260 research outputs found
Introducing anisotropic tensor to high order variational model for image restoration
Second order total variation (SOTV) models have advantages for image restoration over their first order counterparts including their ability to remove the staircase artefact in the restored image. However, such models tend to blur the reconstructed image when discretised for numerical solution [1–5]. To overcome this drawback, we introduce a new tensor weighted second order (TWSO) model for image restoration. Specifically, we develop a novel regulariser for the SOTV model that uses the Frobenius norm of the product of the isotropic SOTV Hessian matrix and an anisotropic tensor. We then adapt the alternating direction method of multipliers (ADMM) to solve the proposed model by breaking down the original problem into several subproblems. All the subproblems have closed-forms and can be solved efficiently. The proposed method is compared with state-of-the-art approaches such as tensor-based anisotropic diffusion, total generalised variation, and Euler's elastica. We validate the proposed TWSO model using extensive experimental results on a large number of images from the Berkeley BSDS500. We also demonstrate that our method effectively reduces both the staircase and blurring effects and outperforms existing approaches for image inpainting and denoising applications
Spherical harmonics for surface parametrisation and remeshing
This paper proposes a novel method for parametrisation and remeshing incomplete and irregular polygonal meshes. Spherical harmonics basis functions are used for parametrisation. This involves least squares fitting of spherical harmonics basis functions to the surface mesh. Tikhonov regularisation is then used to improve the parametrisation before remeshing the surface. Experiments show that the proposed techniques are effective for parametrising and remeshing polygonal meshes
Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces – the role of focal adhesion maturation
The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopaedic devices. In this study, the FDA approved plastic polycaprolactone, was embossed with nanometric grooves and the response of primary and immortalised osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 ÎĽm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion, they formed more focal complexes and a lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalised cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin mediated FAK activation
Novel Methods for Microglia Segmentation, Feature Extraction, and Classification
© 2017 IEEE. Segmentation and analysis of histological images provides a valuable tool to gain insight into the biology and function of microglial cells in health and disease. Common image segmentation methods are not suitable for inhomogeneous histology image analysis and accurate classification of microglial activation states has remained a challenge. In this paper, we introduce an automated image analysis framework capable of efficiently segmenting microglial cells from histology images and analyzing their morphology. The framework makes use of variational methods and the fast-split Bregman algorithm for image denoising and segmentation, and of multifractal analysis for feature extraction to classify microglia by their activation states. Experiments show that the proposed framework is accurate and scalable to large datasets and provides a useful tool for the study of microglial biology
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays
The lifetime and oscillation frequency of the B0 meson has been measured
using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP.
The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the
production flavour of the B0 mesons was determined using a combination of tags
from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d
= 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first
error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
Search for Higgs Bosons in e+e- Collisions at 183 GeV
The data collected by the OPAL experiment at sqrts=183 GeV were used to
search for Higgs bosons which are predicted by the Standard Model and various
extensions, such as general models with two Higgs field doublets and the
Minimal Supersymmetric Standard Model (MSSM). The data correspond to an
integrated luminosity of approximately 54pb-1. None of the searches for neutral
and charged Higgs bosons have revealed an excess of events beyond the expected
background. This negative outcome, in combination with similar results from
searches at lower energies, leads to new limits for the Higgs boson masses and
other model parameters. In particular, the 95% confidence level lower limit for
the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons
can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA >
72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and
soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for
minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM
parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European
Physical Journal
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots
= 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are
selected. Assuming Standard Model W boson decay branching fractions, the W-pair
production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +-
0.18(syst.) pb. When combined with previous OPAL measurements, the W boson
branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +-
0.28(syst.) % assuming lepton universality. These results are consistent with
Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
- …