62 research outputs found

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required

    Topology counts: force distributions in circular spring networks

    Get PDF
    Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network.Comment: 5 pages, 4 figures. Missing labels in Fig. 4 added. Reference fixe

    On a new conformal functional for simplicial surfaces

    Full text link
    We introduce a smooth quadratic conformal functional and its weighted version W2=eβ2(e)W2,w=e(ni+nj)β2(e),W_2=\sum_e \beta^2(e)\quad W_{2,w}=\sum_e (n_i+n_j)\beta^2(e), where β(e)\beta(e) is the extrinsic intersection angle of the circumcircles of the triangles of the mesh sharing the edge e=(ij)e=(ij) and nin_i is the valence of vertex ii. Besides minimizing the squared local conformal discrete Willmore energy WW this functional also minimizes local differences of the angles β\beta. We investigate the minimizers of this functionals for simplicial spheres and simplicial surfaces of nontrivial topology. Several remarkable facts are observed. In particular for most of randomly generated simplicial polyhedra the minimizers of W2W_2 and W2,wW_{2,w} are inscribed polyhedra. We demonstrate also some applications in geometry processing, for example, a conformal deformation of surfaces to the round sphere. A partial theoretical explanation through quadratic optimization theory of some observed phenomena is presented.Comment: 14 pages, 8 figures, to appear in the proceedings of "Curves and Surfaces, 8th International Conference", June 201

    The boundary value problem for discrete analytic functions

    Full text link
    This paper is on further development of discrete complex analysis introduced by R. Isaacs, J. Ferrand, R. Duffin, and C. Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal. We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S. Smirnov from 2010. This was proved earlier by R. Courant-K. Friedrichs-H. Lewy and L. Lusternik for square lattices, by D. Chelkak-S. Smirnov and implicitly by P.G. Ciarlet-P.-A. Raviart for rhombic lattices. In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A. Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory.Comment: 22 pages, 6 figures. Several changes: Theorem 1.2 generalized, several assertions added, minor correction in the proofs of Lemma 2.5, 3.3, Example 3.6, Corollary 5.

    Shape from Sound: Toward New Tools for Quantum Gravity

    Get PDF
    To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric’s degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra

    Optimal topological simplification of discrete functions on surfaces

    Get PDF
    We solve the problem of minimizing the number of critical points among all functions on a surface within a prescribed distance {\delta} from a given input function. The result is achieved by establishing a connection between discrete Morse theory and persistent homology. Our method completely removes homological noise with persistence less than 2{\delta}, constructively proving the tightness of a lower bound on the number of critical points given by the stability theorem of persistent homology in dimension two for any input function. We also show that an optimal solution can be computed in linear time after persistence pairs have been computed.Comment: 27 pages, 8 figure

    A discrete geometric approach for simulating the dynamics of thin viscous threads

    Full text link
    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematical constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations is established formally in the limit of a vanishing discretization length. The discrete models lends itself naturally to numerical implementation. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous jets in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension
    corecore