, the Hall effect arises through a different mechanism -- neutral collisions preferentially decouple ions from the magnetic field. This typically occurs at much lower frequencies and the Hall effect may play an important role in the dynamics of weakly-ionised systems such as the Earth's ionosphere and protoplanetary discs. To clarify the relationship between these mechanisms we develop an approximate single-fluid description of a partially ionized plasma that becomes exact in the fully-ionized and weakly-ionized limits. Our treatment includes the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall effect is relevant to the dynamics of a partially ionized medium when the dynamical frequency exceeds the ratio of ion to bulk mass density times the ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length scale is inversely proportional to the ion to bulk mass density ratio as well as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted for publication in MNRA

    A Multi-Wavelength Study of Sgr A*: The Role of Near-IR Flares in Production of X-ray, Soft Îł\gamma-ray and Sub-millimeter Emission

    Full text link
    (abridged) We describe highlights of the results of two observing campaigns in 2004 to investigate the correlation of flare activity in Sgr A* in different wavelength regimes, using a total of nine ground and space-based telescopes. We report the detection of several new near-IR flares during the campaign based on {\it HST} observations. The level of near-IR flare activity can be as low as ∌0.15\sim0.15 mJy at 1.6 ÎŒ\mum and continuous up to about 40% of the total observing time. Using the NICMOS instrument on the {\it HST}, the {\it XMM-Newton} and CSO observatories, we also detect simultaneous bright X-ray and near-IR flare in which we observe for the first time correlated substructures as well as simultaneous submillimeter and near-IR flaring. X-ray emission is arising from the population of near-IR-synchrotron-emitting relativistic particles which scatter submillimeter seed photons within the inner 10 Schwarzschild radii of Sgr A* up to X-ray energies. In addition, using the inverse Compton scattering picture, we explain the high energy 20-120 keV emission from the direction toward Sgr A*, and the lack of one-to-one X-ray counterparts to near-IR flares, by the variation of the magnetic field and the spectral index distributions of this population of nonthermal particles. In this picture, the evidence for the variability of submillimeter emission during a near-IR flare is produced by the low-energy component of the population of particles emitting synchrotron near-IR emission. Based on the measurements of the duration of flares in near-IR and submillimeter wavelengths, we argue that the cooling could be due to adiabatic expansion with the implication that flare activity may drive an outflow.Comment: 48 pages, 12 figures, ApJ (in press

    Self-lensing of a Singular Isothermal Sphere

    Full text link
    Many astrophysical systems can be approximated as isothermal spheres. In an isothermal sphere, the ``foreground'' objects can act as lenses on ``background'' objects in the same distribution. We study gravitational lensing by a singular isothermal sphere analytically. Our results may have interesting applications.Comment: 15 pages plus 2 figures. Revised final version to appear in Phys. Rev. D (2000

    Molecular Diagnostics of Supernova Remnant Shocks

    Get PDF
    We have undertaken a study of radio and infrared molecular-line emission towards several SNRs in order to investigate molecular signatures of SNR shocks, and to test models for OH maser production in SNRs. Here we present results on G349.7+0.2.Comment: 4 pages, 3 figures, appears in "Neutron Stars in Supernova Remnants" (ASP Conference Proceedings), eds P. O. Slane and B. M. Gaensler, 2002, p.39

    Applied Interventions in the Prevention and Treatment of Obesity Through the Research of Professor Jane Wardle

    Get PDF
    Purpose of Review Obesity presents a challenge for practitioners, policy makers, researchers and for those with obesity themselves. This review focuses on psychological approaches to its management and prevention in children and adults. Recent Findings Through exploring the work of the late Professor Jane Wardle, we look at the earliest behavioural treatment approaches and how psychological theory has been used to develop more contemporary approaches, for example incorporating genetic feedback and habit formation theory into interventions. We also explore how Jane has challenged thinking about the causal pathways of obesity in relation to eating behaviour. Beyond academic work, Jane was an advocate of developing interventions which had real-world applications. Summary Therefore, we discuss how she not only developed new interventions but also made these widely available and the charity that she established

    Edging your bets: advantage play, gambling, crime and victimisation

    Get PDF
    Consumerism, industrial development and regulatory liberalisation have underpinned the ascendance of gambling to a mainstream consumption practice. In particular, the online gambling environment has been marketed as a site of ‘safe risks’ where citizens can engage in a multitude of different forms of aleatory consumption. This paper offers a virtual ethnography of an online ‘advantage play’ subculture. It demonstrates how advantage players have reinterpreted the online gambling landscape as an environment saturated with crime and victimisation. In this virtual world, advantage play is no longer simply an instrumental act concerned with profit accumulation to finance consumer desires. Rather, it acts as an opportunity for individuals to engage in a unique form of edgework, whereby the threat to one’s well-being is tested through an ability to avoid crime and victimisation. This paper demonstrates how mediated environments may act as sites for edgeworking and how the potential for victimisation can be something that is actively engaged with

    Shocked molecular gas towards the SNR G359.1-0.5 and the Snake

    Get PDF
    We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR) G359.1-0.5 and the nonthermal radio filament, known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral-line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock while the H2 filament is located at the boundary between the pre--shocked and post-shock regions.Comment: 8 pages, 12 figures, accepted by the MNRAS, typos fixe
    • 

    corecore