681 research outputs found

    Orthogonal nets and Clifford algebras

    Full text link
    A Clifford algebra model for M"obius geometry is presented. The notion of Ribaucour pairs of orthogonal systems in arbitrary dimensions is introduced, and the structure equations for adapted frames are derived. These equations are discretized and the geometry of the occuring discrete nets and sphere congruences is discussed in a conformal setting. This way, the notions of ``discrete Ribaucour congruences'' and ``discrete Ribaucour pairs of orthogonal systems'' are obtained --- the latter as a generalization of discrete orthogonal systems in Euclidean space. The relation of a Cauchy problem for discrete orthogonal nets and a permutability theorem for the Ribaucour transformation of smooth orthogonal systems is discussed.Comment: Plain TeX, 16 pages, 4 picture

    The Ribaucour transformation in Lie sphere geometry

    Get PDF
    We discuss the Ribaucour transformation of Legendre maps in Lie sphere geometry. In this context, we give a simple conceptual proof of Bianchi's original Permutability Theorem and its generalisation by Dajczer--Tojeiro. We go on to formulate and prove a higher dimensional version of the Permutability Theorem. It is shown how these theorems descend to the corresponding results for submanifolds in space forms.Comment: v2: Introduction expanded and references added. 20 pages, 4 Postscript figure

    On the Birkhoff factorization problem for the Heisenberg magnet and nonlinear Schroedinger equations

    Full text link
    A geometrical description of the Heisenberg magnet (HM) equation with classical spins is given in terms of flows on the quotient space G/H+G/H_+ where GG is an infinite dimensional Lie group and H+H_+ is a subgroup of GG. It is shown that the HM flows are induced by an action of R2\mathbb{R}^2 on G/H+G/H_+, and that the HM equation can be integrated by solving a Birkhoff factorization problem for GG. For the HM flows which are Laurent polynomials in the spectral variable we derive an algebraic transformation between solutions of the nonlinear Schroedinger (NLS) and Heisenberg magnet equations. The Birkhoff factorization for GG is treated in terms of the geometry of the Segal-Wilson Grassmannian Gr(H)Gr(H). The solution of the problem is given in terms of a pair of Baker functions for special subspaces of Gr(H)Gr(H). The Baker functions are constructed explicitly for subspaces which yield multisoliton solutions of NLS and HM equations.Comment: To appear in Journal of Mathematical Physic

    Incircular nets and confocal conics

    Full text link
    We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres, and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.Comment: 33 pages, 24 Figure
    • …
    corecore