22 research outputs found

    The science case for the EISCAT_3D radar

    Get PDF
    The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005–2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010–2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who are listed as authors, thanks are due to many others in the EISCAT scientific community for useful contributions, discussions, and support

    Microwave-Assisted Synthesis of C2-Symmetric HIV-1 Protease Inhibitors : Development and Applications of In Situ Carbonylations and other Palladium(0)-Catalyzed Reactions

    No full text
    The HIV protease is an essential enzyme for HIV replication and constitutes an important target in the treatment of HIV/AIDS. Efficient combination therapies using inhibitors of the reverse transcriptase and protease enzymes have led many to reevaluate HIV infections from a terminal condition to a chronic-but-manageable disease in the developed world. Unfortunately, the emergence of drug resistant viral strains and severe treatment-related adverse effects limit the benefits of current anti-HIV/AIDS drugs for many patients. Furthermore, less than one in ten patients infected with HIV in low- and middle-income countries have access to proper treatment. These important shortcomings highlight the need for new, cost effective anti-HIV/AIDS drugs with unique properties. Microwave heating has recently emerged as a productivity-enhancing tool for the medicinal chemist. Reaction times can often be reduced from hours to minutes or seconds and chemistry previously considered impractical or unattainable can now be accessed. In this thesis, the search for unique HIV-1 protease inhibitors and the development and application of new microwave-promoted synthetic methods useful in small-scale medicinal chemistry applications are presented. Protocols for rapid amino- and hydrazidocarbonylations were developed. Mo(CO)6 was used as a solid source of carbon monoxide, enabling a safe, efficient and simple way to exploit carbonylation chemistry without the direct use of toxic carbon monoxide gas. The aminocarbonylation methodology was applied in the synthesis of two series of new HIV-1 protease inhibitors. A biological evaluation suggested that ortho-substitution of P1 and/or P1’ benzyl side chains might provide a new approach to HIV-1 protease inhibitors with novel properties. To assess the scope and limitations of the ortho-substitution concept, a new series of compounds exhibiting fair potency was prepared by various microwave-heated, palladium-catalyzed coupling reactions. Finally, computer modeling was applied to rationalize the binding-modes and structure-activity relationships of these HIV-1 protease inhibitors

    Simulation of post-ADC digital beam-forming for large area radar receiver arrays

    No full text
    In order to provide instantaneous three-dimensional radar measurements spanning the entire vertical extent of the ionosphere, the planned EISCAT 3D incoherent scatter radar system includes multiple receive-only antenna arrays, situated at 90-280 km from the main transmit/receive site. These will employ band-pass sampling at ∼80 MHz, with the input signal spectrum contained in the 6th Nyqvist zone. This paper presents simulations and methods used to investigate use of a post-ADC fractional-sample-delay (FSD) system necessary to perform true time-delay beamforming. To test the feasibility and limitations of the system an extensive simulation tool has been developed. The simulation system is implemented in matlab to provide cross-platform compatibility and can be applied to any similar system. Performance degrading aspects such as noise, jitter, bandwidth and resolution can be included in the simulations. The use of FIR-filters in the base-band of a band-pass sampled signal to apply true time-delay beam-forming is shown to be feasible.Godkänd; 2007; 20061229 (ysko)EISCAT 3

    A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode

    No full text
    We here report on our continued studies of ligands binding tothe promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R ascompared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations

    Microwave Promoted Transcarbamylation Reaction of Sulfonylcarbamates under Continuous-Flow Conditions

    No full text
    Successful conditions for the transcarbamylation/transesterification reaction of sulfonylcarbamates with alcohols by microwave heating under continuous-flow conditions were developed. After optimization of the processes, two series of <i>O</i>-alkylsulfonylcarbamates were obtained in high yields and purities using microwave transparent borosilicate tube reactors. In order to also illustrate the usefulness of the protocol in a medicinal chemistry context, the methodology was used for the synthesis of three angiotensin II type 2 receptor ligands

    Radar Observations of Meteors

    No full text
    A meteoroid entering the atmosphere produces a transient plasma that due to ambipolar diffusion expands to a trail and drifts with the local wind. Radar detection of meteor plasma with different kinds of radar systems have enabled studies of meteor astronomy and meteoroid atmosphere interaction processes, such as meteoroid ablation and fragmentation. Specular meteor radars detect meteor trails aligned perpendicular to the radar line-of-sight and have been used to estimate mesospheric wind fields and temperatures, as well as meteoroid populations, including previously unidentified meteor showers. High-power large-aperture radars have been used to study meteor head echoes and non-specular trail echoes. The latter are caused by a combination of magnetic field and dusty plasma effects, and have been used to get precise horizontal wind profiles in the mesosphere and lower thermosphere. Meteor head echo observations have enabled the low-mass component of meteor showers and the sporadic complex to be studied, in addition to the small-scale details of meteoroid-atmosphere interaction processes

    One-Pot, Two-Step, Microwave-Assisted Palladium-Catalyzed Conversion of Aryl Alcohols to Aryl Fluorides via Aryl Nonaflates

    No full text
    A convenient procedure for converting aryl alcohols to aryl fluorides via aryl nonafluorobutylsulfonates (ArONf) is presented. Moderate to good one-pot, two-step yields were achieved by this nonaflation and microwave-assisted, palladium-catalyzed fluorination sequence. The reductive elimination step was investigated by DFT calculations to compare fluorination with chlorination, proving a larger thermodynamic driving force for the aryl fluoride product. Finally, a key aryl fluoride intermediate for the synthesis of a potent HCV NS3 protease inhibitor was smoothly prepared with the novel protocol

    Detection of meteoroid hypervelocity impacts on the Cluster spacecraft : First results

    Get PDF
    We present the first study of dust impact events on one of the Earth-orbiting Cluster satellites. The events were identified in the measurements of the wide band data (WBD) instrument on board the satellite operating in monopole configuration. Since 2009 the instrument is operating in this configuration due to the loss of three electric probes and is therefore measuring the potential between the only operating antenna and the spacecraft body. Our study shows that the WBD instrument on Cluster 1 is able to detect pulses generated by dust impacts and discusses four such events. The presence of instrumental effects, intensive natural waves, noncontinuous sampling modes, and the automatic gain control complicates this detection. Due to all these features, we conclude that the Cluster spacecraft are not ideal for dust impact studies. We show that the duration and amplitudes of the pulses recorded by Cluster are similar to pulses detected by STEREO, and the shape of the pulses can be described with the model of the recollection of impact cloud electrons by the positively charged spacecraft. We estimate that the detected impacts were generated by micron-sized grains with velocities in the order of tens of km/s
    corecore