16 research outputs found

    Hand layup: understanding the manual process

    Get PDF
    © 2015, © 2015 The Author(s). Published by Taylor & Francis. The hand layup of pre-impregnated woven materials is still a large part of the composite manufacturing industry, requiring the skills and experience of a human workforce to form flat plies into complex shapes. It is capable of producing high performance and complex parts, but can be an expensive and variable process. Despite its importance, there appears to have been very little research into the actual methods and techniques used by workers to manipulate flat sheets of composite material into shape during layup. This work presents the first known detailed study of the approach and techniques used by laminators. Four participants laid up onto 15 different shaped molds that replicated features commonly found on composite components. The actions used in layup were grouped into eight distinct techniques. Use of these techniques across tasks of different geometry, ramp angles, radii and drape path was identified using video analysis techniques from the ergonomics field. This revealed strong links between specific features and techniques, revealing a systematic approach to layup. This has enabled the first step toward producing a design for manufacture knowledge base surrounding hand layup. This could then be used to inform the development of the layup process, improve training methods and assist in the design of future automated solutions

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Supporting Evidence-Based Practices: What Implementation Activities are Needed When for Success

    No full text
    This View From the Field column is the third in a series describing the important contributions of the field of implementation science in supporting educators in implementing evidence-based practices (EBPs; Kittelman et al., 2020, 2021). In the previous columns, we highlighted the importance of selecting EBPs and establishing school implementation teams to provide support to students, and support to educators, in implementing EBPs. For this column, we focus on another component of the Active Implementation Frameworks (Metz & Bartley, 2012) by describing the actions and activities needed to move EBPs through different stages of implementation. In doing this, we highlight the important work of researchers and practitioners from the National Technical Assistance Center on the State Implementation and Scaling-Up of Evidence-Based Practices ([SISEP]; https://sisep.fpg.unc.edu) within the National Implementation Research Network (NIRN; https://nirn.fpg.unc.edu)

    Reunião internacional: novos testes diagnósticos são necessários urgentemente para tratar pacientes com doença de Chagas

    No full text
    Médecins Sans Frontières. Campaign for Access to Essential Medicines Rio de Janeiro, RJ, August 30-31, 2007Trypanosoma cruzi infection is often not detected early on or actively diagnosed, partly because most infected individuals are either asymptomatic or oligosymptomatic. Moreover, in most places, neither blood banks nor healthcare units offer diagnostic confirmation or treatment access. By the time patients present clinical manifestations of advanced chronic Chagas disease, specific treatment with current drugs usually has limited effectiveness. Better- quality serological assays are urgently needed, especially rapid diagnostic tests for diagnosis patients in both acute and chronic phases, as well as for confirming that a parasitological cure has been achieved. Some new antigen combinations look promising and it is important to assess which ones are potentially the best, together with their requirements in terms of investigation and development. In August 2007, a group of specialized researchers and healthcare professionals met to discuss the state of Chagas infection diagnosis and to build a consensus for a plan of action to develop efficient, affordable, accessible and easy- to- use diagnostic tests for Chagas disease. This technical report presents the conclusions from that meeting
    corecore