46 research outputs found
Controlling laser spectra in a phaseonium photonic crystal using maser
We study the control of quantum resonances in photonic crystals with
electromagnetically induced transparency driven by microwave field. In addition
to the control laser, the intensity and phase of the maser can alter the
transmission and reflection spectra in interesting ways, producing hyperfine
resonances through the combined effects of multiple scattering in the
superstructure.Comment: 7 pages, 4 figure
Electroexcitation of the at low momentum transfer
We report on new p measurements at the
resonance at the low momentum transfer region. The mesonic
cloud dynamics is predicted to be dominant and rapidly changing in this
kinematic region offering a test bed for chiral effective field theory
calculations. The new data explore the low dependence of the resonant
quadrupole amplitudes while extending the measurements of the Coulomb
quadrupole amplitude to the lowest momentum transfer ever reached. The results
disagree with predictions of constituent quark models and are in reasonable
agreement with dynamical calculations that include pion cloud effects, chiral
effective field theory and lattice calculations. The reported measurements
suggest that improvement is required to the theoretical calculations and
provide valuable input that will allow their refinements
Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity
A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition